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FOREWORD

4IMSC was sponsored by the World Meteorological Organisation, Canadian Airlines Interna-
tional and the New Zealand Meteorological Service. Notices and publicity were provided by
the American Meteorological Society. Travel support for unfunded participants was given by
External Aid Division of the NZ Ministry of External Relations and Trade and three private
sponsors in New Zealand.

The meeting was held at Quality Inn, Rotorua NZ, from 27-31 March 1989. An international
Steering Committee of Prof A.H. Murphy (USA, Convenor), Dr N. Nicholls (Australia), Dr R.
Sneyers (Belgium), Dr F. Zwiers (Canada), Dr G.V. Gruza (USSR) and Dr I. Rodriguez-Iturhe
(Venezuela) provided guidance for the 4IMSC host committees.

Planning and running of 4IMSC was carried out by K.J.A. Revfeim (Convenor, Organizing
Committee), S.W. Goulter (Convenor, Programme Committee), C.S. Thompson. and J. Sansom
with some assistance from other staff of the New Zealand Meteorological Service.

Procedures, notices, programme layout and standard correspondence (invitations to lead
~ speakers, chairpersons etc.) were processed using IATEX software. Likely participants were
invited to submit abstracts on 3}” or 5}” computer disk. After testing the viability of this form
accepted papers were requested on disk as an alternative to normal text. The latter remained an
optional form although requiring additional labour to scan using an optical character reader.
The experience of preparing the Pre-print volume and Proceedings in this manner will he
produced as a separate publication that may be useful for running international or national
meetings taking advantage of electronic communication and processing facilities. It may well
be profitable (in both senses of the word) to keep IMSC to the forefront of this technology.

EDITORIAL

This Pre-print volume is issued as a draft of the Proceedings of 4IMSC. All papers submitted
as text or on disk before 10 March 1989 have been included. Other papers expected to be read
have been included as ABSTRACTS in the form submitted for programme selection.

Paper headings have been reformatted from IATEX article style to improve space utilization.
Some editorial changes to submitted text and formula layout have been made. Awuthors are
asked to carefully read their paper as processed by us and any required amendments should
be addressed to the Convenor, Programme Committee (form supplied in 4IMSC satchel). and
preferably handed in at Rotorua before the closure of 4IMSC.

The Registration fee does not include the price of the full Proceedings which will be offered
for sale around June 1989. Participants at Rotorua and authors of submitted papers (whether
they are able to attend or not) may order the Proceedings at half the full sale price which is
expected to be around NZ$100 (i.e. half price NZ$50 including packmg and po<fage) Nett
sale proceeds will be invested to provide initial funding for 5IMSC.
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Quality control of precipitation measurements in Denmark

Henning Madsen
Danish Meteorological Institute .

Abstract

Manual quality control of precipitation measurements is
taken care of in Denmark by means of experienced meteorolo-
gists. Over the past years more accurate statistical means
has been developed in terms of statistical models for the
variation of daily precipitation (1,2). These models assess
the variation, in a site specific and temporal frame work
(parametric structure) and hake use of spétial correlations
after remioval of the systematic influence -of the site -
and temporal effects. The paper discusses semi-automatic
quality control procedures in the light of this model and
outline a .competing procedure based upon calculations of
median point values for a given area, which is less sensi-
tive to outliers than guality control procedures based upon
a full parametric statistical model, where the estimation
of parameters induce biased controls.

- References

Allerup, P., and Madsen, H., 1983: A statistical model for precipitation data with application to interpolation
problems. Proc. 2IMSC, Lisbon.

Allerup, P., and Madsen, H., 1986: Variation of spatial correlation patterns in Denmark. .Proc. 3ICSC, Vienna.



The accuracy of now-cast winds

S.J. Reid
New Zealand Meteorological Service

Introduction

The need for grid-point wind data for numerical models has led to an examination of the degree to
which different types of observing method can produce a truly representative wind for an area. Wylie
* et al. (1985) have found that that differences between low-level wind observations from land stations
which are within 100k of each other have average speed standard deviations of 3 m/s and average
direction differences of 45°. The differences represent an intrinsic noise level in the data source due in
part to local windflow irregularities.

For maunyv practical purposes it is necessary to predict winds at specific points using the results of
synoptic analyses and predictions and from physical extrapolations of wind observations. Genunill et
al. (1988) have tested several methods of determining surface winds from large-scale analyses. They
found RMS differences between predicted wind speeds and observed values over the sea of about 4
m/s. It appears that these differences can also be regarded as resulting from the noise in the point
observations.

Tennekes (1988) has argued for an increased emphasis on the predictability of atmospheric phe-
nomena. The purpose of the present paper is to find an expression for the error in the wind direction
and speed for specific points in the now-cast case. A knowledge of the accuracy with which a valne
can be given is important for users of the information to determine what margin needs to he allowe
for differences from expected values. The degree of error with which winds may be given is a criterion
which may be used to determine the need for more stations. ’

Differences between wind speeds and directions at adjacent stations

Procedure for obtaining differences

Differences between simultaneous wind speeds and directions have been obtained for pairs of neigh-
bouring stations in New Zealand. The data used are mainly wind speeds and directions at honrly
intervals, read from a chart record by visually averaging over 10-minute pericds throngh the excnr-
sions of the pen trace. This averaging period is a compromise between the need to smooth out lncal
variations of the wind which have little information about the large- scale state of the atmosphere and
the need to provide timely information.

The averaging procedure almost certainly is one source of uncertainty in the data. If it is assimmed
that the reading errors amount to one gradation on the charts of the main operational anemographs
then the direction values have uncertainties of £10° and the speeds have uncertainties of +2kf (
approximately +1m/s). ‘

The speed and direction differences and differences squared have heen added together in classes
representing different times of day, seasons, and various ranges of speed and direction. Means and
standard deviations have been obtained for each class as well as for all classes combined. A computer
programme tabulates these quantities for 4 periods over the day, 4 seasons over the year and for 6
speed and 8 direction categories. Because individual speed and direction values generally fall into
different categories at the 2 stations, a major station is designated and the speed and direction classes
are defined for values at this station.



Characteristics of differences

The pairs of stations used are listed in Table 1. In the following tables each pair is designated by a
single number and this is given in the first column of Table 1. The horizontal and vertical separations
between the stations are given in the fourth and fifth columns. The actual locations of the stations
are not important and the data are indicative of relationships rather than of regional characteristics.
The major station in pair 9 uses triangulation data from balloon soundings to obtain wind speed and
direction data at the 900m level and the reading error in the data is of a different nature to the other
winds.

Table 1: List of Station Pairs

Station pair Major Station Minor Station Separations

’ A _ B Horiz(km) Vert.(in)
1 Wellington Airport Kelburn 6.0 120
2 Wellington Airport Wn Apt Sth 0.6 5
3 Wellington Airport Wn Apt Nth _ 1.2 5
4 Wellington Airport Somes Is 9.0 50
5 Kaukau Top Wellington Airport 11.0 550
6 Kaukau Top Kaukau Middle 0.0 61
7 Kaukau Top Kaukau Lower 0.0 96
8 Ohakea Palmerston Nth . 26.0 5
9

Ohakea 900m Ohakea . 1.0 900 -

Some values of the mean direction difference are given in Table 2. These are for all directions and
all times combined but for individual speed classes at the major station (station A or the first named
in each pair). The data cannot be obtained for one of the station pairs hecause there were onlv speed
records for one of the stations. The direction differences are mostly less than 20°. For pair 9 larger
values do occur and are fairly consistently negative as might be expected with the turning of wind in
the boundary layer. The wind at the major station of this pair can he regarded as a free air valne.

Table 2: Mean direction differences in degrees between the pairs of stations listed in Table 1.

Station Pair Speed class station A (knots)-

1-3 4-10 11-16 17-21 22-27 28+
1 8 15 17 17 19 16
2 2 0 1 1 0 0
3 13 16 19 19 18 19
4 -13  -10 -7 -2 1 -2
5 -1 -2 -10 -14 14 -15
7 20 -5 -4 -3 -2 1
8 3 8 7 .5 7 8
9 14 -24 -26 -14 -24 -13

" Values of the mean speed differences are given in Table 3. In the lowest speed category (1-3 kt)

o



differences are negative except for 2 station pairs where speeds as low as this at the major station difd
not occur. The negative sign indicates that overall the speeds at the minor station are higher than at
the major station. For the class in which the speeds at the major station are 28 knots or more the
mean differences are all positive and show that the speeds at the minor station are consistently less.
This is clearly a regression effect in the original sense of the term (Brooks and Carruthers. 1953. p
219). Reid (1987) has evaluated correlation coefficients using this type of data.

Table 3: Mean speed differences in knots between the pairs of stations listed in Table 1.

Station Pair Speed class station A (knots)
1-3  4-10 11-16 17-21 22-27 28+
-0.2 1.2 1.7 3.3 57 9.5
-1.6 -1.5 -2.4 -2.4 -14 0.6
-14 0.0 0.4 1.3 2.1 4.0
-26 0.2 2.2 4.6 6.6 9.4
-2.1 2.5 6.8 9.4 11.1 153
- 1.6 2.6 3.2 3.8 4.9
- 1.0 2.2 3.4 3.9 6.7
-2.0 - 0.5 1.3 2.6 4.7 6.7
-0.8 1.6 7.0 9.3 15.2 223

© 00 -] O W

Values of the standard deviation of the direction difference are given in Table 4. There is a
clear tendency for the magnitude to decrease as the wind speed increases. This is consistent with an
increasing variability of direction as the speed decreases as might be expected. There also seems to
be an increase with the vertical separation of the stations.

Table 4: Standard deviation of direction differences in degrees between the pairs of stations listed in Table 1.

Station Pair Speed class station A (knots)

1-3 4-10 11-16 17-21 22-27 28+

1 54 43 26 24 20 17
2 36 24 16 14 13 14
3 40 31 21 20 17 16
4 49 42 30 25 27 22
5 79 74 52 36 29 22
6 . - - N . K
7 - 40 26 20 18 15
8 56 45 31 22 17 17
9 75 79 60 54 47 22

Table 5 presents the standard deviations of the speed differences. The tendency for the magnitude
to change systematically with wind speed is less marked for this data. Although the values in the
right-hand column are generally larger than in the other columns, in almost half the rows there is no
clear trend. In view of the large range of wind speeds contributing to the differences it is more useful
to consider the differences as absolute magnitudes rather than as proportions of the speeds.
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Table 5: Standard deviation of speed differences in knots between the pairs of stations listed in Table 1.

Station Pair Speed class station A (knots)
1-3 4-10 11-16 17-21 22-27 28+
3.3 3.9 4.5 6.0 45 5.4
2.3 2.4 3.0 3.8 3.6 3.7
3.1 2.9 2.8 3.3 3.7 4.2
4.3 4.1 4.0 4.5 5.3 6.8
39 46 48 49 49 6.3

- 5.1 5.9 5.5 6.0 6.1

- 51 4.6 4.0 41 5.0
5.0 4.6 5.1 5.2 4.8 6.3
2.9 4.1 5.1 6.3 6.2 8.8

O~ DG W

The 2 sets of mean differences provide a means of predicting wind speeds and directions at station
B given data for station A. The 2 sets of standard deviations provide a basis for placing error estimates
on the predicted data. A practical application of this is if station B is established for only a short
time and after its removal prediction of the winds at B is continued using values for station A and
subtracting the mean of the differences. The standard deviation of the differences is an estimate of
the standard error of the speeds and directions obtained from this procedure. There is a problem in
determining to what extent the differences should be confined to specific classes of speed, direction.
time of day, and season because the accuracy of the differences is likely to depend on having an
adequate sample of data. '

Standard deviations and correlation coefficients

Brooks and Carruthers (1953) gi’ve'the following expression for the standard error (se) of a difference
(or the standard deviation):

se = y/ (0} + 02 — 2roy07) (1)

where oy and o, are the standard deviations of the wind speeds at stations A and B and r is the
correlation coefficient. .

The se is the square root of the sum of the separate variances of the speeds from stations A and
B less twice the product of the two standard deviations mutiplied by r. If 7 = 1 and 0, = @, then
se = 0. This corresponds in practice to identical wind speeds. However, in the more normal practical
situation where oy # o, then .
se> 0 and if r < 1 then se is larger still. .

In Table 6, below, the standard deviation of the differences obtained using data in all speed ranges
is given for the pairs of stations used in Tables 1 - 5. The standard deviations for the speeds at each
station have been evaluated separately and r has been calculated using a rearrangement of equation
1. The data show that the magnitude of the standard deviation has a complex relationship with the
correlation coefficient. »

If it is assumed that the reading errors for obtaining the wind speeds are such that o, = 2 kt and
02 = 2 kt then because r=0 for reading errors the se of the difference = 3kt. This is about the ohserved
value for station pairs 2 and 3 and it is probable that the 3 anemometers on Wellington Airport do



Table 6: Observed standard deviations for the station pairs and the correlation coefficients calculated from

them using equation 1.

Station pair Standard deviation Correlation

(all obs) kt coefficient
1 5.1 0.75
2 3.2 0.92
3 3.4 0.90
4 5.5 0.72
5 7.0 0.84
6 6.0 0.88
T 5.0 0.91
8 5.2 0.63
9 10.1 0.54

have mean wind speeds which are within the observing error of each other. A similar calculation for
wind direction gives values of the se of the difference about 14°. This is similar to observed values in
the highest wind speed range for the majority of the station pairs and suggests that wind direction has
little intrinsic noise at high wind speeds. On the other hand it does appear very noisy at low speeds.

The accuracy of now-cast winds

In this section the general problem of how accurately the wind speed and direction at some point of
interest can be specified is discussed. It is envisaged that the wind flow is known in some macroscopic
sense so that the errors associated with the primary source of wind information do not enter the
consideration. This situation is important in practice for predicting winds from a synoptic chart or
regression model. Similarly there could be a smoothed wind field based on wind observations from
anemometer stations.

Wind speed

Supposing that the wind speed at the major station (A) is a prediction for the speed at point (B). It
is reasonable that the statistical properties (ie. mean and standard deviation) of the 2 sets of speeds
should be identical, then o; = o;. The equation (1) is simplified but has a factor of 2 which can be
removed if it is argued that there is no uncertainty in the wind speed at station A becanse it is fully
determinate. The equation reduces to:

se =04y/(L-r) ‘ . (2)

where o is the standard deviation of the wind speed at the point of interest and r is the correlation
coefficient between it and the macroscopic wind.

For many practical purposes the standard deviation may be obtained by assuming that the speer
distribution has a simple form eg. the Weibull distribution: P(V > v) = exp{—(v/c)*} where P is
the probability of speeds above some threshold of v, the wind speed, and ¢ and % are constants. In
many cases k =~ 2 and o =~ 0.529, the mean speed, and the se can be estimated simply from the mean
speed at the point of interest and information about the correlation coefficient, r.
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The most important factor determining the error is the mean speed at the point of interest. This
may be estimated from known values in similar terrain, by the use of wind-flow models or by short-term
measurements. )

An uncertainty in r has less impact on the error calculation than if o is poorly known, because
of the square root. Also the parameter will in many cases be known between pairs of stations with
similar separation in similar terrain. It should be observed that the values of r obtained ahove are
degraded to some extent by reading errors of the anemometers. In many practical situations the effect
on the se will be small. -

The correlation coefficient, r, may be regarded as a function of the separation distance between the
stations. Wylie et al. (1985) provide a nomogram which can used for stations separated by horizontal
distances of hundreds of km. For smaller separations it is reasonable that r should increase roughly
inversely with the separation distance. The data in Table 6 do not seem consistent with this expected
relation and it appears that the vertical separation may also influence the correlation coefficient. The
nature of the land surface between stations may also influence r because hilly country disrupts the
regular flow of the air and it is reasonable to expect smaller correlation coefficients in rougher country.

The se of the wind speed calculated using equation (2) is based on statistical properties of the.
wind at a point. The se can be applied to speeds which are given for that place at particular times
because the se of the speed is only weakly dependent on its actual magnitude.

Wind direction

The variation with speed of the se of the difference between wind directions at pairs of stations means
that it is not possible to give a single error which applies to all predictions of direction. Rather it is
necessary to give separate values applying to ranges of speed.

Another difficulty is that the circular distribution of wind directions means that it is not possible
in general to calculate a simple correlation coefficient. One possible exception may be where winds at
nearby stations are confined to small ranges of direction and the peaked distribution can be considere(
to be unbounded so that all pairs of direction data can be regressed against each other and the
equations given above may be applied to the data. .

For station pairs 1 to 7 the winds are almost exclusively from directions around south and north.
The shape of the distribution has been approximated as a normal distribution and the correlation
coefficients have been calculated for some of the direction and speed ranges. There is a tendency
for the calculation procedure to give negative values ofr and this appears to be due to the assnumer
nature of the distribution. There are many more data in the tails of the distribution than is given
by the normal curve because of large irregular direction differences at low wind speeds. If these low
speed differences are avoided by confining the calculations to the high wind speed ranges small positive
correlation coefficients are found.

It appears from the above that the standard error of the wind direction for wind speeds above
about 5m/s may be estimated using the equation (2) with r = 0. The appropriate value of ¢ to use
is the observed spread about the predominant direction. This may be determined by land features
in some cases. For wind directions away from the predominant direction peaks, the error mav he
obtained from the standard deviation between appropriate pairs of stations. The value should he
chosen on the basis of the horizontal and vertical distances between stations, the complexity of the
terrain and the wind speed.

For wind speeds of 5m/s or less, observed wind direction differences have high standard deviations.

"If it is assumed that the wind direction is completely decoupled from the predicted value. differences
between observed and predicted directions form a rectangular distribution from -180°to +180°and the
value of o is 104°. )



Conclusions

The standard error of a now-cast wind speed at a specified place can be expressed as a single number
{eg. +3 m/s) so that for low speeds the error may exceed the speed but at high wind speeds the same
absolute value applies. The value is approximate but for practical applications is most useful in a
simple form. It can be calculated from the standard deviation of the speed at the point of interest
(obtainable from an estimation of the mean wind speed) and the correlation coefficient hetween the
speeds predicted and observed (this is clearly not available without measurement but can probably he
estimated in many cases with sufficent accuracy).

It appears to be more difficult to specify an error for the wind direction because at low speeds
very high levels of uncertainty are apparent, decreasing to rather low values at high wind speeds. Also
it does not appear to be possible to provide a useful expression for the correlation coefficient between
wind directions. It appears to be necessary to take an empirical approach in this case. It is possible
that there may be more useful information in the accuracy with which wind direction changes can be
specified in time. )
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The statistical analysis of turbulence in the Bora

J. Urbanci¢
Jozef Institute, Ljubljana, Yugoslavia

Abstract

Turbulence analysis ( especially turbulence fiux computations ) is a task which
cannot be done with certainty. In the power spectrum the "gap” between turbulent
motion and medium or large scale motions tends to disappear somewhat higher
above the ground. This fact makes it difficult to distinguish turbulent motion
from other types. The bora wind seems to be a "difficult example” where strong
turbulence appears in a stable air layer. The paper discusses the strategy of solving
the problem to obtain results with reasonable certainty.



On the homogeneity of long series of observations

R. Sneyers
Royal Meteorological Institute, Ave Circulaire 3, B-1180 Brussels, Belgimn

Abstract Homogenizing of series of observations is a general problem in the case of long series. The
proposed solution consists in reducing the elements of the heterogeneous parts of the series in such a
way that their probability in the final series be preserved.

The method is developed in the case where the distribution of the elements is normal or defined
by two parameters : one for position and one for scale, the estimators of which are linear. The method
of estimation of the parameters is related to short series in correlation with longer series.

Moreover, the problem of testing the homogeneity of a series of observations is briefly reviewed.

Introduction

A homogeneous series of observations is a series made up continously at the same unchanged instrument
in a site which also has remained unchanged. The advantage of having homogeneous series at disposal
is that if the statistical properties of the series are stable it will be possible to estimate the probability
(or return period) associated with each element of the series and if not, to characterize the change of
climate responsible for the instability of the series. Now that the monitoring of climate has become
a major problem: for climatologists, the assessment of the homogeneity of long series of ohservations
appears as a fundamental question. »

The fact that long series of observations are seldom obtained with the same instrument at the
same unchanged location shows the difficulty of this question, the solution of which remains in the
examination of simultaneous observations, when they exist, or in the comparison of the series with
another correlated series, the homogeneity of which is well known.

The first case generally concerns observations of the same kind, e.g. rainfall measured simmlta-
neously at two raingauges; the second case may involve observations of a different kind such as dailv
sunshine and the corresponding daily amplitude of the air temperature variation.

However, both cases are related to the problem of estimation when the time series are correlated.

Time Series Homogenizing

Heterogeneities are introduced in the time series when there is a change of instrument or of site or of
both instrument and site. In these circumstances two situations are possible :

a) simultaneous observations with different instruments and or sites are available. which implies
that the two time series are overlapping; ,

b) the time series is uninterrupted but simultaneous observations have not heen made.

Case of existing simultaneous observations

Let the first observations z extend from dates 1, to ¢;, and the following observations y extend from
dates t3 to t4 with ¢; < I3 <ty <ty

The homogenizing of the series will be realized if it is possible to substitute for the observations
estimated values of y having the same probability in the series of y as have the values of = in the series
of z, the probability being considered over the period ¢; to ty .

If z and y are independently distributed with distributions defined by two population parameters
u and o, the one for position and the other for scale, and if they have the same reduced variate u. we
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will have :

z =+ w0y and y = pz + U202 (1)

where u; and u, are the values of u determining the probability associated with z or y.
The homogeneity will thus be realized if we substitute for z the value of y corresponding to vz = ..
from which it follows : '
z—pm Y~
o1 o3

or y = pz +03/oy(z — 1) (2)

The problem reduces thus to the computation of adequate estimates for yq, p2, 01 and o .

Two cases may be considered according to whether the distribution of u is the standard normal dis-
tribution or to whether the population parameters have efficient linear estimators (i.e. the parameters
of the double exponential distribution). '

If z and y have normal distributions, let fiy, 2, o1, and J;, be the moment estimates of the means
f1, p2 and the standard deviations oy and 03 given by the series of simultaneous observations made
from t; to t;, and let y3 and o3 be the estimates of us and o2 given by the series of ohservations of y
from t3 to tg . Optimal estimates for u, and o, are then given by the relations(cf Sneyers, 1975, p.116
and Sneyers, 1969) :

Hy =#1—P('7% (42 — p3) and o7 = 0 (03 /62)" (3)

where j is the estimate of the correlation coefficient (supposed to be > 0) given by the simultaneous
observations, and k = p? :
When the population parameters have linear estimators, the relations (3) become:

o) = 61 (03/62)” end ui =iy — p1(01/03) (h2 — K3) (4)

Two particular cases may be considered according *o whether 0y =02 01 13 = 2 = 0.

The scale parameters are equal

In this case, from (2), we have :

y==z+(p2—m) : (5)
and the optimal estimates of y; — p; become from (3) and (4) (normal case and linear case) :
py — 1 = p3 (1= p)+ priz — Ha (6)
If p=1,0rift; =ty , we have:
, py — Bl = H2 — ' (7)
which is the formula given by the so called difference method (A -method).
With var gy = var ji; the error of estimation for (6) is given by :
var (i} — #}) = (1 - p)? varpj + (1 — p?) varsiz | (8)
For (7), we have :
var (4z ~ 1) = 2(1 — p)vary; (9)
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The position parameters are zero

This occurs when the two distributions are normal with zero means or when we have gamma distri-
butions with the same shape parameter.
We have then with (2):

T o
~——=—y—ory=—2:c . (10)
o1 g2 a1

Moreover, the estimate Q° of the quotient Q@ = &3/0; is then with (3) and (4) :

Q* =0a3/01 = ;7" Mt o (11)

with k = p? or p according to whether the distribution is normal or to whether the estimators of the

parameters are linear.
Having then va.ral/al = \ra.rcr;/o'2 and cov (al,az) / (o102) = kvar (o) /c7l , the variance of the

error of estimation of Q* is given by :

varQ*/Q* = (1 - k) varo}/od + (1 - kz) vard;/o: (12)

If t; = t4, the estimate (11) of Q becomes (Q - method) :

=2 (13)

Q,
-

and the variance of the error of estimation is then given by:

varQ*/Q? = 2 (1 — k)vard, /ol ] (14)

The two series do not overlap (t3 =t; + 1)

If it can be established that z as well as y are pure random variates all over the whole period of
observations t; to t4, p1, and o3, can then be estimated from the series extending from t; to ¢; and
p2 as well as o, from the series extending from t3 to t4 . Relations (2) have then to be applied.

When this is not the case, the homogeneity of the complete series can be tested if there exists a
homogeneous series of observations z extending from ¢y to t4 in correlation with = and y.

If (z,y) is the complete series of observations of z and y , this can be done by computing the
regression of the series (z,y) on the series >z and by testing the randomness of the residuals of the
regression, randomness signifying homogeneity.

With a non random residual, whenever the regression is given by the relation :

(z,y)=a+bz+e (15)

where a and b are constants and e the residual, the series (z,y) will be first corrected for the change
in the mean of the residual e.
If (z,y)7is the corrected series, a new regression will lead to a relation of the form :

(z,y)l:al+blt+el (16)

which will make it possible to correct (z,y)’ for the variation of the variance of e/:
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Testing the homogeneity of series of observations

The homogeneity of a series of observations can generally not be ascertained directly by applying a
test of randomness, since a homogeneous series may contain non random effects due to the instability-
of the climate. On the contrary, when a series of observations can be compared with a series known to
be homogeneous, its homogeneity can be verified by testing the randomness of some residual derived
from the two series by the method of differences or of quotients, or by regression.

The question which arises is to use the most appropriate tests of randomness to put in evidence the
kind of heterogeneity which is most likely to appear, i.e. change in the mean, change in the variance,
or change in both the mean and the variance. of course, tests against specified alternatives have to be
preferred to omnibus tests for obvious reasons of power.

To begin with, a first choice has to be made between parametric and non-parametric (distribution
free) tests.

Parametric tests, based on the assumption of normality, are generally more powerful than distri-
bution free tests; on the other hand, distribution free tests have a wider applicability and in certain
cases have a power very near to the power of the corresponding parametric test. It follows that when
possible, distribution free tests have to be chosen. N

For what concerns the residuals, some caution has to be taken in the case where these residnals arc
computed from a regression. Actually, when the real residuals are random, the computed (estimated)
residuals being linear functions of the real residuals {(cf. Kendall, 1976, p.163). they lose this random
character. . '

For the choice of appropriate tests of randomness, reference should he made to the general discens-
sion gwen in Kendall, 1976 , p.21, to the principles advocated in Sneyers, 1975, where the randomness
is tested through a distribution free test against autocorrelation associated with a trend test applied
in his progressive onward and backward version, to the synthesis on parametric tests on cumulative
deviations from the mean (cusumns) made in Buishand, 1982, and to a distribution free version of these
tests developed in Pettitt, 1979 . For residuals from a regression, the test against autocorrelations
should be replaced by the Durbin-Watson test for which tables are given in Kendall. 1976. For this
purpose, it should be noted that in the case of one regressor, the ordinary autocorrelation test remains
practically valid.

Trend tests and cusum tests are powerful against alternatives of instability of the mean. When
the series have been corrected for eventual changes in the mean, the stability of the variance can he
tested by applying the foregoing tests to the series of squares of the deviations from the mean. '

Conclusion

A general theory has been developed. to solve the problem of correcting meteorological series for
heterogeneities. For this, it was necessary to make some assumptions. The application of this theorv
to the series of Brussels-Uccle begnning in 1833, 1878 or 1887 have shown the imiportance of verifving
these assumptions. )

Of course, the methods described above are not only applicable to monthly data but also to dailv -
data, though in this case the variances of the error of estimation of the parameters of the distribution
are modifieded due to autocorrelation in the series of consecutive daily observations. Moreover. the
method of regression may be generalized as advocated by Michalczewski.

This generalization should however follow the scheme given in 2.2 by correcting the heterogeneons
parts, first for the mean and afterwards for the variance.

References

Buishand, T.A., 1982: Some Methods for Testing the Homogeneity of Rainfall Records. J. Hydrol.. 58, 12-27.

13



Kendall, Sir Maurice, 1976: Time-Series. Charles Griffin and Co. Ltd., 2nd edition, 198p.

Michalczewski, J., 1986: Filling Gaps and Removing Heterogeneities in Senes of Warsaw’s Daily Mean Tem-
peratures. (case study). Personal communication.

Pettitt, A.N.,1979: A Non- parametric Approach to the Change-pomt Problem. Appl. Statist. 28(2), 126-135.

Sneyers, R., 1969: Notes sur la notion d’independance climatologique, Revue de Statistiqgue Apphiguée. 17, 4,
45-53. . ,

Sneyers, R., 1975: Sur I’analyse statistique des series d’observations, Organ. Mét. Mond. Note Technique no
143, 192p. ) ‘

14



Inhomogeneities in precipitation time series

B. Sevruk
Federal Institute of Technology, Zurich, Switzerland

Introduction

The problem of inhomogeneous precipitation time series is more serious than generally accepted. Dne
to frequent changes in this century of gauge sites, measurement technique standards and observers, the
precipitation time series show multiple inhomogeneities and consequently, they are hardly suitable to
be used to compute the ‘climatical norms’ and to study precipitation trends or made conclusions con-

_cerning global precipitation. Since through the empirical adjustment factors the homogeneity relative
to the adjacent gauge sites can be restored, the systematic error of precipitation measurement, which
is the real culprit of inhomogeneities cannot be eliminated unless the specific correction procedures
are applied to precipitation time series from different types of precipitation gauges. Moreover, the
correction of systematic measurement error helps not only to reduce the effects of notoriously different
exposure of gauge sites in a particular national network but also eliminates the effect of different
precipitation measurement standards as used in different countries. Thanks to it, the leaps of isohyvets
at the borders of countries disappear and the global compatibility of precipitation time series conld
be established. Thus the application of corrections open new ways in dealing with inhomogeneities.
It makes the studies of global precipitation all the more conclusive.

The purpose of this paper is to analyse the effect of systematic measurement error on inho-
mogeneities due to exchange of different types of precipitation gauge. The results of precipitation
intercomparison measurements at one site in Switzerland are presented and analysed with the aim
to show that the adjustment factors for inhomogeneities of liquid precipitation data depend on wind
speed and precipitation structure. In contrast to the previous studies by Shver (1965 and 1984) in
the USSR, who used long-term data to derive adjustment factors between precipitation time series of
two types of manual gauges in terms of climatical regions, mean annual wind speed and six classes
of site protection, the data used in this study consist of actual hourly averages of wind speer and
precipitation intensity. The actuality of the intercomparison is stressed by the fact that the one gauge
is manual of the ‘classic’ Hellmann type and the other is the recording. ‘modern’ heated tipping-bucket
gauge, which is progressively used worldwide in the automatic meteorological stations. This is also
the case in Switzerland where during the last decade, 70 gauges of this type have heen uniformly
distributed over the country and compared with the older one. The paper shows the problems arising
from such an exchange of precipitation gauges and indicates ways to solve them.

The literature on the subject of systematic error of precipitation measurement was reviewed hv
Sevruk (1982). Recent references could be found in Sevruk (1986a, 1987). Legates and Willmott
(1989) show the global distribution of magnitude of systematic error in precipitation measnrement.
A review on homogeneity tests applied to precipitation data was presented by Buishand (1982) and
Alexandersson (1986). Both authors point out that inhomogeneities in precipitation time series exist
in Holland and in Sweden but were not systematically dealt with as yet. Such investigation have heen
made only in the USSR as shown by Shver (1965, 1984). Camuffo (1984) analysed the longest preserved
precipitation time series in the world at Padua, Italy. Bradley et al. (1987) studied precipitation
fuctuations over northern hemisphere since mid-19th century and found evidence of inhomogeneities.
Further references are listed in bibliography at the end of this paper.
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Methods

The automatic ASTA and the Hellmann gauges were installed in an open site at the Geneva Airport.
The annual precipitation is approximately 1100 mm and the proportion of snow in total annual
precipitation is 12%. The distance between the gauges was 1.6 m and the height of orifice of hoth
gauges was 1.5 m above ground. The gauges differ slightly in their outer form. Their height is 0.48 vs.
0.46 m. However, the orifice rim of the ASTA gauge is essentially larger because it contains the heating
system. In addition, it is solid and almost perpendicular to the inner walls of the gauge collector,
having only two small inside steps. On the other hand, the orifice rim of the Hellmann gauge is not
only considerably thinner but has -a completely different form. It is open and it hangs inside, over
the gauge orifice, like a console. None of the gauges were equipped with a windshield, but the bird
protection ring was used on the ASTA gauge. The orifice area of both gauges is the same (200 cm?).
For pictures of gauges see Sevruk et al. (1989a) and for the description of the gauge site and for the
results of preliminary analysis of daily data see Spiess (1987). ‘ '

Simultaneously with the hourly precipitation amount of the ASTA gauge, wind speed was also
recorded. The Hellmann gauge was measured manually each 12 h. The form of precipitation was
registered at each observation. The hourly data set was available for the 4-yr period, 1981-1984.
These data were sub-divided according to the season, whereas the summer included months from May
through October and the winter from December to February. For each half-day, the average of the
hourly values of wind speed during the precipitation period was computed. In addition, the fraction of
low intensity precipitation was estimated in per cent of total semi-daily precipitation. The threshold
value was 0.3 mm h~?1. ‘

In the first step, the mean monthly systematic error due to wind was corrected for the Hellmann
gauge using procedure as developed by Sevruk (1986b). The aim was to see the correction estimates
for the systematic error of the ASTA gauge. For this gauge no correction procedure is available as
yet . In this case, the 6-yr period, 1980-1985 was considered. In the second step, the semi-daily
difference (in [mm)), between non-corrected precipitation amounts of both gauges was correlated
with the corresponding Hellmann gauge precipitation amount, separately for the winter and summer
seasons,days with snow excluded. Additionally, the differences were sub-divided according to wind
speed smaller or greater than 2.3 m s~1. The resulting correlation coefficients were plotted against the
fraction of low intensity precipitation. All in all, 740 half-days were included in the analysis (winter
221, summer 519).

Results

Figure 1 shows the seasonal pattern of percentage difference relative to the Hellmann gange values
together with the variables wind speed and proportion of snow. Both variables appear to affect the
magnitude of difference but the effect of the proportion of snow is very pronounced. Since the average
annual difference amounts to 14%, in the summer it is 11% and in the winter as much as 16%. The
Hellmann gauge showed always more precipitation. In the case of the corrected Hellinann gange
precipitation values, the respective differences are 29% per year, 22% in the summer and 36% in the
winter. '

Figure 2 shows the plots of correlation coefficients against the fraction of low intensity precipitation.
As is seen from the figure, the correlation coefficients are less sensitive to wind speed mainly in the
summer, but they increase considerably with the increasing fraction of low intensity precipitation.
Generally, this dependency is slightly less pronounced in the summer than in the winter.
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Discussion

The large deficit of measured precipitation of the automatic ASTA gauge is partly due to the big orifice
rim and to the bird protection ring as used on this gauge at Geneva Airport. This was confirmed in a
special investigation of the Helllmann and the ASTA gauges in a wind tunnel, carried out by Sevrnk
€t al. (1989a,b).

The fact that the effect of wind speed smaller or greater than 2.3 m s~ 1 on the.difference is
smaller than that of the fraction of low intensity precipitation could be explained by the relative small
range of wind speed at the Geneva Airport as shown in Figure 2. Yet this phenomenon indicates
the important role of low intensity precipitation to estimate adjustment factors of inhomogeneous
precipitation time series, a fact unnoticed in many studies as yet. The threshold value of 0.3 mm
h~! was a suitable one for Geneva Airport, but it could be expected that for different locations
other values will show better results, depending on the range of wind speed and the structure of
liquid precipitation . However, the type of precipitation gauge seems to be also an important factor.
For instance, Bogdanova (1966) analysing the systematic error of precipitation measurement of the
Tretyakov gauge (USSR) recommended a threshold value of 0.03 mm min~?, which is considerably
more than the 0.3 mm h~! as used in this study.

Conclusions

The appearance of inhomogeneities in precipitation time series due to exchange of different types
of precipitation gauges is a consequence of various magnitudes of systematic error of precipitation
measurement of given gauges, particularly the wind-caused loss. Therefore, adjustment procedures
should be based rather on the physics of phenomenon, i.e. on variables as used in respective correction
models of systematic error and not on statistics alone. In the case of wind-caused loss of lignid
precipitation such variables are wind speed and a parameter of structure of precipitation. The latter
could be expressed by the fraction of low intensity precipitation in total precipitation amount of a
particular time interval used. For the semi-daily precipitation amounts at the Geneva Airport in
Switzerland the threshold value of low intensity precipitation was 0.3 mm h~1.
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Marine stratocumulus spatial structure
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Introduction

Many theoretical studies have shown the sensitivity of cloud radiative properties to their spatial
structure, ranging from the seminal work of McKee and Cox (1974) and Stephens (1976) to more recent
work by Harshvardan and Weinman (1982), Welch and Wielicki (1985), and others. As Harshvardan
and Randall (1985) have pointed out, current general circulation models, because of their reliance
on plane-parallel assumptions, are in the embarrassing situation of having to use unrealistically small
liquid water amounts to produce realistic albedos. Stephens (1985) has emphasized that the mean
albedo is not a function of mean liquid water alone, but depends upon its spatial distribution. Lovejoy
(1982) suggested that cloud spatial distributions may be modelled as self-similar fractals, and has more
recently generalized to multifractals (Schertzer and Lovejoy, 1988). Rhys and Waldvogel (1986) and
others have shown that cloud fractal dimensions undergo abrupt changes at certain scales, and Cahalan
and Joseph (1989) found that these characteristic scales depend upon cloud type.

Marine stratocumulus are perhaps closest to plane-parallel, being largely confined between the
lifting condensation level and the strong subtropical inversion. In a recent study of marine stratocn-
mulus, using data from FIRE (summarized by Albrecht et al.), Cahalan and Snyder (1989. hereafter
CS) found a change in the stratocumulus wavenumber spectrum from a -5/3 power to a -3 power at
a scale determined by the cloud thickness, a few hundred meters. This is consistent with two- dimen-
sional homogeneous turbulence (Kraichnan, 1967), in which energy injected at a particular scale (e.g.
the cloud thickness) cascades to lower wavenumbers with a -5/3 power law, while the enstropy cascades
to higher wavenumbers with a -3. Observations by commercial aircraft (Gage and Nastrom, 1986)
show a -3 at low wavenumbers, presumably from baroclinic forcing at a few thousand km, changmg at
a few hundred kilometers to a -5/3, which we suggest is associated with convective forcing at the clond
thickness scale. In the following we briefly summarize the stratocumulus observations, then present a
simple model for the observed structure.

Observed Stratocumulus Structure

Much of our knowledge of stratocumulus horizontal structure is based upon observations of cloud
reflectivity (see e.g. Cahalan and Joseph, 1989; for vertical structure see Boers and Betts, 1988). A
more basic question is how the cloud liquid water is distributed, since the reflectivity can be computed
from the distribution of liquid water, traditionally by specifying microscopic properties like drop sizes.
and macroscopic properties like optical depth, etc.. The radiation field provides a kind of low-pass
spatial filter, so that there may be small-scale variations of liquid water to which the LANDSAT
data are completely insensitive (Cahalan, 1988b). [At the same time, the mesoscale structure of
stratocumulus liquid water, which leads to the power-law wavenumber spectrumn described below. is
to some extent mirrored in the reflectivity data, which follows the same power-law (CS).] These liquid
water variations are not included in our usual plane-parallel computations, and will he an important
input to more realistic radiative transfer models.

Vertically integrated liquid water was measured at 1 minute intervals over a three-week period
during FIRE (see CS for details). The histogram of this data is shown in figure 1a on a log-linear
scale, with a lognormal fit plotted for comparison. The lognorinal roughly follows the data. while
differing in detail. The “shoulders” seen to each side of the observed central peak are a reminder that
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Figure 1: (a) Probability distribution of vertically integrated stratocumulus liquid water in mm plotted on
a log-linear scale, along with a lognormal fit. The equivalent optical depth scale shown at the top assumes n
10 micron eflective radius. (b) Wavenumber spectrum of integrated liquid water computed from. time series

assuming 5 m/s frozen turbulence.(CS)

individual days often show a bimodal distribution. The liquid water wavenumber spectrum (fig.1h)
was estimated from the frequency spectra computed from several one-day time series of one-minute
averages of total vertically integrated liquid water measured at San Nicolas Island during FIRE.
" Results were translated from frequency to wavenumber assuming frozen turbulence with a 5 m/s
mean advection. The least-squares fit from about 400 kin down to about 400 m gives S(k) ~ R
(see Cahalan and Snider, 1989). By contrast, fair weather cumulus show a much flatter spectrum over
the same scales (CS).

This is the classic Kolmogorov result for the wavenumber spectrum of any component of the
velocity field, and is also the spectrum expected for a “passive scalar”, i.e. a scalar field whose
variations in space and time are due only to advection. This suggests that the total integrated lignid
water in stratocumulus clouds fluctuates with the vertical velocity, being large in updrafts and small
in downdrafts. This kind of behavior has been observed in fine-resolution numerical simmlations
(MacVean and Nicholls, 1988), though they do not reproduce the highly irregular fractal structure
described above. Correlations of vertical velocity and liquid water will be of much interest as more of
the FIRE data is analyzed. ‘

Fractal Stratocumulus Streets

In this section we first describe a technique for analyzing wavenumber spectra which is especially
convenient for cascade models. We then consider two siitnple multiplicative cascade models which give
spatial distributions of liquid water which are fractal in one horizontal dimension, and uniform in the
other horizontal direction and in the vertical. Both models give lognormal-like probability densities of
optical depth. However, the range of optical depths in the first model is unbounded as the resolution
increases, while the second model has both an upper and lower bound. The first model also produces
a wavenumber spectrumn flatter than k~!, while the second model may be tuned to reproduce the
observed k~5/3,
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Spectral analysis preliminaries

Consider a stochastic function of position f(z), which is homogeneous over some domain Lo, and let
f'(z) be the deviation from the mean, so that (f'(z)) = 0, where the angular brackets indicate ‘an
ensemble average. The associated lag covariance function is then given by

e(z) = (f'(zo) f'(zo + 2)). _ (1)
The power spectrum may be computed from the covariance by Fourier transform, so that
oo o
S(k) = / dr e=*= c(z). (2)
—oo
A simple approach to analyzing the spectrum, which turns out to be particularly convenient for

multiplicative cascade models, is Lorenz’ “poor man’s spectral analysis” (Lorenz, E. N., 1979). We
consider averages of f(z) over successively smaller subdivisions of the domain:

— 1 Ln
falz)= ¢~ dz f(z), (3)
n JO .
where each interval, L,, is half as big as the previous:
Lo
L, = on " . ‘ , (4)

The variance of f, is then
Vo = ((fa)?
1 La Ln
= g [T e [ dra (s S

1 L, L,
= o [ e [T deaclzs - a) + ()
L2 Jo 0 ‘
1 fIn Ln ® dk ik(zy212) \2
- L—E/O dry [ dzs [wé;e S(k)+ ()
o dk 2 2
= [T S rLar s + (97, (5)
—oo 2T
where L L
. 71 Al _ ikr _ et ‘",_Al
F(kL,)= L.,/o dz:c. = L. (6)
so that in?(z/2)
F(o)? = SnE -
Fa) = T (7)
To remove the mean in (5), we consider the variance increment defined as
AV, 'V, - Voo, | (8)

which gives the variance on scales L, about the means over twice that scale. Using (5). (8) hecomes

e dk -
AV, = f_é° S S(K)D(KL), . (9)
with s 5
D(z) & 7 ()7 - [F(20)? = (EE 2, (10)

z/2
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According to (9) AV, is simply a filtered version of the spectrum S(k), with the hand-pass filter
function D(kL,) isolating power in the wavenumber interval centered on

def ™
n = —- 11
k I. (11)

Inserting into (9) a power-law wavenumber spectrum,

S(k)~ k™%, ~1<a <2, (12)

the effect of the filter on the spectrum gives k=, and an additional factor of k,, comes from the dk,
so that
; AVn ~ k'll—-a ~ L;r—l ~ 2n(l—a)_ (13)
In other words, if we observe a variance increment as in (13), then the spectrum must have the
power-law given by (12). Taking the natural log of both sides of (13), we find that the spectral
exponent a may be determined by
In(AV,)

a=1-="Tn (14)

Simple cascade models

We consider a stratocumulus cloud confined between the lifting condensation level and the inversion
height, and initially having a uniform distribution of liquid water with optical depth given by

T0 = 10. (15)

We consider an infinitely long slab of horizontal width Lo, and divide it into two slabs of width Ls/2.
A fraction of the liquid water is transferred from one half to the other, with the direction chosen at
random. The optical depth in one half is then increased by some fraction, say f, (due to increased
density — thickness is assumed unchanged), and the other half is correspondingly optically thinner.
This may be written

= (1% fi)re. (16)

where the superscript on the left side of (16) indicates whether the brighter or darker half is being
considered. :

To continue the process, each half is itself divided in half, and a fraction of liquid water. f,. is
transferred, again in a random direction, so that V

7 = (1% f)n. , (17)

After iterating for n + 1 steps, there are 2"*+! segments, each with an optical depth of the form

7%} = T £ fi)ro. (18)
k=1 .

Any of the possible combinations of signs in (18) may be found somewhere among the 2"*! segments.
An upper bound on the optical depth of the optically thickest segment may be found from

II+ £) < I] exp(fu) = exp(S fi) (19)
k=1 k=1 k=1

The fractions f, are assumed to be stictly between 0 and 1, and we consider two models:

frn = f, (singular model) (20)
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where f is constant, and ) i :
fn = fc™. (bounded model) (21)

where f and c are both constants between 0 and 1. The upper bound given by (19) diverges for the
singular model, and it can be shown in this case that the liquid water becomes concentrated on a
fractal set of singularities as n — oco. The upper bound for the bounded model is exp(fc/{1 — ¢))7o
and provides a good estimate of T4,

From the variance increment defined in equation (8) we may compute the spectral exponent of
both the singular model and the bounded model using (14). The computation is aided by the fact
that the optical depth averaged over L, is a constant independent of n, since liquid water is being
conserved. Thus we may write

ATT( + f)mol®)

k=1

H((lﬂ:f:.)’)(ﬂ?)- ‘ (22)

Va

While the optical depth is different for each segment in a ngen realization, the statistics are the same
for all segments. If we let

e E (1 £ H)D), (23)
then (22) may be written
= (I] ral(m3)- (24)
k=1
so that the variance increment becomes
= IH pa)(pn — 1)(73). » (25)
For each of the models we obtain
pr = 1+ f2, (singular model) (26)
and .
= 1+ f2c?*. (bounded model) ’ ) (27)
so that the variance increment in (25) behaves for large n as
AV, ~ (1 + f*)", (singular model) ' (28)
and -
AV, = [1‘[(1 + £2c)| £ (bou.ndedmodel) (29)
Fma.]ly, using (14) we obtain
In(1 + f? v
a=1- —(iﬂ, (singular model) (30)
In2
and In
a=1- 2ln (boundedmodel) (31)

where we used the fact that the factor in square brackets in (29) becomes independent of n for large
n. Note that as f — 1 the exponent of the singular model goes to zero, giving a flat (white noise)
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spectrum, while as f — 0 the spectrum steepens to k~!. No value of f allows the singular monrlel
to fit the observed a = 5/3 spectrum shown in figure 1b. The exponent of the bounded model is
independent of f, and if we choose ¢ = 2-1/3 we obtain a = 5/3. The probability density is quite
sensitive to the value of ¢, and often has considerable structure. However, when ¢ = 2-1/3 jt is close
to lognormal, and qualitatively agrees with figure la.

Conclusions

The simple 2-parameter model presented here gives a reasonable fit to two important properties of
vertically integrated stratocumulus liquid water : the lognormal-like probability density, and the
‘power-law wavenumber spectrum. The model is being used to determine the radiative properties of
fractal clouds, and investigate the limits of plane-parallel theory. Each cascade step redistributes
liquid water in an initially plane-parallel cloud while cloud height and mean optical depth are held
fixed at each step. Redistribution invariably decreases the mean albedo from the plane parallel case,
since the albedo of optically thick regions saturates as optical depth is increased. The albedo of each
homogeneous region may be computed from the thickness of each region independently only when
the horizontal optical depth is large compared to the photon mean free path. The albedo of a region
comparable in horizontal optical depth to the photon mean free path depends upon radiation from the
sides. The mean albedo is insensitive to variations in optical depth on horizontal scales mnch smaller
than the photon mean free path. Further development of these concepts will be closely tied to realistic
simulations of the turbulent structure of boundary-layer clouds observed during FIRE.
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Statistical calibration: an application to the problem of estimation
of wind speed '

1.G. O’Muircheartaigh E.C. Monahan
University College, Galway, Ireland University of Connecticut, Avery Point, CT. USA
Introduction

It is well known that the extent of whitecap cover on the surface of a sea is greatly influenced by
the surface windspeed (Monahan (1971), Toba and Chaen (1973), Wu (1979), Monahan and O Muirc-
heartaigh (1980)). Other variables, such as sea surface temperature, are also important, but windspeed
action appears to play the dominant role. Whitecap cover can be remotely sensed while windspeed can-
not, so it is tempting to utilize the relationship between windspeed and whitecaps to infer reasonahle
values for the surface windspeed. To do so requires that the natural causative relation of “whitecaps
— wind speed”, quantitatively estimated from field data as a statistical regression of (some easire
of) whitecap coverage on windspeed, be reversed. It turns out that the “natural” way of solving
the problem, namely by regressing whitecap cover on windspeed and then inverting that regression
relation, actually produces results that are inferior to those from some other procedures. Since the
indirect remote sensing of windspeed is of operational interest, and since similar problems mayv well
arise in different remeore sensing, and other areas we present illustrative statistical data analvses of a
number of whitecap-windspeed data sets in this paper.

The general problem of which the present case is a particular application is that of making infer-
ences about the unknown P x 1 vector X from a single random observed Q x 1 response vector Y. The
relationship between ¥ and X is “calibrated” with experimental data (X;, ¥i).1 = 1.2.....n, where
Y;, X; are Q x 1 and P x 1 vectors, respectively. The case P = @ = 1 has been extensively discussed in
the literature, and reference will be made below to several basic contributions to calibration methods
for this case. The case when at least one of P, Q is greater than one is the subject of a comprehensive
paper by Brown (1982}. :

A brief outline of the paper is as follows: In section 2 we describe several different plausible methods
of point estimation in univariate calibration. The methods described are subsequently applied to six
data sets, and their performance evaluated in Section 3. Some general conclusions and comments are
advanced in Section 4.

The Univariate Problem

The simplest version of the calibration problem is the case where P = Q =1, and where the calibration
curve is linear in both the parameters and the independent variable. The situation of interest may
therefore be described as follows: given two random variables X,}” with the relationship:

Y=a+BX +¢ (1)

where, more classically, ¢ ~ N(0,c?), and given n independent pairs of observations (X;.};) on
(X,Y) and a new observation yo on Y, how do we predict or estimate the corresponding value of
X = z(yo)? Numerous methods have been suggested, and their performances evaluated. Four of the
methods, in particular, have been applied to six different data sets for the purposes of this paper. The
methods in question are:

(i) The “classical” method: Estimate a, in equation (1) by least squares. and then for ¥ = 1
the predicted value of X is

26



Xc=(yo—-4&)/B, B#0

(ii) Krutchkoff (1967) suggested another estimator obtained by rewriting (1) as
X=v+68Y +¢
and obtaining least square estimators §, 6 of v, §; the predicted value of X, given Y = yo, will then he
Xr=9+ 33/0

so denoted because it is known as the inverse estimator.
(iii) Lwin and Maritz (1980) proposed an alternative estimator based on the fact that. for this
particular problem the predictor of X is given by '

. X*(yo) = E{X |Y = yo}

as a minimumn mean-squared error (provided a, 8 and ¢? are all known). By using consistent estimators
of a, 3 and o and by approximating the marginal distribution of X with the corresponding empirical
distribution function, Lwin and Maritz showed that the estimator

n n
Xg = zf{(yo—&—PBz:i) |6}/ Y fl(yo— & - pzi) |6}
=1 =1 -
/

will, subject to easily satisfied regularity conditions, tend to the optimal estimator X *(17) in mean
square, where f is the error density function (presumed known, otherwise estimated).

(iv) An alternative version of the estimator Xg is derived by assuming that the distribntions of X
and Y/X are N(u,,02) and N(a+ X, 02), respectively. Then, it is easily shown (O Muircheartaigh
and Gaver (1986)) that the empirical Bayes estimator of X, given ¥ = y. is

Xgpp = [628(y - a) + z62]/[3%62 + 61 )

that this estimator has a number of significant properties, viz.,

(a) the estimator X tends to this estimator (when X and Y are highly correlated)

(b) this estimator is virtually identical to X (for any reasonably large sample size). This latter
property provides some heuristic justification for using the inverse estimator X;. We have. therefore.
four different univariate estimators to be compared: (i) the classical predictor X¢
(ii) the inverse predictor X
(iii) the empirical predictor Xg
(iv) the empirical Bayes estimator Xgp

Evaluation of Univariate Predictors

The data

The performance of each of the above predictors was evaluated by applying it to
the following eight data sets:

e Data set 1: Monahan (1971)
e Data set 2: Toba and Chaen (1973)



e Data set 3: JASIN experiment (1978) (Monahan et. al., (1981))
e Data set 4: STREX experiment (1981) (Monahan et. al., (1981))
e Data set 5: MIZEX experiment (1983)

e Data set 6: MIZEX experiment (1984)

Each data set consists of measurements of instantaneous oceanic whitecap coverage (Y) and wind
speed (X), and the object of the exercise is the prediction of X, given a new observation yo. The data
sets also contain records of air temperature and water temperature at the observation site.

An initial inspection of the data suggested lognormal distributions for both X and Y and a log
transformation gave an acceptable fit to a Normal distribution. Data points for which whitecap
coverage was 0.0 were excluded from the analysis for several reasons, but particularly because it
seemed reasonable to assume that a zero whitecap coverage gave no additional information in relation
to wind speed over and above the conditional distribution of wind speed given zero whitecap coverage.

The number of data points used from the respective sets were 54,36,52,84,21 and 38.

Cross-validation of estimative performance

For each data set, we excluded one data point at a time and obtained each of the three estimators
based on the remaining data. We then predicted the z-value of the excluded point, given the y-value
of the point, using each of the four estimators. This provided four values for each point in each data
set. Finally, for each of the four estimators and for each data set, we calculated the mean hias (MB)
and the mean-squared prediction error (MPSE) defined as follows for a given data set:

MB = i(x,- ~ #)/n
=1

MPSE = Z(z‘i - #;)¥/n
i=1

where n is the number of points in the data set.

Results

The results are presented in Tables 1 and 2.

Table 1. Bias of estimators

Data sets
Estimator 1 2 3 4 5 6
Xe 0.001 0.001 -0.001 -0.002 0.017 -0.001
X 0.001 -0.004 -0.004 0.000 -0.002 -0.001
XE 0.001 -0.004 -0.001 0.001 -0.003 -0.001
XeB 0.001 -0.004 ~-0.001 0.000 -0.002 -0.001

Table 1 shows that, in terms of bias, there is essentially no bias for any of the estimators for any data
set, with the possible exception of estimator X¢ for data set 5.

Table 2. Mean squared prediction error
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Data sets t
Estimator 1 2 3 4 5 6
Xc 0.121 0.144 0.125 0.108 0.255 0.228 i
Xy 0.071 0.085 0.074 0.063 0.093 0.085 ’
XE 0.072 0.086 0.076 0.065 0.092 0.087 !
XEB 0.071 0.085 0.074 0.063 0.091»_7():0_8_5 |

This table shows that in terms of average squared prediction error, the classical predictor is once
again uniformly the poorest, having mean prediction error in the range two to three times that of
any of the other estimators. The remaining estimators all have mean-squared error of the same order
of magnitude, and indeed the homogeneity of these mean-squared prediction errors is a feature of
the results, suggeseting that, purely in terms of predictive performance there is not a great difference
between the latter three estimators. Some simulation studies (O’Muircheartaigh and Gaver (1986))
lend support and some qualification to this result.

Summary and Conclusions

This paper is an attempt to evaluate a number of wind-retrieval algorithms (statistical calibration
methods) based on the relationship between wind-speed and instantaneous whitecap coverage, as de-
termined from several data sets. We find that the inverse regression method and the almost equivalent
empirical Bayes procedure suggested here are uniformly superior to the intuitively more appealing clas-
sical regression method. It would seem that the empirical Bayes method suggested here possesses the
double benefit of being both an intuitively reasonable method, and giving (close to) optimal predictive
performance.

References

Brown, P.J. (1982) Multivariate Calibration, J.R. Statist. Soc., B, 44, 287.

Krutchkoff, R.G. (1967) Classical and inverse regression methods of calibration. Technometrics. 9, 425.
Lwin, T., and Maritz, J.S. (1980). A note on the problem of statistical calibration. Appl. Stafist., 20. 135.
Monahan, E.C. (1971). Oceanic whitecapsj J. Phys. Oceanography, 1, 139.

" Monahan, E.C., Bowyer, P.A., Doyle, D.M., Fitzgerald, M.P., O' Muircheartaigh, I.G., Spillane. M.C'. and
Taper J.J. (1981). Whitecaps and the marine atmosphere. Technical Report 3, University College,
Galway, Ireland. . .

O’Muircheartaigh 1.G. and Gaver D.P. (1986). Estimation of sea-surface wind-speed from whitecap cover:
statistical approaches compared empirically and by simulation. Int. J. Remote Sensing, 7, No. &, 985.

Toba, Y. and Chaen, M. (1973). Quantitative expression of the breaking of wind waves on the sea surface.
Rec. Oceanogr. Works Japan, 12, 1. :

29



Principal oscillation pattern analysis of extra-tropical Rossby
waves

H. von Storch and F. Gallagher
Max Planck Institiit fuer Meteorologie, Hamburg, FRG

Abstract _
We introduce the “Principal Oscillation Pattern” (POP) analysis as a valuable tool to filter regn-

larly evolving patterns from a data set. For that purpose, a multicomponent first order autoregressive
process is fitted to the time series to be analyzed. The eigenvectors of the estimated system matrix
are called POPs. They may be regarded either as one standing or two oscillating patterns depending
on the eigenvalues, which may by real or complex. The decay time and the oscillation period can he
inferred from the eigenvalue. )

To demonstrate the merits of the proposed analysis technique, we consider Southern Hemisphere
extratropical waves. For that purpose a zonal wavenumber analysis is done for a multi-year time series
of daily 500 mb height fields of the Southern Hemisphere. The meridional distribution of cosine and
sine coefficients of a given zonal wavenumber is analysed with the POP technique.

For zonal wavenumbers 5 to 9, two modes are found, which travel uniformly eastward. One mode
has maximum intensity north of the 45°S-jet with longer periods (5 to 7.5 days) and decay times (3-6
days) and weak meridional momentum trransport. The other mode has maximum intensity south of
the 45°S-jet, periods of 4.5 to 5.5 days and decay times of 1-3 days.

The result are found to be consistent with the result obtained with the more standard standard
frequency wavenumber analysis. )
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Procrustes target analysis: Theory and applications

M.B. Richman
Climate and Meteorology Section, State Water Survey, Champaign IL, USA

Introduction

With the advent of increasingly higher-speed computers and commensurately sophisticated mathemat-
ical/statistical software, eigenanalyses of climatological data sets have become comonplace in the
literature. To date, nearly all applications have been exploratory. Indeed, this is a strength of eigen-
techniques — they yield two simultaneous displays, typically functions of space and time. which have
optimal data reduction properties (unrotated) and can be linearly transformed to emphasize regional
or temporal anomalies for physical interpretation (rotated) . As such, eigentechniques have become
one of the preferred multivariate tools for classification and dissection of large meteorological data sets
and model output (e.g. , Barnston and Livezey, 1987; Kang and Lau, 1986 ; Lorenc, 1984: Pitcher
and Geisler, 1987; Volmer et al. , 1984; wnite, 1988, Appendix D) . Frequently, we desire to relate the
output of eigenanalyses to external variables for diagnostic or predictive purposes. Two representative
examples of this type of approach are Walsh and Richman. (1981) who sought relationships hetween
Pacific ocean SST eigenvectors and North American temperature anomalies and Lau and Lau (1986)
who attempted to relate their velocity potential eigenvectors to the 40-50 day oscillation. Although
some physical insight has been gained by relating eigenvectors to other fields, the purely exploratory
nature of eigentechniques such as Principal Component Analysis (PCA) and Empirical Orthogonal
Functions (EOF) will rarely yield modes of variation optimally associated with specific patterns of
interest in secondary fields. :

" There are other multivariate techniques at our disposal to more accurately relate two sets of
spatial patterns or time series. In order to accomplish this, we move away from purely exploratory
techniques, to invoke a ”quasi- confirmatory” analysis tool, Procrustes Target Analysis (PTA) . PTA
provides for the incorporation of interesting a priori information, perhaps based on first principles,
knowledge engineering, or some previous exploratory research, such that a set of eigenvectors are
linearly transformed to be optimally related to this given information. In doing so, it vields a least-
squares fit between two matrices, yet allows for the same simultaneous displays as other eigentechniqnes
— a feature which enhances it’s utility. The object of this paper is to (1) introduce and showcase PTA
as an analysis tool and (2) provide examples of spatial and temporal applications.

Methods

Since PTA is a specific type of linear transformation of a group of PCs, it is usefnl to examine “typical”
(hypothetical) flow charts of its operationalization (Fig. 1). PTA is termed quasi-confirmatory for
two reasons@ (i) the analysis can yield results which differ from the initial a priori values we desire
to fit and (ii) either the temporal or spatial display (PTA scores in Fig. 1) is unknown prior to the
analysis. Hence, it lies somewhere in the middle of a continuum ranging from purely exploratory at
one extreme to confirmatory at the other. Inspection of the flow charts reveal similarity to a standard
PCA, with an important exception, the inclusion of a new input matrix, called the “target™. Each
box of Fig. 1, different from a standard PCA, will now be explored below in more detail.

The target matrix

This matrix is where the a priori information of interest is placed. The coefficients of the target can
be as simple as a sequence of binary values (as will soon be illustrated) , specific coefficients hased on
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Figure 1: Two hypothetical flow diagrams for Procrustes Target Analysis (PTA) used in (a) S-mode analyses
and (b) T-mode analyses.
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prior analyses or a proxy time series of an external variable (such as the Southern Oscillation Index)
. Since this matrix is fit, in a least-square sense, to the unrotated PC loadings (A) , it is useful to
restrict the range of the relative magnitudes of the target coefficients to be similar to those in A. This
is partly a function of the type of similarity matrix used in Fig. 1 (i.e. , correlation, covariance or
cross-products).

The eigenanalysis

The component model is used in order to express much of the spatial or. temporal variability of C in
terms of a more compact number of component- loading vectors which can then be rotated to maximal
agreement with the target matrix. Only a brief description of the model as applied will be presented.
The basic PTA equation in matrix form is

Z =FATY (1)

where Z is the data matrix; F, the principal components or principal component scores; and A. the
component loadings. A linear transformation can be applied to A such that

B = AT - (2)

where the matrix T transforms A into B under somne constraint (see Richman, 1986). We will capitalize
on this extensively; however, the matrix A has several properties which aid in its interpretation. These
are its orthogonality (columns of a;) and its relationship to the eigenvectors 1: A = V' D!'/? where
D?'/? is the diagonal matrix of the square roots of the corresponding eigenvalues.

Typically, A is truncated at some point r < n according to eigenvalue magnitude or eigenvalne
separation characteristics.

The Procrustes Target Analysis

Since the criteria of interest (as stated in 2a above) serve as a known

target based on some prior knowledge or guess, a PTA is applied to determine to what degree such
spatial or temporal patterns exist. Once B and A are obtained, only a T is needed. as shown in (2) .
to find the maximal fit from

the data to the target. The solution to finding the correct T without rank restriction is as follows:

Let A and B be nrr matrices with n > r. We wish to find a transforination matrix T such that

trace(B — AT)T(B — AT) = trace(ETE) (3)

is a minimum under the restraint that diag(TTT) = I. Browne (1967) provides a numerical solntion
to the columns of T which will be summarized. A solution for the individual columns of T can be
found: let t,, be the m-th column of T. Since At,, represents the approximation of the mth column
b,, of the matrix B, the column vector ¢, can be searched for, such that

g = trace(bm — Aty)T (bm — Atym) (4)

js at a minimum under the restraint tat"1 —1=0. When all r columns of t,, m = 1.....r of T are
found, corresponding to.the b,, of B, the T is found.
In order to minimize g under the restraint tntm — 1 = 0,

a—‘zim - 6—?,; (thtm —1) =0 (5)
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where @ is a Lagrangian multiplier. Taking the derivatives of (5) and setting the result equal to zero,

yields
AT At,, - 6t,, = ATb,, (6)

This solution can be simplified by applying an initial orthogonal transformation to t and diagonalizing
AT A . This is accomplished by an rzr orthonormal matrix P, such that

T (aT4) P = D. (7)

where D. is the diagonal matrix of eigenvalues (¢, ...,C,) of AT A and P, the corresponding eigenvectors
such that PTP = PPT = I Then define an rx1 column vector w = PTt,, ort,, = Pw and premultiply
(6) by PT, using the previously given relationships to arrive at

Dw-6w=(D-6l)w=u (8)

where u is a rzl column vector equal to PTATp,, The transformation of (6) to (8) is equivalent to
rotating A to principal axis form. Since t,, = Pw,

wTw = tTPPTt, =tIIt, =1 ' (9)
and (4) takes on the form
g = trace(bm — APW)T(b,, - APW) =0 (10)
Equations (8) and (9) can be rewritten as
wgzu;/(c;—G)Zw,?—lzo ' (11)
i=
Browne (1967) notes that this form leaves (r + 1) equations with r + 1 unknowns . 8, wy, ..., W,;

however, a more convenient form with one equation and one unknown can be found by substituting
(11) into (12)

h(6) =0 (12)
where . }
h(6)=3 ul/(ci-6)7 -1 (13)
i=1

Browne (1967, p. 128) illustrates an example showing that the function h (8) tends to - 1 as € tends
to 400 or —oo and tends to + 0o as 8 approaches each ¢;. One of the real roots of h (8) corresponds to
the absolute minimum of g and can be found via some numerical procedure (i.e. , Newton’s method
for finding the roots of a polynomial equation) which yields the w; in (11) , and the vector t,, from
(9) can then be found, and hence T'.

The matrix AT is the least squares fit to B:

B=AT +E ’ : (14)

where E constitutes the residuals (Richman, 1986, pp. 316-317). These matrices AT and E are hoth
plotted (temporally or spatially) and examined for fit to B.

Once the matrix AT is found, standard calculation of the PTA scores (xdenhca.l to PC scores) can
performed by a variety of techniques. A least squares fit is shown. Defining G = AT . then following
1),

-1
F=12(G"G) G"(15) (15)
The matrix F contains the time series (S-mode) or spatial patterns (T-mode) associated with the fit

" to the target B as shown in Fig. 1. This can be mapped to indicate where or when the targeted
conditions occurred, depending on if a T- or S-mode analysis is used. :
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Application

Several applications will now be explored, illustrating the potential utility of PTA. The first, based
on Richman and Easterling (1988) , will be a T-mode analysis of climate fluctuations thonght to
negatively impact corn production in the Midwest portion of the United States, One interesting aspect
of the study was the manner in which the target was derived. Specifically, a knowledge engineering
approach was used in an interviewing process of agricultural experts to identify which corn production
management practices and phenological growth stages were sensitive to moisture availability and to
assess the degree of change in moisture availability necessary to measurably impact these. The resnlts
suggested two major periods of vulnerability@ April-May and July-August. The first corresponds with
spring planting and emergence. Too much spring rainfall usually leads to planting delays, diminished
fertility and discourages the vertical penetration of root systems. This places the crop at an increased
risk if the rainfall drops below normal during the Summer. The second period is the combined corn
reproduction, ear development and grainfill stages. Moisture and nutrient uptake is high during
this period and insufficient amounts of either are detrimental (Huff and Neill, 1982). The target
criteria were thus set as a wet late spring (May) followed by a dry mid to late summer (July, Augnst)
to facilitate testing our hypothesis of climate negatively impacting corn production. In order to
operationalize PTA, this information was formed into coefficients for a simple target, B. of +1.0
for wet conditions (Mays) followed by -1.0 for dry conditions (Julys, Augusts) as shown in Fig. 2.
Additionally, long sequences of these wet/dry combinations were sought after (15-year sequences) in
the hope that some discernable effect or impact might emerge when yield data were examined. Years
not included in each of the 15-year sequences of Fig. 2 were set to zero.

Results of the PTA were a new time series which best fit the target. In this case approximately 90
percent of the signs of AT were in agreement with B; however, the magnitudes were all { 10.401 . This
led us to cautiously proceed, further testing the results in a Monte Carlo framework (see Richman an
Easterling, 1988, pp. 10,994-11,002 for further details). The key result desired were the PTA scores.
which in a T-mode analysis, are the spatial patterns associated with wet Mays followed by dry Julys
and Augusts. Two adjacent 15-year panels are shown in Fig. 3 for the years 1951-1965 and 1966-
1980.

Those areas in Fig. 3 isoplethed by +10 (H's) are interpreted as a positive match to the target,
whereas those isoplethed by -lo (L’s). are interpreted as an inverse match (dry Mays followed by wet
Julys/Augusts) . The results indicate a dipole of these conditions in northern Ilinois/Indiana versns
southern Illinois/Indiana which reversed phase through time (see Richman and Easterling. 1988. their
Fig. 7, for detail). These were found to have a measurable impact on corn production when vield data
were subsequently examined. .

The second example is a S-mode analysis taken from Richman and Lamb (1989). The scientific
question posed was: how do short-term synoptic rainfall patterns (based on 3-day totals) build into
longer term rainfall patterns (based on 1 30-day totals) . The 3-day patterns had been identified
previously and rigorously tested for stability (Richman and Lamb, 1985, 1987, 1988).

These spatial patterns (Fig. 4a) served as the input data while the 30- day region#lizafions (Fig.
4d) formed a precise target to 4 decimal places (in contrast to the previous example) . Results of
the PTA (Fig. 5) show an excellent fit for 14 of the 15 patterns, thereby confirming that there is
a strong link between the two temporal scales (3- and 30-day) , although their VARIMAX.-based
regionalizations of Fig. 4 differ somewhat. Calculation of the PTA scores (time series) enabled us to
test exactly when the longer-term patterns were "shocked” by high-frequency rainfall events, as well
as providing information on the nature of how synoptic events provide the building block of climate.
Further information is contained in Richman and Lamb (1989) . '
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Aug 1964 0.0
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May 1980 0.0
July 1980 0.0
Aug 1980 0.0

Figure 2: Target matrix for 1949-1963 wet May (+1.0) and dry July and August (-1.0). Similar matrices were
used in remaining analyses (i.e. 1950-1964, 1951-1965, etc., with the last being 1966-1980). From Richman and
Easterling (1988).
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Figure 3: Spatial maps of the PTA scores (in Z-score units) (matrix F in Fig. 1b) for two analyses based
on wet May/dry July and August for (a) 1951-1965 and (b) 1966-1980. The coefficient in the upper left-hand
corner of each map represents the PTA scores correlation with actual rainfall deviations. From Richiman and
Easterling (1988). ’ '
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Figure 4: Regionalization of central North America based on the +0.4 loading isopleths of Varimax Rotated
Principal Components patterns for (a) 3-day rainfall totals, (b) 7-day rainfall totals, (¢) 15-day rainfall totals,
(d) 30-day rainfall totals, (e) 41 day rainfall totals, and (f) 61-day rainfall totals. From Richman and Lambh
(1988).
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Figure 5: PTA least-squares fit matrix (AT) (see Fig. 1a) of three-day data to thirty-day target (Fig. 4d).
The +0.4 PTA loadings are isoplethed to yield a regionalization of 3-day rainfall optimally matching the 30-day

regionalization. From Richman and Lamb (1989).
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Summary and concluding remarks

This paper mathematically describes PTA and its application to climate research. Since this technique
has not been widely used in the geophysical literature, it is instructive to point out the basic differences
between PTA and the traditional approach of extracting individual EOFs/PCs and relating these to
a secondary variable or target. i

The traditional unrotated approach would have yielded a series of standard predetermined pat-
terns for our rectangular domains having little physical meaning themselves (Richman, 1986. 1987) .
Application of a linear transformation might have helped to increase our chances of finding physically
meaningful modes (e.g. , see Richman and Lamb, 1985, 1987) ; however, finding an optimal relation-
ship between any individual EOF/PC and the target would likely be a chance occurrence. The PTA
differs in that it does not examine each vector individually, rather it weights each vector retained in a
new linear combination to maximally fit the target. The applications of PTA herein with prescribed
targets in a PCA framework had positive results locating coherent spatial regions which contained the
types of temporal fluctuations desired (wet Mays/dry Julys, Augusts and the inverse situation in the
first example or those based on short-period rainfall in the second example) . However, there is no
guarantee that the data can be transformed to fit the target since the correlation/covariance structure
remains a fixed property. Consequently the target should be defined with care and deliberation.

Future applicatIons of PTA would benefit if some method of placing quantitative confidence limits
on the degree of target fit could be resolved. This issue is perhaps the weakest link in PTA at present,
since there has been little applied research published on the technique. So, while PTA offers new
freedom to specify an interesting hypothesized spatial pattern or time series to a PCA. it also adds
some new constraints?? target specification and assessment. Thus with PTA one can no longer use
default criteria on statistical packages to arrive at a final analysis with no intermediary intervention
(see Richman, 1988) , rather it demands the full utilization of the investigator’s knowledge of the
study domain. In cases where there is some a priori theoretical idea of a cause and effect {say. based
on first principles, knowledge engineering, or some previous exploratory research) , the target can he
constructed to reflect the forcing to look for a response. Such diverse meteorological applications as
time series modeling of El Nino, emergence of geopotential patterns thought to be associated with
drought, and grouping chemical elements with potential sources can benefit from a technique such as
PTA. It is hoped other scientists will exploit this interesting multivariate tool.
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Statistical models for cloud-free viewing climatologies

D.D. Grantham
Geophysical Laboratory, Hanscom Air Force Base, Mass., USA

°

Abstract Many space satellite technologic: - i7e a cloud-free path or viewing area of the earth's
surface. Any sensor or system operating in the visible, infrared or submillimeter regions of the elec-
tromagnetic spectrum will be affected by clouds along the transmission path. Currently available
cloud climatologies are not adequate to evaluate cloud impacts on emerging new space-borne systems.
Therefore, statistical models must be developed to extend current cloud climatologies to describe the
probability of cloud- free lines-of-sight and cloud-free fields-of-view from space to earth and vice versa.
A major problem with cloud climatologies is the viewing angle bias introduced by the manner in
which cloud scenes are observed (Grantham and Boehm, 1986). As a satallite passes over a scene. the
amount of cloud cover will be less at its zenith angle than at its limb scan angle. A ground observer
will estimate the sky cover relative to an imaginary sky dome. Neither system gives an accurate
estimate of earth cover. Thus, new methods must be developed to normalize such climatologies before
they can be used as imput for descriptive cloud models.

A brief update on modeling PCFLOS climatology will be given. Then new procedures will he
described to statistically evaluate a cloud simulation model using a new data base from a six station
network of whole-sky imagery systems. This network will used to develop joint occurrence CFLOS
statistics with high temporal resolution (one-minute CFLOS and cloud-free area data). A major em-
phasis in the simulation model evaluation will be how to incorporate spatial and temporal correlations
of CFLOS and cloud-free areas to span distances from less than a kilometer to hundreds of kilometers
and to span times from minutes to days.
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A Gaussian curve fitting algorifhm for a satellite-derived cloud
climatology

A.J. Gorman and J. McGregor
Institute of Geophysics, Victoria University, Wellington, NZ

Abatract

We develop a new approach for the fast and efficient derivation of a regional cloud climatology from
satellite data. By the adaptation and utilization of a gaussian curv_e'ﬁm'ng algorithm which was first developed
in the study of fish distributions (MacDonald and Pitcher, 1979) we derive climatologically relevant
information. The data base used was provided by the New Zealand Meteorological Service. It consists of over
50 000 images from the AVHRRs (Advanced Very High Resolution Radiometers) flown on the NOAA polar-
orbitting satellites. The images cover an area of 128 x 192 km in the southern part of the North Island, New
Zealand over a period from October 1981 to the present.

Existing algorithms developed primarily for operational purposes derive cloud parameters from singl;
unages These algorithms which are often very complex generally perform well for operational applications,
however in the case of climatological studies, the detailed spatial pattern analysis inherent in these methods is
largely unxiece;ssary. Climatological studies require the analysis of the many thousands of images and compiex
spatial analysis employed by these methods would necessitate a huge amount of computer resources. An
addidonal consideration is that existing algorithms are much less successful at identifying cloud parameters
when the underlying surface terrain is rapidly varying (as in the case of New Zealand). Consequently they
would require futher development and presumably made even more complicated for applicau‘oh in such regions.

In this paper we develop an algorithm which is independent of the initial spatial analysis of imagery and
yet is able to produce a regional cloud climatology. The method employed is based on the finding that
frequency distﬁbun'ons of the AVHRR's radiance counts, for a given pixel or group of pixels for a given period
of time, display some relatively well defined characteristics (Gorman and McGregor, 1988) similar to those
found by MacDéna]d and Pitcher (1979). The sum of four independent Gaussian distributions adequately
describe these frequency distributions and these can be considered o represent the earth’s surface and the
different levels of cloud in the earth's atmosphere. The gaussian fitting routine evaluates the parameters of each
distribution, and thus directly provides mean sensed temperature and variance at each of these levels from which
the frequency of occurence of different cloud type can be found. .
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An orographic wave cloud climatology using AVHRR satellite data

J. McGregor and S.K. Riches
Institute of Geophysics, Victoria University, Wellington, NZ

Abstract

Orographic wave clouds formed off mountain ranges provide an important indicator of
. prevailing meteorological conditions and in particular warning of possible hazards to aviation
(Knudsen, 1988). Satellite imagery reveals New Zealand's various mountain ranges as

important sources of such wave clouds.

In this study we use seven years of Advanced Very High Resolution Radiometer (AVHRR)
data from the NOAA series of polar orbitting satellites to investigate wave clouds formed off
the Tararua mountain range in the southern North Island of New Zealand. The data consists
of more than 10 000 images for each channel of the AVHRR instrument. This provides an
excellent base for a climatological study, though clearly with a data base of this magnitude
computer processing techniques are the only feasible means of analysis.

We have developed and implemented a pattern recognition algorithm which analyses the
satellite images and recognises the presence of wave cloud activity east of the Tararua Ranges.
The algorithm provides wavelength and cloud top temperature and when applied to the entire
data set allows the examination of the frequency of occurence, seasonal dependence, as well
as the frequency distributions of wavelengths and cloud top temperatures. ‘
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Sampling errors in satellite-derived tropical rainfall climatology
using a space-time stochastic model

Thomas L. Bell
Laboratory for Atmospheres, Goddard Space Flight Center, Greenbelt, MD, USA

Introduction

The roles of tropical rainfall both in the energy budget of the planet and in affecting planetary waves
that control weather patterns over the globe are important ones, and yet rainfall rates in the tropics
are very poorly monitored at present. NASA has recently undertaken a study of the feasibility of
orbiting a satellite specifically designed to provide quantitative measurements of rainfall in the tropics.
the Tropical Rainfall Measuring Mission (TRMM). The motivation for the mission and its scope are
discussed by Simpson et al. (1988).

A primary goal of TRMM will be to provide accurate monthly averages of tropical rainfall within
areas of the order of 500 km x 500 km. There will be two sources of error in these averages, hroadly
speaking: inaccuracies in the measurements of rain rate , and “sampling” problems associated with the
satellite’s only being able to observe a given area intermittently. The impact of the first kind of error.
“retrieval” error, may in principle be considerably reduced by taking averages over enough observatjons
(by using monthly averages of the data over large enough areas) provided retrieval algorithms can be
developed that generate unbiased estimates of rainfall.

The size of the second kind of error, arising from intermittent observation by the satellite, depends
on how well sampled the area is during a month, and is determined by the orbit of the satellite an the
size of the swath scanned by the satellite as it passes over, and by the statistical characteristics of the
ohserved rainfall. It is the dominant contribution to the error in monthly averages if systematic error
in the retrieval algorithms is small. We shall describe here a baseline calculation of this sampling error
assuming that information is available only from the TRMM satellite itself. Although we shall focus
on the particular observational configuration offered by TRMM, our approach is obviously applicable
to studies of sampling errors for other satellite systems monitoring other geophysical quantities.

As a measure of error we shall use the root mean square (r.m.s.) difference between the actual
rain rate averaged over a month and the mean of the satellite observations during that month. The
true monthly averaged rain rate is . ’

erdrI/dz(f)' 1
= = - x r{x,t),

T Jo als ; (1)
where r(x,t) is the rain rate at location x,t is the time since the beginning of the month. and T and
'A are the period (1 month) and area averaged over. The satellite observes some part A4, of the area
at times t; during the month. The area average of the observed rainfall is given by

1

ry = 4 Ja d’x r(x,t) | (2)
A satellite-based estimate of the true rainfall R can then bhe written as
) M M ‘
R= Y An/ T A, (3)
1=1 1=

where M is the number of overflights of the area during the period T. More sophisticated weighted
averages of the observations are possible, making better use of the spatial and temporal correlations
of the rainfall. Equation (3) simply gives each observation at each point in the area equal weight.
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The r.m.s. error E can now be written in terms of these deﬁxﬁtions as
E*= (R-R)"), (4)

where the brackets () indicate an average over an ensemble of possible histories of rainfall during the
month. The error E represents the typical size of errors in satellite estimates of monthly averaged
rain over many months of observations or over many climatologically similar areas. Implicit in nsing
r.m.s. error is the idea that the errors R — R might be approximately normally distributed with
standard deviation E. We find that this is the case in our simulations, even though the instantaneons
area-averaged rainfall is far from being normally distributed.

The r.m.s error E in (4) is in principle completely determined by the covariance statistics of point
rainfall. It is a difficult and subtle task, however, to extrapolate the statistics obtained from rain gauges -
to the area and time averages needed in (4), because the spatial and temporal variability of rainfall
are so extreme. The areal coverage provided by radar is more nearly comparable to the averaging
areas to he used for TRMM, but well calibrated data from the tropical oceanic regions are not easy
to find. In the study presented here we have in fact limited ourselves.to radar data collected in the
GATE (Global- Atmospheric-Research-Program Atlantic Tropical Experiment) during the summer of
1974. ' » o

An early attempt at obtaining E was made by Laughlin (1981), who estimated it for a satellite
that visits the area at equal intervals At and views the entire area each time. He was able to write
E? in terms of the variance of the area-averaged rain rate 0%, and of the correlation time 74 of the
area- averaged rain rate, as

‘E? =.03‘f(At,TA,T). (5)

His derivation is reviewed by Shin and North (1988), who have improved on his method by taking into
account the actual visit times of the satellite and fractional coverage of the visits, albeit with some
approximations. ‘

Our approach here will be to simulate the rainfall over an area with a statistical model. and to
“fiy” a satellite in a TRMM:-like orbit over the simulated rainfall, computing the r.m.s. error (4)
from multiple trials each a month long. The rainfall model is adjusted to have spatial and temporal
" variability with covariance statistics matching as well as possible those observed in GATE. Some
choices must be made in extrapolating the GATE results to spatial and temporal scales larger than
those of GATE. These choices affect the size of E we compute. -

The advantages of the Monte Carlo approach are that it offers a convenient vehicle for incinding
in the calculation of E the effects of the dependence of rainfall statistics on the fraction of the area
observed by the satellite during a given pass; and it gives some insight into the probability distribution
of errors. The disadvantages are that it gives results whose accuracy depends on the number of months
in the simulation. As always, the results depend on the ability of the model to capture the relevant
statistics of real rain. ' :

The methods and results presented here are described in greater detail by Bell et al. (1989).

Method

The Monte Carlo calculation requires a model for the time varying rain field and a description of the
sampling characteristics of the satellite. The orbit of the satellite is determined using the approxima-
tions described by Brooks (1977). The viewing characteristics of the satellite instruments are assumed
to be similar to those of the Electrically Scanning Microwave Radiometer (ESMR) flown on the NIM-
BUS V satellite. This implies that in our calculations, when the field of view of the instruinents is

included, the effective size of the swath seen by the satellite extends to about 54° to either side of
nadir.
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The model for the rain field will be briefly described here. See Bell (1987) for more details. It
is based on the possibility of generating a spatially correlated field of variables that are mmltivari-
ate Gaussian, by the standard technique of expressing the field as a sum of uncorrelated Fourier
components, - )

g(x,t) = ¥ a(k, t)exp(ik " x), ()
) k

where x labels grid points on a 1024 km x 1024 km grid with a grid spacing 4 km. The transformation
(6) can.be carried out very rapidly numerically using “fast-Fourier transform” (FFT) methods. Once
the Gaussian field g is computed, it is converted at each grid point to a rain rate with a transformation
r = R(g), arranged so that r is set equal to zero when g falls below a threshold, and non-zero r are
lognormally distributed with parameters that match rain rate data. In our simulations r is nonzero
8.3% of the time, and the mean and variance of Inr is fixed at u = 1.13 and o2 = 1.1, following the
estimates for GATE rainfall developed by Kedem et al. (1989).

The behavior of the Fourier amplitudes a(k,t) in (6) must be specified. These are assumed to
be independent first-order Markov processes with zero mean and variances adjusted to generate the
desired spatial correlations in the rain field. The correlation time of each amplitude depends on the
wavenuinber k. These correlation times are adjusted so that the correlation times of area-averaged
rain rate, as a function of the size of the area, agrees with what is observed in the GATE data. Details
of these procedures, and of the GATE statistics that are used to prescribe the statistics of the model.
are given in Bell et al. (1989). As a result of the fitting process, the spatial correlation of the model
rain rate field as a function of spatial separation s, for rain rates with 4 ki spatial resolution, is
described by the empirical fit

() = (1.2s — 2.2)"%%%xp(—3/78),s > 4km.

The variance of rain rate averaged over a 512 km square, [which would be ¢% in Eq. (5)]. is
0.18mm?/h?. The correlation times of area averaged rain rate [T4 in Eq. (5)] range from 0.8 honurs
for a 4 km x 4 km area to 10.6 hours for a 512 km x 512 km area.

Once the statistical properties of the model are determined, a Monte Carlo estimate of the r.m.s.
error (4) is in principle obtained by simulating many months of rainfall, and computing the r.m.s.
difference between the satellite estimate (3) and the true mean (1). If we let R(®) and R'™) bhe
respectively the estimated and true mean rain rate during month a, and define

AR = f(e) _ plo) (7)
to be the error for that month, a Monte Carlo estimate of E based on N simulated months would he

E! 1 N {a)y>
=5 X (ar™) (8)

a=1 "

and the standard error of this estimate would be
- 1
o(E?) = ﬁ{va:[(AR(°))’]}‘/° _ (9)

The Monte Carlo accuracy is proportional to N-Y2, In order to increase the accuracy of the Monte
Carlo calculation, we have estimated the r.m.s. error E for 6-day averages instead of for 30-day
averages. It can be shown that, to an accuracy of a few percent, for averaging times T > 6 davs
the error E? scales with 1/T , and so the error E? for T = 30 days is just 1/5 the error found for
T = 6 days. With this device the Monte Carlo accuracy (9) for the same length computer run can be
improved by a factor of 5'/2.
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Figure 1: Sampling error for monthly averaged rainfall over a 512 km square area for a satellite in a 35°

inclination orbit. The shaded areas denote s confidence limits.

Monte Carlo Results

The sampling error associated with TRMM:-like satellite observational patterns was first obtained for
"30° inclination satellite orbits at two altitudes, 300 km and 450 km. The error E was evaluated
for monthly averages over 512 km square boxes centered at two latitudes, 5°N and 25°N, assuing
GATE-like statistics as described in the previous section. The observational patterns of the satellite
were obtained for a 30-day orbit, broken up into 6-day periods with the break points well away from
the times when satellite observations occur. For the 25° latitude box, the sampling patterns (both
altitudes) in each period were similar enough that the error E? was computed from a 300-day Monte
Carlo run sampled according to a single representative 6-day period. For the 5° latitude case, the
error E? was computed from the average of the errors found for each of the five periods in the month,
using 60-day Monte Carlo simulations for each. The average error E? for a 6-day period was then
scaled down by a factor of 5 to obtain an estimnate of the 30-day sampling error, as explained in the
previous section. : '

Results are plotted in Fig. 1 as a function of altitude, with a power-law interpolation hetwcen
the estimates at the two altitudes. The shaded area indicates +o limits from Eq. (9), converting the
uncertainty in E? to the uncertainty in E using the relation

o(E) = o(E?)/2E (10)

valid for small normally distributed deviations about the true mean [i.e., 0(E) <« E]. The error E is
expressed as a percentage of the mean (r) = 0.445 mm/h.

A similar Monte Carlo calculation was carried out for a 35° inclination orbit at 350 kin altitude,
which may be nearer the best orbit for TRMM (Simpson et al., 1988), for hoxes at the same two
latitudes. For this orbit the sampling error found was

E(5°N)/(r) (8.3+0.7)% (11)
E(25°N)/(r) = (7.2+£0.5)% (12)

(Uncertainty is +0.) The error at 5°N is not appreciably changed by the increase in the orbital
inclination. The error at 25°N is slightly reduced, presumably because the satellite samples are spreard
out over a greater portion of the day.
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The usefulness of the r.m.s. error estimate E depends somewhat on the probability distribution of
the errors. If the errors are normally distributed, one expects the error for a given month’s estimated
rain rate to be smaller than 2E 95% of the time. Rainfall is notorious for its highly skewed distributions,
however, and normality of the error distribution cannot be taken for granted. We find that, even
though the instantaneous rain rates averaged over a 512 km area are highly skewed in the model (the
larger rain rates appearing nearly lognormal, in fact), the errors (7) are consistent with a normal

distribution, and a Gaussian fit to their distribution easily passes a chi-squared test for goodness of
fit.

'

Conclusions

The size of the sampling error we estimate for 8 TRMM-like satellite is encouragingly small—less than
10% . The results depend, of course, on many assumptions about the nature of rainfall statistics in
the tropics and on the assumption that nearly unbiased retrieval of rain rates can be achieved.
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Characterisation of cumulus cloud fields for calculating the
‘ distribution of solar radiation

P.K. Love
Institute of Geophysics, Victoria University, Wellington, NZ

Abstract
A knowledge of the spatial distribution and temporal variation of solar radiation is

required for many purposes. Existing networks of solar radiation stations have low
spatial densities and relatively short histories. Thus there is a nged to supplement data
from these stations with data from other sources. Such additional data can be obtained

from surf.‘ar.e and satellite observations of cloud and from global circulation models.

In order to identify simple parameters from which the amount of solar radiation
reflected and transmitted by a field of Cumulus clouds might be determined, reported
distributions of cloud size and a model which gives the radiative characteristics of an
individual cloud as a function of cloud size and shape, droplet size distribution and the
direction and wavelength of incident radiation, have been employed to calculate the bulk
radiative characteristics (reflectance, transmittance and absorptance) of the cloud field.

Assuming an exponential distribution of cloud size (Houzumi er al, 1982) the bulk
radiative characteristics can be determined accuratel‘y from the distribution decay constant.
As the decay constant can be related w0 cloud cover (Houzumi et al, 1982) or
maximum cloud diameter (Kalthoff and Schaller, 1986) it is possible to estimate the
radiative:'charactcristits from parameters that can be observed from the surface or by
satellite. A.ltérnatively. if fractional cloud cover and liquid water content are known
the radiative characteristics can be determined without requiring the decay rate. This
method is well suited for use with data from global circulation models. F.stunats of
the bulk radiative characteristics based upon other variables, such as mean cloud size,

give inferior results
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A critical review of two decades of teleconnection studies in the
' United States and Europe

Robert E Livezeyv
Climate Analysis Center, NMC/NWS/NOAA, Washington D.C. USA

Abstract

Teleconnections were referred to by O’Connor twenty years ago as “favoured modes for coupling
large-scale abnormalities of the atmospheric circulation as determined statistically or empirically™,
and more recently by Livezey (1988) as “coherent variability between distantly separated centres of
action”. The principal focus of teleconnection research in the United States has been on extratropical
low-frequency, quasi-stationary atmospheric structures, but has expanded rapidly over the last decade
to include first the oceans and tropics and very recently non-stationary, intermediate time-scales (10-60
days) fluctuations.

In particular, classification of modal quasi-stationary circulation patterns has received considerable
attention since Wallace and Gutzler’s (1981) paper and has evolved to the pint where serious attempts
are being made to study the persistence and transition properties of classified patterns. Strong tropi-
cal signals embodied in the ENSO and 30-60 day oscillation phenomena and a growing awareness of
their role in north American climate have provided the impetus for both tropical-extratropical telecon-
nection studies and the application of sophisticated techniques to describe the time-space structures
of these non-stationary tropical circulation systems. The search for tropical-extratropical links has
since expanded to include the Atlantic sector while the analysis of non-stationary modes has now been
extended to the difficult problem of intra-seasonal (10-60 days) variability in the extratropics.

The availability of large computers has permitted the application of powerful algorithms to the
various problems listed above. Nevertheless, the outcome of these experiments can often be artificial.
if sufficient care is not taken in the choices of filters, data windows, side conditions and constraints.

‘or as a result of basic properties of the analysis techmques them<el\es Frequently, the experimental
results will accommodate multiple interpretation as well.

The various problems that have been addressed in modern teleconnection studies, the approaches
used to study them and their associated strengths and weaknesses and some major findings will he
reviewed for work spanning the last 20 years, with special emphasis on the last decade. Examples will
be presented to illustrate some of the inherent difficulties in these studies and possible ways around
some of the problems will be suggested.
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Use of statistical methods in the search for teleconnections

Barbara G. Brown Richard W. Katz
Environmental and Societal Impacts Group, NCAR, Boulder, USA

Introduction

Many of the results of recent studies devoted to the search for atmospheric/oceanic teleconnections are
based on empirical analyses of climate data that rely extensively on statistical techniques. However,
in some cases inappropriate statistical methods have been applied or assumptions have been ignorerl.
Consequently, the strength of some alleged linkages may have been exaggerated.

Brown and Katz (1987) considered the use of statistical methods in teleconnections research from
a historical perspective. In the present study, statistical approaches that are currently being taken by
teleconnections researchers are evaluated, keeping in mind the lessons drawn from the historical review,
In particular, the problem of multiplicity is considered. This problem arises, for example, when many
correlation coefficients are computed but only the largest are selected. With only a few exceptions
(e.g., Preisendorfer and Barnett, 1983; Livezey and Chen, 1983), the implications of multiplicity have
not been fully appreciated within the meteorological community. Another issue, initially considered
by Katz (1988), concerns how temporal correlation may affect the identification of leading, lagging. or
feedback relationships. In addition, the implications of autocorrelation for the problem of multiplicity
are not well understood. To demonstrate the magnitude of the problem of multiplicity in the search for
teleconnections, and to investigate the effects of interactions between autocorrelation and multiplicity.
the results of a simulation study are described.

Multiplicity and autocorrelation

Multiplicity

Multiplicity is a well-known statistical problem that arises when a large number of statistical hy-
potheses are tested (e.g., when the results of an experiment are stratified in many ways). The effect
of multiplicity is such that the probability of rejecting at least one null hypothesis in error (i.e.. the
probability of Type I error) increases geometrically as more hypotheses are tested (Tukey, 197 1). For
example, the probability that at least one of ten independent tests of hypotheses will he judged in
error to be significant, given that each is tested at the 0.05 level, is 0.401—much greater than 0.05.

Multiplicity should be an important issue in teleconnections studies in which a large number of
correlation coefficients are computed. However, the tendency has been to report those correlations
that are significant according to the criteria used to evaluate the significance of individual correlation
coefficients. Often only the maximum correlation (in absolute value) in a set is reported.

Some attempts have been made to counteract the effect of multiplicity. For example, some re-
searchers have used a level of 0.01 instead of the more commonly used level of 0.05, to reduce the
number of correlations selected as being significant (e.g., Nicholls, 1985). In other approaches to
compensating for the problem of multiplicity, the important distinction is made between the level of
the individual tests, a say, and the overall level of the combination of tests. In particular, it would
be desirable to select values of a for the individual tests that will produce an acceptable a, (e.g.,
a, = 0.05) for the set of tests. The Bonferroni inequality leads to one method of this type in which
‘the possibility of dependence among the tests is taken intd consideration (Neter et al., 1983). With
this approach,

a=F (1)
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where k is the number of correlations tested, would be used to test the significance of the individual
correlations. This procedure is conservative, guaranteeing that the overall level is less than 0.

Walker (1914) also suggested and applied a method for taking into account the problem of multi-
plicity. Walker’s method consisted of determining a critical value r. such that

i e} = 2
Pr{fg&ﬁlrl)r} a, (2)

where the value of a, used by Walker was 0.50. Applying the known distribution of the maximun
value of a set of independent random variates (e.g., Mood et al., 1974, pp. 182-184), r. is the value of
the correlation coefficient such that

Pr{ril > re} =1 — (1 — a,)V/* (3)

for 1 < i < k. In a modernized version of this approach, a value of o, such as 0.05 would probably he
used. Consequently, Walker’s approach can be viewed as differing from the more modern Bonferroni
procedure only insofar as it does not allow for dependence among tests.

Autocorrelation

..In a simulation study, Katz (1988) demonstrated that the existence of autocorrelation in meteorological
and oceanographic time series can have substantial effects on cross-correlation functions estimated in
teleconnection studies. For example, the value of the contemporaneous cross-correlation is ‘smeared
out’ across other time lags to make leading and lagging relationships apparent when none is really
present.

One method of counteracting the problem of autocorrelation is to remove this dependence from
the time series by pre-whitening (e.g., Katz, 1988). Alternatively, autocorrelation can he taken into
account by applying a ‘variance-inflation’ factor based on the values of the autocorrelation coefficients
(Bartlett, 1955, p. 289; Katz, 1988; Trenberth, 1976). This technique is analogous to the adjustment
for time averages termed the ‘effective number of independent samples’ (e.g., Madden, 1979). The
practical effect of this procedure is to reduce the number of degrees of freedom used in the t-test of
significance of the sample cross-correlation coefficients.

Simulation study design

The simulations were based on time series models described in Katz (1988). These models consist of
first-order autoregressive processes in which pairs of time series may have non-zero contemporaneous
cross-correlations, but no leading, lagging, or feedback relationships.

Sets of s = 2, 5, 10, 20, and 50 time series were considered in individual simulations. The
simulation experiinent was repeated 500 times for each combination of selected autocorrelation anl
cross-correlation parameters, for each value of s. The simulated time series each had a length of 50,
a value that is similar to the number of years typically included in modern teleconnection studies. A
standard multiple congruential uniform random number generator with shuffling was uhhzed to create
the simulated time series.

Values of both 0 and 0.5 were assigned to the first-order autocorrelation coefficient (¢) and the
contemporaneous cross-correlation coefficient (v). In a given simulation, all time series were assumel

“to have the same autocorrelation. The cross-correlation between time series 1 and 2 was set equal to
either 0 or 0.5, whereas the cross-correlations of time series 1 with time series 3 through s were always
set equal to 0.

The sample contemporaneous cross-correlations between series 1 and all the other series were
computed for each simulation (that is, correlations of all possible pairs were not considered). This
approach mimics that taken in many teleconnection studies in which a particular time series {e.g..
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Southern Oscillation Index) is correlated with a large number of other time series. Thus, the nwunber
of correlations computed in each simulation, k, is equal to s — 1.

The value of the maximum (absolute value) of the sample cross-correlations was recorded for
each simulation of a set of s time series. In addition, the significance of each computed correlation
was evaluated according to seven different approaches: (i) a = 0.05; (ii) a = 0.01; (iii) Bonferroni
(ao = 0.05); (iv) Walker (a, =.0.50); (v) modernized Walker (a, = 0.05); (vi) variance inflation
(a = 0.05); and (vii) variance inflation plus modernized Walker (a, = 0.05). Note that approaches
(i), (ii), and (vi) make no attempt to compensate for multiplicity and that only (vi) and (vii) take
autocorrelation into account. '

Table 1 contains the critical r-values (r.) and a-values associated with these approaches for the

values of s employed in the study.

Table 1: Critical r-values (r.) and values of a associated with the seven testing approaches investigated. for

various numbers of time series. For the cases involving variance inflation, ¢ = 0.5

Number of time series (s) ]

Approach ' 2 5 ' 10 20 50 ‘,
a = 0.05 ' a | 0.050 [ 0.050 | 0.050 [ 0.050 | 0.050 '
r. | 0.279 | 0.279 | 0.279 | 0.279 | 0.279 !

a = 0.01 a [0.010 [ 0.010 | 0.010 | 0.010 [ 0.010 |
_ re | 0.361 | 0.361 | 0.361 | 0.361 | 0.361 |
Bonferroni a | 0.050 [ 0.012 | 0.006 | 0.003 | 0.001 |
(a0 = 0.05) re | 0.279 | 0.351 | 0.387 | 0.416 | 0.451 {
Walker - |« | 0.500 { 0.159 | 0.074 | 0.036 | 0.014 |
(a0 = 0.50) rc | 0.098 | 0.202 | 0.255 | 0.298 | 0.345 |
Walker a [ 0.050 | 0.013 | 0.006 | 0.003 | 0.001 |
(o = 0.05) e | 0.279 | 0.350 | 0.386 | 0.416 | 0.450
Variance a | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 :
Inflation (VI) re { 0.361 | 0.361 ; 0.361 | 0.361 | 0.361 |
Walker a | 0.050 | 0.013 | 0.006 | 0.003 | 0.001 |
(@0 = 0.05) & VI r. | 0.361 | 0.449 ' 0.493 | 0.528 | 0.569 -

Similarities exist among some of these approaches. The r.-values for the variance inflation and o =
0.01 approaches are identical by accident, due only to the choice of ¢ = 0.5. However, the closeness of
the r.-values associated with the Bonferroni and modernized Walker approaches is somewhat contrary
to expectations, as these procedures are based on different assumptions. Nevertheless, it can be shown
that both techniques produce approximately the same values of @ when a, is relatively small.

Results

v=0

Distributions of the maximum sample contemporaneous cross-correlations (in absolute value) obtained
in each simulation, for the case of no actual contemporaneous cross-correlation (i.e., ¥ = 0). are

displayed in the form of box plots in Figure 1.

These plots indicate the strong effect of multiplicity in leading to spuriously large maximum values
as the number of time series increases. For example, the median value of the maximum sample cross-
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Figure 1: Box plots depicting distributions of values of maximum sample cross-correlations (in absolute valne)
for simulations with ¥ = 0. The plots show the 0.90th, 0.75th, 0.50th, 0.25th, and 0.10th quantiles of the

distributions

correlation with 50 time series is 0.35. The impact of autocorrelation is to increase the magnitude of
this multiplicity effect to a large degree. ,

A Type I error occurs if at least one of the computed correlations in a simulation is deemed
significant, or equivalently, if the maximum correlation is significant. Probabilities of a Type I error
for the v = 0 case are displayed in Figures 2 and 3.

It is evident from these diagrams that many of the approaches to testing significance do not
adequately handle multiplicity. For example, the method of applying the a = 0.05 significance level in
individual tests rapidly leads to a very large overall significance level as the number of series is increased
(e.g., for s = 10, the probability is 0.35). Moreover, the effect of maultiplicity is considerably worsened
when the time series are autocorrelated (e.g., the probability associated with a = 0.05 is 0.66).
With regard to counteracting the problem of multiplicity, the Bonferroni approach (approximatcly
equivalent to the modernized Walker approach) appears to lead to adequate results (i.e., an overall
significance level somewhat less than 0.05) in the case of no autocorrelation. However, when the
series are autocorrelated, the overall significance values are increased to unacceptable levels. This
discrepancy between the observed and desired values of a, arises because the nominal levels for the
individual tests are no longer correct in the presence of autocorrelation. In that case, the combination
of the variance-inflation approach with the Bonferroni (or modernized Walker) method Icads to resnlts
that are insensitive to the number of time series. :

~v = 0.5

For the case of an actual contemporaneous cross-correlation of 0.5, the distributions of sample max-
imwm cross-correlations (not shown) are relatively insensitive to the effects of multiplicity. However,
the probability that the sample cross-correlation that is maximum in absolute value will have the
wrong sign (i.e., will be negative) increases as the number of time series increases, up to 0.15 for
s = 50 and ¢ = 0.5. Similarly, the probability that the maximum sample cross-correlation will not he
the correlation between time series 1 and 2 is as high as 0.32 for s = 50 and ¢ = 0.5. Both of these
probabilities are larger for autocorrelated time series than for series without autocorrelation.
Another probability of interest in the case of ¥ = 0.5 is the probability of attaining a ‘right
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answer’—the probability that the sample cross-correlation between time series 1 and 2 will be signifi-
cant and the other sample correlations will be nonsignificant. The values of these probabilitics for the
¥ = 0.5 simulations are illustrated in Figures 4 and 5.
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a = 0.05
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These probabilities are clearly affected by the number of time series as well as by autocorrelation.
However, it appears that the Bonferroni (or modernized Walker) approach performs reasonahly well
for this purpose, even for large numbers of time series. In contrast, the a = 0.05 method performs
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quite poorly at discriminating among the correlations, particularly for relatively large numbers of time

series.

Conclusions

The results of the simulation study indicate that the impacts of multiplicity in teleconnection studies
can be extensive. In particular, autocorrelation can greatly increase the magnitude of these ixnpacts.
Among other things, the multiplicity effect can lead relatively frequently to observed maximum corre-
lations that are spuriously large when no cross-correlation actually exists. This result has important
implications for the results of studies in which only the maximum among a set of correlations is
reported. The results also suggest that use of a small o (e.g., @ = 0.01) may not always provide
adequate compensation for the effects of multiplicity. A positive result of the study is the evidence
suggesting that multiplicity may be successfully counteracted by both using methods of taking into
account autocorrelation (e.g., through the variance-inflation technique) and by applying appropriate
strategies for obtaining an acceptable overall significance level (e.g., the Bonferroni or modernized
Walker approaches).
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The teleconnection pattern between the Arctic ice area and the
500 hPa geopotential height field during the northern hemisphere
summer

Zhi-fang Fang
Institute of Meteorology, Chengdu, China

Introduction

Hoskins and Karoly (1981) used the basic numerical model, as a result, the Rosshy wavetrains prodnced
in the upper troposphere. The long wave lengths propagate strongly poleward as well as eastward
resulting in a wavetrain path, similar to a great circle. Horel and Wallace (1981) have shown that
the warm episodes in equatorial sea-surface temperature in the Pacific tend to be accompanied by
below-normal 700 hPa height in the North Pacific, above normal heights over western Canada. an
below normal heights over the southeastern United states. This is PNA teleconnection pattern. If is
very reminiscent of the Rossby wave-‘trains’ in the model results.

Up to now, the research of the teleconnection pattern between the polar cold source and the
upper troposphcre was seldomly analysed. Although the effect of sea ice on atmospheric cirenlation
is weaker than the effect of low latitude sea surface source, but according to the observed data, the
sea ice existence obviously influences on the climate and weather in the world.

This study is primarily based on the monthly mean 500 hPa geopotential height field (1951-1982)
and the Arctic ice area (1953 -1977) during July and August in the Northern Wemisphere. In this
paper, the teleconnection pattern between the Arctic ice area and the 500 hPa geopotential heights
during the Northern Hemispheric summer is investigated.

. The remote responsevof the atmosphere to the arctic sea ice cold
source

The correlation field between the Arctic ice area and the 500 hPa geopotential hexght field during Inly
and August are analyzed.

Fig. 1 shows a correlation field in August. There exists a maximumn correlation coefficient -0.554. it
appeared at (TO°N, 170°W ) near the North Pole. The fact indicates that when the Arctic sea ice area
is stronger than normal in Summer, owing to the reflective index in the Arctic ice area was increased.
then the receipts of the solar energy in the underlying earth’s surface was decreased, therefore the
geopotential height near the polar area is lower than normal height, that is, the low pressure over the
pole is stronger, and vice versa. «

The Arctic sea ice cold source not only effects the low pressure over the Pole, but it effects the
far area from the source region, that is located at middle and low latitudes. In Fig. 1, there exist
other correlation centers, for example: they are located at (55°N, 105°W) and (35°N, 75°W) with
correlation coefficients 0.336 and -0.426, respectively.

The correlation field between the Arctic sea ice and 500 hPa gph during July is very similar to
the correlation field in August ( Fig. was omitted ).

The teleconnection pattern between the Arctic sea ice and 500 hPa
gph during summer

I used the method similar to that used by Wallace and Gutzler (1981).
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Figure 1: The correlation field between the Arctic sea ice area and 500 hPa gph during August

First, I take the point at (70°N, 170°W) as base grid point, and make a one-point correlation map
at 500 hPa in August (Fig. 2 (a)). In Fig. 2(a), there exist three alternating positive and negative
correlation centers. They are located at (70 °N, 170 °W), (55 °N, 105 °W) and (35 °N, 75°W). with
the correlation coefficient values 1, -0.589 and 0.542 respectively. These coefficients are maximum
values in Fig. 2(a). Then I take points at (55 °N, 105 °W) and (35°N, 75°W) as base grid point and
make two one-point correlation maps at 500 hPa in August (Fig. 2(b) and 2(c)).

Figure 2: The one-point correlation map in August. (a)(70 °N, 170 °W) as base grid pointi(b) (55 °N, 105
°W) as base grid point;(c) (35 °N, 75 °W) as base grid point.

In the three one-point?? maps, the correlation coefficients on three correlation centers reach
significant levels at @ = 0.01. The correlation centers are called action centers, it forms a teleconnection
pattern. The horizontal scale and orientation of the pattern resemble a wavetrain on the spheric
atmosphere (Hoskins and Karoly, 1981), but forced by the Arctic ice as a cold source.

By use of same method for July, the teleconnection pattern is very similar to August.

( Fig. was omitted ).
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Comparing Fig. 2 with Fig. 1, it is obvious that the three action centers in Fig. 2 coincide with
the some correlation centers in Fig. 1 very well. This fact indicates that the Arctic sea ice cold source
tends to be accompanied by the teleconnection pattern at 500 hPa.

Analyses of the character of the teleconnection pattern

Fig. 3 shows a schematic diagram of wavetrain and jet stream. Heavy arrows indicate axes of
climatological mean jet streams in July, shaded areas indicate centers of action of the teleconnection
pattern in July. In Fig. 3, the centers of action can cross the westerly jet and into the subtropical
area, but they only exist in the westerly belt (The subtropical high ridge is located near 25 °N in
July). ' ' ‘

Figure 3: The schematic of wavetrain and jet stream.

Figure 4: The 1000-500 hPa thickness difference field between four stronger Arctic ice years and four weaker

Arctic ice years.

Fig. 4. is the 1000-500 hpa thickness difference field between four stronger Arctic ice years
(1964, 1965, 1967 and 1969) and four weaker Arctic ice years (1960, 1968, 1971 and 1977) in Angnst.
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Comparing Fig. 4 with Fig. 2, it is clear that the three action centers in Fig. 2 just coincide with the
three centers in Fig. 4. This fact demonstrates an equivalent barotropic structure of the teleconnection

pattern. i
The map of standard deviations in July and August are analyzed. The values of standard deviation

near three action centers are obviously larger than values in the same latitude area, in order to
demonstrate that there exists a teleconnection pattern. (Fig. was omitted )

Summary
According to the foregoing statistical discussion, it may be noted:

1. There exists a teleconnection pattern. It resembles a wavetrain on the spheric atmosphere, and
the long wave lengths propagate strongly eastward and southward in a wavetrain path. away
from the forcing region.

2. The result shows an equivalent barotropic structure with larger amplitude at 500 hPa, but the
source is forced by the Arctic sea ice, only obvious in summer.

3. When the Arctic ice area during sunumner is stronger, then the polar low pressure may be
stronger, the Canadian high pressure region higher and the Northern American trough stronger
also, and vice versa.
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Some applications of statistics to solar-atmospheric relationships

Dennis J. Shea
NCAR, Boulder, Colorado, USA

Introduction

For many years researchers have tried to find a relationship between solar and atmospheric variability.
Pittock (1978, 1983) examined a subset of the vast amount of literature dealing with these associations.
In general, he found that they did not pass rigorous statistical testing or additional observations.
~ Pittock (1978) lists a set of conditions which he thinks should be satisfied in these relationships. They
are: (i) large amplitude correlations, (ii) constant phase relationship, (iii) at least five or six cycles.
and (iv) a hypothesized solar-atmospheric relationship which can be supported by a plausible and
testable physical hypothesis. Pittock (1983) further states that because climatological data sets are
often inadequte for rigorous statistical testing, the above ‘conditions can be modified. He states that
“within the limits of moderation and good judgement it is therefore acceptable and even nuseful to
publish inconclusive but suggestive results, provided that they are identified as such™.

Recently Labitzke (1987) noted an apparent relationship amnong stratospheric temperatures at the
North Pole, equatorial stratospheric winds, and the 11-year solar cycle. This relationship is examine
using Monte Carlo simulations. It is demonstrated that Pittock’s conditions (i) and (ii) are satisfied
and, although there is no substitute for real data, the necessity of five or six cycles mayv be relaxed.
After establishing the statistical significance between the 11-year solar cycle and the North Pole
stratospheric temperatures, some solar-atmospheric associations are described that suggest that this
signal is present in both the stratosphere and troposphere. The focus of this paper is the statistical
methodology used to investigate the significance of the above relationship. Therefore. the statistical
results will be for the northern hermsphere winter only, where winter is defined as the mean of Jannarv
and February values.

Before proceeding further, several terms used throughout the rest of the text are described,

1. Winds in the equatorial stratosphere change direction every 24 to 30 months. The mean period
is about 27 months. Thus, westerly (easterly) winds in a particular January, for example. tend to
be followed by easterly (westerly) winds in the succeeding January. Occasionally two snceessive
years will have winds in the same direction. This phenomenon is called the Qmuasi-Biennial

Oscillation (QBO).

2. The “bootstrap” procedure (Efron, 1982) is a statistical technique which can be used to deter-
mine the variability of any statistic (X) using the original data sample. Briefly, the original
data are randomly sampled (with resampling allowed) a large number of times (N'). Each time
the statistic is recalculated (X;, X, ..., Xx). These estimates are an approximation to the
sampling distribution of X. The mean of the N estimates should approximate the original X
and the true value. The variance of the estimates should approximate the sampling distribution
of X. This allows the establishment of confidence limits on the original statistic. In addition.
an estimate of the bias may be obtained.

3. In general, atmospheric data are highly correlated in both space and time. For example. a
correlation pattern between, say, the solar cycle and atmospheric temperatires at a particular
pressure level will result in large areas of apparently significant correlations even after adjnsting
for the time dependence. A procedure for testing a collection of spatially correlated valnes
for statistical significance (i.e., field significance) is described by Livezey and Chen (1083).
Essentially, the original series is simulated via a Monte Carlo technique and the correlations
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are recalculated N times. The resulting distribution of percent area covered by significant
correlations allows the assessment of whether the original area covered by significant correlations

could have arisen by chance.

Solar cycle and stratospheric temperatures at the poles

Labitzke (1987), using 30 mb winter ([January+February]/2) temperature data spanning the 31 year
period 1956-1986, noted when the 50-mb equatorial winds were westerly (17 years) that the snnspot
number and north pole 30-mb temperatures were low, and conversely for high sunspot nuinbers. Figure
1, from Labitzke (1987), updated through 1988 to include 18 westerly wind years, shows that the linear
correlation between these two variables is +0.77. This result is significant at the 1% level using 16
degrees of freedom (dof). Even if only 10 dof are used (to allow for autocorrelation) it exceeds the
5% significance level of 0.62. Using the bootstrap procedure it can said with 95% confidence that the
true correlation is between 0.54 and 0.91. Although they had no explanation for this relationship. this
suggestive result led Labitzke and van Loon (1988; hereafter LvL) and van Loon and Labitzke (1988:
hereafter vLL) to ezplore further this apparent association.

The first step was to establish, in a more rigorous fashion, the statistical significance of the rela-
tionship which results from partitioning the observed data by the phase of the QBO. Two Monte Carln
tests were used. A characteristic of each test is that the randomization must retain some similarity
to the original series being modeled. For example, the first test uses a first order Markov process to
simmulate the oscillating pattern exhibited by the north pole temperatures. ’

The correlation between the 30-mb January-February average temperature at the North Pole and
the solar flux during the three solar cycles spanning the 33 year period 1956-88 (Fig. 2) is 0.15.
However, if one correlates the 18 winters in the west phase of the QBO with the solar lux in the
samne winters the correlation is 0.77. Thus, these winters are in phase with the solar cycle (Fig. 3).
The correlation for the 15 winters when the QBO was in its east phase is -0.43 (Fig. 4). Clearly, the
correlation between the solar cycle and the 30 mb temperatures is masked by the QBO. Partitioning the
data by QBO phase indicates that the QBO modulates the effect of the solar-atmospheric association.
at least in winter. ' .

Since the series in Figs. 2—4 are the foundation upon which the solar-atmospheric studies discussed
here originally were based we establish the statistical significance of the pair of series shown in Figs.
3 and 4. As a first step, the null hypothesis (no correlation) is made and tested for significance at
the 5% level using rs = 1.96//n. — 2 where n. is the number of independent samples. The latter
was determined through an approach discussed by Livezey and Chen (1983), which takes into account
the autocorrelations in both the temperature and solar flux series. Applying this method to the 33
winters shown in Fig. 2, the number of independent samples is reduced to 23. Thus rs =0.43 and
we cannot reject the null hypothesis. Even if n, = 33 the null hypothesis could not he rejected at
the 5% level. The same approach cannot be used for Figs. 3 and 4 bhecause the sampling interval
varies due to the irregular east-west phase variations. We ask instead the question: How likely is
it that a series such as the 30-mb temperatures in Fig. 2 by being split into two series according
to the state of the QBO will follow the solar cycle in the manner of Figs. 3 and 47 To answer this
question we employ the following Monte Carlo technique (hereafter, Test 1): First, the lag-one-vear
autocorrelation of the temperature series in Fig. 2 was determined to be -0.42. Second, one thousand
first-order autoregressive temperature series (Markov process) of length 100 were generated hy

T = —042T 1 + €m

where T, and e,, are a normalized temperature and a random number, respectively, at time m.
Third, the middle 33 values of each Markov series were partitioned by the phase of the QBO. Finally,
correlations between the solar lux and simulated temperature series were calculated. The resulting
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distribution of the “west” and “east” phase correlations (r,, and r., respectively) are shown in Fig. 5.
The circle has a radius of length /(0.77)% + (—0.43)%. The coordinate (+0.77,~0.43) is indicated by an
asterisk. Points lying outside this circle are pair correlations which exceed the observed correlations.
In the simulation of 1000 series shown in Fig. 5 only 6 were outside the circle. In four additional
similar tests at most 7 of the 1000 pair correlations fell outside the circle. This is convincing evidence
that the correlations probably did not occur by chance. )

Test 1, using a Markov model to simulate the 30 mb stratospheric temperature data represented
the initial attempt to determine the significance of the series shown in Figures 3 and 4. Subsequently.
Glenn Brier (personal communication, 1988) suggested an alternate Monte Carlo test (Test 2) to
minimize the effects of autocorrelation. In ‘Test 2 the phase of the QBO was randomized and the
observed solar flux and stratospheric temperature data were used to calculate the correlations. To be
consistent with the observations, this randomization was subject to two constraints: (i) no more than
two successive phases could be the same and (ii) in a series of 33 phases 18 must be “west™ phases
and 15 “east™ phases. - The resulting scattergram derived from 1000 simulations is displayed in Fig.
6. Only 1 out of 1000 simulations exceeded the observed pair correlations. The narrow clustering of
the simulated east-west correlations may be attributed to the constraints imposed on each simulated
series. Brier (1988, personal communication) has independently performed this randomization test
with similar results.

Solar-geopotential height correlation patterns

Correlations between the solar cycle and the 30 mb geopotential heights over the northern hemisphere
during winter are low with only a small area (<5%) having correlations which are locally significant
at the 5% level. After partitioning the data according to the phase of the QBO. however. large areas
are covered by locally significant correlations (See Figs. 5a and 7a in LvL). Large positive correlations
during the west phase are generally replaced by large negative correlations during the east phase.
During the east (west) phase 30+ % (10+%) of the area is covered by values locally significant at the
5% level. These patterns have field significant levels of better than 5% and 10%, respectively. Fignre
7 shows a scattergram of percent area covered by correlations which are locally significant at the 5%
level that resulted from randomizing the QBQ phases as in Test 2. Two hundred simulations were
run. Not one Monte Carlo pair exceeded the observed levels of field significance. The uniqueness anfl
significance of the investigated solar—stratospheric association is clear.

Correlations between the solar cycle and 700 mb geopotential heights after partitioning by the east
and west QBO phases were field significant at the 5 and 2.5% levels, respectively. Barnston and Livezey
(1988) have also tested the field significance of these patterns using a more robust test. Their results
~ indicate even higher significance levels. This has led the long-range forcasters at Climate Analysis
Center in Washington, D.C. to incorporate the solar-atmospheric association into their forcasting
methodology.

Solar-surface temperature association

The correlation pattern for winter between the solar flux and surface air temperature on the Northern
Hemisphere during the west phase of the QBO shows a large area of negative correlations over the
U.S..(Fig. 8). Charleston, South Carolina which is near the center of this pattern has a correlation
of —0.69 and a 95% bootstrap interval of ~0.46 to —0.83. Barnston and Livezey (1988) have tested the
solar-temperature associations over the U.S. and found them significant at the 5% level during the
west phase. ‘
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Summary

An association between the 11-year solar cycle and the atmosphere is masked by the QBO. Partitiong
the data according to the phase of the QBO yields highly significant correlations. Monte Carlo
simulations indicate that these correlations are not likely to have occurred by chance. It has also heen
shown that the solar-atmospheric association is present from the stratosphere to the surface.
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El Nino-Southern Oscillation and rainfall variability

Neville Nicholls
BMRC, Melbourne, Australia

Introduction

Conrad (1941) examined the dependence of interannual rainfall variability on the long-term mean
annual rainfall, using data from 384 stations spread across the globe. He defined the relative variability
of annual rainfall as the mean of the absolute deviations of annual rainfalls from the long-term mean.
expressed as a percentage of the long-term mean. Conrad found that a function relating relative
variability to mean precipitation fitted his data very well. The relative variability decreased, in
general, as the mean precipitation increased. Over some large areas, however, the relative variability
deviated in a consistent way from the global relationship with mean rainfall. ‘

Some of these deviations were due to the influence of the El Nifio-Southern Oscillation (ENSO)
phenomenon on rainfall. Nicholls (1988), using Conrad’s data, compared the relationship between
relative variability and mean rainfall in areas affected by ENSO with the relationship elsewhere. The
relative variability was typically one third to one half higher for ENSO-affected stations compared
with stations with the same mean rainfall in areas not affected by ENSO. McMahon et al. (1987)
have shown that rainfall (and streamflow) variability is higher in Australia and southern Africa (both
areas affected b(y ENSO) than elsewhere.

This study (Nicholls and Wong, 1989) extends and confirms the studies of Conrad and Nichells.
More stations have been used. Only post-1950 data have been used (Conrad and Nicholls nsed pre-
1941 data). A more conventional definition of relative variability, the coefficient of variation. was
used in preference to Conrad’s definition. The functional dependence of the variability on ENSO's
influence is examined in more detail rather than simply dividing stations into a group affected by
“ENSO and a group not affected (as was done in Nicholls, 1988). The effect of latitude on variahilitv
is also considered. Mean annual rainfall and the effect of ENSO on rainfall tends to be larger in low
latitudes so the results of Conrad and Nicholls might just reflect an effect of latitude on variability.
This possibility has been allowed for by explicitly considering the effect of latitude, as well as mean
rainfall and ENSO, on the relative variability.

Data and method

The data used here were obtained from the NCAR surface climatology data set. All stations with at
least 25 years of annual rainfall totals post-1950 were used. This provided a total of 974 stations. For
. each station the long-term mean annual rainfall (P) and its standard deviation (s} were calculated.
The coefficient of variation (V), the ratio of the standard deviation to the long-term mean (s/P). was
calculated to provide a measure of the relative variability of annual rainfall.

A quantitative measure of the strength of the relationship between ENSO and the rainfall at each
station was needed to examine the dependence of V on ENSO. The abhsolute value of the correlation
between annual rainfall and annual values of the Southern Oscillation Index (SOI) was used as this
measure. The SOI used here was the difference in pressure between Tahiti (175, 150W) and Darwin
(12S, 131E), standardised to a mean of zero and a standard deviation of 10. Monthly values of the
SOI were provided by the National Climate Centre of the Australian Bureau of Meteorology. Annual
values were calculated by averaging the twelve monthly values." The annual SOIs were then correlated
with the annual rainfalls at the 974 stations and the absolute values of these correlations (R) were
noted.
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Preliminary work indicated that a relationship between latitude and rainfall variability existed.
This relationship was strongest with the absolute value of the latitude (i.e. ignoring whether a station
was north or south of the equator). So the absolute value of the latitude of each station (L) was noted.
The elevation of the station was also noted since this might affect variability. .

The correlations between variability; mean rainfall, latitude (unsigned), elevation, and the corre-
lation of annual rainfall with the SOI (also unsigned) are listed in Table 1. Of the 974 stations with at
least 25 years data since 1950, 19 did not have their elevation listed. This left 955 stations to use to
calculate the correlations listed in the table. Elevation was not significantly correlated with variahility
and was not considered further. The other variables were all significantly correlated with each other.
although most correlations were small in magnitude. Mean rainfall had the strongest relationship with
variability, followed by latitude and the correlation with the SOI. As noted ahove, mean precipitation
and the correlation of annual rainfall with the SOI are significantly correlated with latitude. Explicit
inclusion of latitude as an independent variable in the following analysis is necessary therefore to
confirm that the results of Conrad (1941) and Nicholls (1988) do not simply reflect the inflnence of
latitude on variability. '

Table 1: Correlations between the coefficient of variation of annual rainfall (V), mean annual rainfall (F),
latitude (unsigned) of the station (L), correlation of annual rainfall with the SOI (unsigned, R), and the elevation
of the station (E). Correlations with magnitudes exceeding 0.11 are significant at the 1 percent level.
A% P L R '

P -040 )

L -022 -0.42

R 0.18 -0.15 -0.15

E 005 -0.19 -0.02 -0.02

The values of V, P, R, and L from the 974 stations were fitted, ihit-ia.lly, to the following functional
relationship:

V =(a/(b+ P +g(R,L))+c+ h(R,L))(1+ k(R.L)) (1)

where a, b, and ¢ are parameters to he determined. The functions g(R,L), h(R,L). and *(R.L) are
each of a similar form i.e. tR+uL +wRL, with ¢, u, and w all parameters to be determined. Different
values of t,u, and w could be expected for the three functions g, h, and k. In the absence of the
functions g, k, and k, equation (1) would be of the form used by Conrad (1941) and Nicholls (1988)
i.e. with relative variability increasing nonlinearly with decreasing mean rainfall. Conrad (1941)
explains why such a dependence is expected.

Equation 1 is of a very general form, allowing latitude and the correlation with the SOI to affect
the relationship between variability and mean rainfall in several ways. The functions g, h, and k
respectively allow the latitude and correlation to affect the slope of the relationship hetween V and P.
allow the possibility of an additive effect of R or L on V, or of a multiplicative effect. Initial fitting
of equation (1) to the data revealed that six of the nine parameters in the functions g. k. and k were
not significantly different from zero. These parameters were therefore dropped, leaving the following
simplified version of equation (1): '

V =(a/(b+P+dR+eRL)) +c)(I + fL) (2)

Here a,b,c,d, e, and f are the parameters to be determined by fitting the equation to the data from
the 974 stations. Only the latitude (through the term fL) has a multiplicative effect on V and there
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is no evidence of any additive effect. The term dR + eRL affects the slope, or more correctly. the
rate of change of the slope with P, The eRL term is an interaction effect showing that the effects of
latitude and correlation with the SOI are not independent of each other j.e. the effect of R on V will
vary with L.

The above equation was fitted to the data for the 974 stations using the method of false position
(Ralston and Jennrich, 1979), as was done in Nicholls (1988). The method is available in the SAS
statistical analysis system and is described in SAS (1985).

Results

The result of fitting the data to equation (2) is the following equation, which accounts for 94 percent
of the variance in V:

V = (150/(244 + P - 1010R + 23.47RL) + 0.15)(1 — .0068L) (3)

Here the mean rainfall, P, is in millimetres, the latitude, L, is in degrees, and V and R are dimen-
sionless. All of the six fitted parameters in equation (3) are significantly different from zero. In the
absence of effects from the SOI and latitude this equation indicates that variability decreases as mean
precipitation increases, with an asymptote of 0.15. Conrad (1941) and Nicholls (1988) found that a
similar relationship between relative variability (as defined by Conrad) and mean precipitation ac-
counted for much of the variance in the relative variability. Thus equation (3) confirms, on recent
data, with more stations, and with a more conventional definition of variability, the results of Conrad
(1941). '

The final term in equation (3) indicates that latitude has a multiplicative effect on variability.
Increasing latitude reduces variability over all values of the mean precipitation. The effect of this
term is substantial. At alatitude of 30 degrees, in the absence of effects from the SOI, the multiplicative
latit: - indicates that variability would be 80 percent of the corresponding variahility at the
equa- . .ability at 60 degrees latitude is typically 60 percent of that at the equator, for the same
mean prec:pitation (again ignoring effects due to the SOI).

The SOI does have a substantial effect on variability. The -1010R term in equation (3) indicates
that a station with a strong relationship with the SOI will have a steeper relationship hetween vari-
ability and mean precipitation, i.e. the SOI will have lit*i¢ effect on the variability at stations with
very large mean annual rainfall but typically enhances the variability substantially at stations with
lower annual rainfall. The increased variability associated with the SOI confirms the results of erhnlk
(1988).

The interaction term (23.47RL) indicates that increasing latitude weakens the effect of the SOI
on variability. The effect of the SOI is strongest at the equator but actually reverses at latitnde 43
degrees. Polewards of this latitude an increase in the correlation with SOI, according to equation
(3), causes variability to decrease. This decrease is in fact very small and few stations polewards of
latitude 43 degrees exhibit strong correlations with the SOI anyway but this term does indicate that
the strongest effects of the SOI on variability are at low latitudes.

Concluding remarks

This study has confirmed the conclusion of Conrad (1941) that relative variability of annual rainfall
decreases with higher mean rainfall. The conclusion of Nicholls {1988) that variability is typically
higher, for a specific mean rainfall, in areas affected by ENSO has also been confirmed, at least for
locations equatorwards of 43 degrees, a region that includes most of the stations strongly affected by
ENSO. The Southern Oscillation amplifies climate variability in those areas it affects. even when the
effects of latitude and mean rainfall are removed. These conclusions have been confirmed nsing ahont
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three times as many stations as were used by Conrad and Nicholls, on recent data independent of the
set used by Conrad and Nicholls, and using a more conventional definition of relative variability.

The study has revealed a clear dependence of variability on latitude with variability decreasing
substantially as we move away from the equator, after removal of the effects of long-term mean rainfall
and ENSO on variability. The cause of the dependence of variability on latitude requires explanation.
It might arise from the tendency for convection to provide a larger proportion of annual rainfall in the
tropics, or from the ability of occasional tropical synoptic systems (e.g. tropical cyclones) to produce
very large amounts of rainfall.

The study has also revealed an interaction effect between latitude and correlation with the SOL
In the tropics stations strongly correlated with the SOI do tend to be more variable but this tendency
weakens as we move polewards. Eventually, at 43 degrees latitude the relationship reverses and
polewards of this latitude increasing correlation with the SOI implies slightly lower variability. This
reversal of the relationship at higher latitudes is, to some extent, an artefact of the fitting process
since there are few stations strongly correlated with the SOI at these latitudes.

In summary, variability of annual rainfall tends to be higher

e where mean annual rainfall is low,
e at lower latitudes, and

e where the Southern Oscillation has a strong influence (at least in tropical and subtropical
latitudes).

The regions with the most variable annual rainfall are tropical deserts strongly affected by the Southern
Oscillation.

The implications of the dependence of variability on latitude and the Southern Oscillation are
wide-ranging. Nicholls (1988) suggested that the biota in areas where ENSO amplified variability
should be better adapted to frequent climate variations than the biota elsewhere. Human patterns of
usage of rainfall should also be adapted to the differences in variability in regions of different mean
rainfall, latitude, and degree of influence from ENSO, if best use is to be made of this rainfall. The
differences in variability in rainfall will lead to differences in frequencies of major droughts and floods.
i.e. runoff variability (McMahon et al., 1987). Extrapolating European and North American models
and methods for coping with droughts and floods to tropical countries affected by ENSO (and thus
with higher relative variabilities, for the saime mean rainfall) may not be appropriate.
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Prediction of extremes of the Southern Oscillation with POP
analysis

Jin-Song Xu
Max Planck Institiit fuer Meteorologie, Hamburg, FRG

Abstract The space-time characteristics of an ENSQO lifecycle in the Southern Hemisphere sea level
-pressure (SLP) data are identified with the “Principal Oscillation Pattern” (POP) analysis which is
designed to identify standing and migrating patterns in a geophysical multicomponent time series.
Besides characteristic patterns, the POP technique provides a time evolution equation, which allows
a prediction of the temporal development of the patterns’ coefficients.
" The data considered are monthly mean SLP anomalies of the area 15°S to 50°S and for periods
1951-58, and 1972-83. All variability on time scales shorter than 15 months are filtered out. The
data are normalized by the standard deviation at each grid point.

One relevant migrating pattern is found with an oscillation period of about 34 months. It shows

a temporal evolution similar to the SLP anomaly Southern Oscillation composites found by van Loon
and Shea. The cross spectral analysis for the time series of POP coefficients and the El Nino SST-
index indicates that the extratropical SLP anomalies evolve parallelly to the El Nino SST-index on a’
time scale of 20 to 40 months.

" In a number of hindcast experiments, it was attempted to predict the extremes of the Southern
Oscillation in the 70’s and 80’s: The phase turned out to be well predictable with a lead time of a
about one year in advance. The scheme is less sucessful in predicting the duration of an ENSO event.



Spectrum of univariate time series models with application to the
Southern Oscillation

Pao-Shin Chu Richard W. Katz
Dept Meteorology, Univ Hawaii ESIG/NCAR, Boulder, Colorado

Introduction

The state of the Southern Oscillation (SO) is generally described by an index (SOI), which is the
normalized sea-level pressure difference hetween Tahiti and Darwin, Based on the Fourier transform
of the autocovariance or autocorrelation function (frequency-domain approach), many studies have
found a broad range of large variance in the spectrum of the SOI, with a peak around 3-5 ycars (e.g.,
Trenberth, 1976; Chen, 1982). '

Recently, Chu and Katz (1985) showed that temporal fluctuations in the SO, sampled hetween
1935 and 1983, can be adequately represenre:l by parametric time series models. For instance, a
third-order autoregressive [AR(3)] model is representative of the seasonal SO fluctuations and an
autoregressive-moving average [ARMA(1,7;1)] model fits the monthly SO fluctuations well. Since
these models were selected on the basis of a time-domain criterion, it is interesting to sce what sort of
spectral characteristics such time series models can produce. The purpose of the current study is to
assess whether the well-known quasi-periodicity of the SO also can be reproduced from a time-domain
approach (see also Chu and Katz, 1989). We will also examine the spectrum of the SO when a mmch
longer time series (1856-1986) is used.

Modeling the SOI
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Figure 1: Time series plot of the seasonal SOI from Spring 1935 to Summer 1983 (Source: Chu and Katz,
1985, p. 1882).

Figure 1 shows the time series of the seasonal SOI from Spring 1935 to Summer 1983; the large negative
- anomalies between Summer 1982 and Spring 1983 in association with the strong El Nifio event are
most conspicuous. The Bayesian Information Criterion (BIC), introduced by Schwarz (1978), was used
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to objectively determine the appropriate order of an ARMA process. It is expressed mathematically
as '

BIC(piq) = NIné?(piq) + SN (1)

where 62(p; ¢) denotes an estimator of the variance ¢? of the error terms based on fitting an ARMA(p; q)
process to the data, and p and q are the orders associated with the autoregressive and moving-average
parameters, respectively. In (1), NV is the total number of observations, § the total number of param-
eters estimated [i.e., § = p+ g + n, where n is the total number of additional parameters (e.g., means
and standard deviations used to compute SOI)]. A model with the minimmn BIC value is generally
preferred. ' '

Table 1: Estimated error variance &2 and BIC value of ARMA (p: q) models for the seasonal SOI time series.
Source: Chu and Katz (1985, p. 1883).

o2(p;q) BIC(piq)

3.279 272.5
1.689 149.1
1.696 155.2
1.710 156.6

1.505  137.3
1.662  156.6
1.537  141.3
1.484  130.8
1.468  143.0

OV =N W= o

comHoHo o Qs

Uncorrelated process.

Table 1 lists the error variance and BIC value for eight seasonal models. as well as for an nncorre-
lated process. An AR(3) process appears to be the model with the smallest sum of orders (p+4 ¢ = 3)
that has relatively low error variance; in particular, exhibiting the lowest BIC value. This model is of
the form

X =1 Xeo1 + @2 X¢_2 + $3X_3 + ay ' (2)
where the paraimeter estimates are ¢31 = 0.6885, q‘52 = 0.2460, q33 = —0.3497, and 6% = 1.505.

Figure 2a displays the sample autocorrelation function of the seasonal SOI and the theoretical
autocorrelation function for the AR(3) process. The theoretical autocorrelation function draps helow
zero at lag four, like the sample autocorrelation function. It then continues a damped oscillation ahant
zero at higher lags. Figure 2b is a plot of the sample partial autocorrelations, which are small after
the first three lags. This pattern also suggests that the seasonal time series might be descrihed hy
purely AR processes.

The BIC method was also employed to help identify an optimal model for the monthly SOI.
The first part of Table 2 lists the error variance §2 and BIC value for several models. Among these
candidate models, an ARMA(1;1) process has the smallest BIC value. In keeping with the gnal of
parsimony and the general features of ARMA processes, a single higher-order AR term (i.e.. lag 2. 3.

., or 12) is added to the ARMA(1;1) process. The error variance and BIC value for these additional
modek are included in the second part of Table 2. Results indicate that either the ARMA(l 7:1) or
ARMA(1,9;1) model has the smallest error variance and BIC value.

For simplicity, an ARMA(1.7;1) model was selected and its theoretical autocorrelation function is
shown in Figure 3a, along thh the sample autocorrelation function of the monthly SOI. There is a
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Figure 2: 2(a) Sample autocorrelation function of the seasonal SOI and the theoretical autocorrelation function
{broken line) for AR(3) process. 2(b) Sample partial autocorrelation function of the seasonal SOI: Spring 1935
through Summer 1983 (Source: Chu and Katz, 1985, p. 1883).

Table 2: Estimated error variance &2 and BIC value of ARMA models for monthly SOI time series. Source:
Chu and Katz (1985, p. 1880).

ARMA(p; q) models ARMA(1,p; q)
p_q 63(piq) BIC(piq) | p** q 62(1,pq) BIC(1,piq)
0 0* 2.789 751.9 3 1 1.532 421.1
1 0 1.683 463.4 4 1 1.535 422.2
2 0 1.591 436.8 5 1 1.535 422.2
1 1 1.546 420.0 6 1 1.521 416.9
1 2 1.548 427.2 71 1.481 401.3
3 0 1.539 423.8 8 1 1.484 402.5
2 1 1.550 427.9 9 1 1.480 401.0
4 0 1.533 434.2 10 1 1.488 404.1
11 1 1.501 409.2
12 1 1.501 409.2

* Uncorrelated process.
** Single higher-order lag of AR process.



good agreement between the two curves. In Figure 3b, the sample partial autocorrelations exhibit a
damped sine wave and are relatively small after the first lag. This selected ARMA(1,7;1) process is
given by

Xe=d1 X1+ @1 Xe—7+ar — 61ae (3)
where the parameter estimates are ¢é1 = 1.011, ¢; = —0.115, 6, = 0.680, and &2 = 1.481.
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Figure 3: 3(a) Sample autocorrelation function of the monthly SOI and theoretical autocorrelation (broken

t

line) for ARMA(1,7;1) process. (b) Sample f)artiul autocorrelation function of the monthly SOI: January 1935
through August 1983 (Source: Chu and Katz, 1985, p. 1881).

Spectrum of SOI

Frequency-domain approach

A smoothed estimate of the sample spectral density function from a frequency-domain ﬂl)PrO’l(‘ll is
obtained using the following formula:

m-1
5(f)=2 [1 +2>° r(k)I»V(k)cos(27rkat)] At (4)

k=1

where m, r(k), W(k), and At are the maximum lag (i.e., truncation point}, sample antocorrelation
function, lag window, and time interval between observations (i.e., one month or one season), respec-
tively. We use the Parzen lag window, i.e.,

1-6 (&) 4o (&) <z,

m

W(k)=< o (1 — lﬂ)3 u o< [kl <m (¢

m

[l

0 [k| > m



As shown in Figure 4, the preferred period of the seasonal SOI based on the frequency-domain approach
is at time scales of more than 8 seasons, and a large peak is present near 20 seasons (5 years). The
sample spectral density function of the monthly SOI using (4) is shown in Figure 5. Again, a large
portion of energy is concentrated near 50 months (slightly more than 4 years).
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Figure 4: Spectral density function of the seasonal SOI from the frequency-domain approach (hroken curve)
and time-domain approach (solid curve). Analysis period is from Spring 1935 to Summer 1983. Parzen lag win-
dow is used with maximum lag of 30 seasons (broken curve). Note that the scale on the ordinate is logarithmic,

whereas the scale on the abscissa is linear (Source: Chu and Katz, 1989, p. 88).

Time-domain approach

The generalized form of the theoretical spectrum of an AR(p) process can he expressed as (Box and
Jenkins, 1976) :

(f) = 2% 6
p(f)= 1= Gre—27F — dpe—47F — .. — gpe-i27pI |2 (6)
For an AR(3) model, (6) reduces top(f) = '
e e e e e - 20‘3 — e e (—)
14 @2 4+ @2 + ¢2 — 2(¢1 — $12 — d283) cos2mf — 2(¢2 — P1¢3) cosdn f — 243 cos b f '
The spectral density function is defined as '
p(f)
s(f) = 7 - (8)

where o2 is the variance of the X process.
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For the mixed ARMA (p; g) model, the generalized form of the theoretical spectrum is

) l;l _ ele—izwf e — eqe-i2rrqfl2

p(f) = 20, |1 — ¢re=i2mf — ... — ppe-i2mpf|2 )

In the case of an ARMA(1,7;1) process, the theoretical spectrum bhecomes

14 67 — 260, cos2nf

5.2
pf) = 2a"l + @2 + ¢2 — 2¢ 1 cos2n f — 27 cos 14n f + 2¢1¢7 cos 12n f

(10)

Given the three parameters estimates and the white noise variance for an AR(3) model from (2).
the theoretical spectral density function using (7) and (8) is displayed in Figure 4. A large portion
of power is found in the lower frequency end, with a peak somewhere near 14.3 seasons (--4 years).
The theoretical spectral density function of an AR{3) model also displays an increase in energy in the
high-frequency tail, just like the sample spectral density function. For the monthly SO fluctuations,

the spectral estimates from the time-domain [using (10)} and frequency-domain approaches are also
reasonably counsistent (Figure 5). )
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Figure 5: Spectral density function of the monthly SOI from the frequency-domain approach (l)rokvu curve)
and time-domain approach (solid curve). Analysis period is from January 1935 to August 1983. Parzen lag

window is used with a maximum lag of 60 months (broken curve} (Source: Chu and Katz, 1989, p. 89).

The difference between these two approaches, as revealed in either Figures 4 or 5, is partially
due to the fact that the selected time series models only attempt to mimic the general hehavior of
the SO fluctuations and are not necessarily representative of its details. This selection is marle in
order to achieve parsimony and maximize predictability (Chu and Katz, 1987). Another reason for

the difference between the two approaches is simply the uncertainty in point estimates of the sample
spectrum.
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Spectrum of SOI from a historical data set

All of the aforementioned work has been. based on a relatively short record length, namely, from 1935
to 1983. Recently, a historical data set of the monthly SOI dated back to 1856 was provided to ns
- by P.D. Jones (Climatic Research Unit, University of East Anglia). This larger data base presents an
unusual opportunity to examine secular changes in the Southern Oscillation, since the SOI signal may
possibly be different from time to time (Elliot and Angell, 1988).
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Figure 6: 6(a) Sample autocorrelation function of the monthly SOI. (b) Sample partial autocorrelation function

of the monthly SOI: January 1856 through December 1986.

Figure 6 displays the autocorrelation and partial autocorrelation functions of the monthly SOI
(1856 to 1986) for lags up to 60 (months). In general, the patterns revealed in Figure 6 resemble
those in Figure 3. Following the procedure described in Section 2, a mixed ARMA(1,14;1) process has
been identified as the optimal model to represent the monthly fluctuations of this historical data set.
Figure 7 shows the sample and theoretical spectra for this data set.

Again, the estimates based on the frequency-domain and time-domain approaches are reasonably
consistent. We also derived the theoretical spectra for ARMA(1;1) and ARMA(1,7;1) processes;
neither of the processes shows any intermediate peak in the spectrum.
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Multivariate assessments of the anthropogenic greenhouse effect
based on observational climatic data from both hemispheres

Christian-D. Schénwiese
J.W. Goethe University, Institute for Meteorology and Geophysics, Frankfurt, FRG

Introduction

As a consequence of human activity a substantial increase of the atmospheric concentration of a nnumber
of trace gases is observed. So, the atmospheric carbon dioxide (CO;) concentration has increased over
the past 200 years from preindustrial estimates of approximately 280 ppm (10) to a value of 347 ppin
in 1986 at Mauna Loa Observatory, Hawaii (8), see Fig. 1.
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Figure 1: Measured (Mauna Loa (8)) and reconstructed (10) annual mean atmospheric CO; concentration

(using a double-logarithmic regression in case of the reconstructed data (12c}), in addition ‘equivalent’ CQ,

concentration (19).

The corresponding radiative effect of some additional trace gases such as the chloroflonrocarhons
(CFCs), niethane (CHy), nitrous oxide (N20), tropospheric ozone (O3) etc. can be expressed in terus
of CO; ‘equivalents’ {19), see again Fig. 1, contributing also to the greenhouse warming.

The climate response to an atmospheric COz doubling was simulated by climate models of different
complexity. It is only the (three-dimensional) general circulation models (GCMs) that can properly
simulate not only the response of the most important climate elements (temperature, precipitation
etc.) hut also their regional patterns. Neglecting the ‘81° experiment in Fig. 2, the result of the
recent GCM CO, doubling experiments is a globally averaged temperature increase near the ground
of 1.3-5.2 K.

It is very important to verify the anthropogenic greenhouse effect projected hy climate models,
as early as possible, by means of observational statistics. The imajor problems concern the use of
appropriate climatic data sets, the implication of natural forcing parameters (multivariate analysis),
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Figure 2: Annual and global mean temperature increase (near surface) in case of an atmospheric CO; doubling
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(17,19) and corresponding statistical assessments with (*) and without (&) phase shift of the temperature

response in respect to the CO; concentrations.
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proper signal and signal-to-noise assessments and, last not least, assessments of the time lag of the
climate response in respect to the greenhouse gases forcing. In a series of statistical verification studies
(12,13,16) of the climate model results it was tried to obtain some assessments of both the present
and the projected climate response to increasing greenhouse gases. Recently (17) we modified some of
the natural forcing parameters, included ENSO (El Nifio/southern oscillation) parameters, used not
only CO; but also the ‘equivalent’ CO, time series and introduced time lags.

Data base

In particular, the following anthropogenic and natural forcing parameter time series are used (annual
data). '

1. Atmospheric CO; concentration, alternatively ‘equivalent’ CO, concentration, hoth as shown
in Fig. 1. The CO; data before 1958 are calculated by means of a double-logarithmic regression
based on the ice core data from Neftel et al. (10), later on the Mauna Loa observations (8) were
used. In order to get a best fit the ice core regression data were corrected by +1 ppm. The
added ‘equivalent’ data are from Tricot and Berger.(19).

2. Volcanic activity parameters, four alternative time series: stratospheric ‘dust veil index DVI
from Lamb (9); acidity index Al from Hammer et al. (5) bhased on Greenland ice core re-
constructions (only northern hemisphere; same index implying regional corrections not nsed
here); ‘Smithsonian volcanic index’ SVI based on the Smithsonian volcanoe chronology edited
by Simkin et al. (18) modified by Schonwiese (14); same index but again modified by Schénwiese
and Cress (15) implying an empirical stratospheric residence time of the volcanogenic particles
based on AI/SVI intercomparisons (SVIx). o

3. Solar forcing, six alternative parameters, later reduced to four alternative parameters. mainly
based on solar activity (relative sunspot numbers SRN and derived hypotheses discnssed else-
where (12)) and the solar diameter oscillation hypothesis as supposed by Gilliland (3) in terms
of hypothetical temperature oscillations TSD.

4. El Nifio/southern oscillation (ENSO) forcing represented by the tropical Pacific sea surface
temperature (SST) anomalies as reconstructed by Wright (20) or Schneider and Schinwiese
(11), respectively.

These forcing parameter time series are correlated with time series of the following ohservational
climatic time series.

1. Air temperature near the ground, focussed on land areas, northern hemisphere TNH-J since
1851, southern hemisphere TSH-J (62.5° S) since 1858 and global TGL-J (since 1858) mean
estimates from Jones et al. (7), alternatively hemispheric and global mean estimates since 1881
from Hansen and Lebedeff (6) TNH-H, etc.

2. Sea surface temperatures, hemispheric and global means, data alternatively since 1856 from
Folland et al. (2) SNH-F etc., or since 1854 from Jones et al. (7) SNH-J etc.

3. (c¢) Global mean sea level data since 1881, alternatively from Barnett (1) LGL-B or Gornitz et
al. (4) LGL-G. '

In addition to these hemispheric or global and annual averages we used in case of the northern
hemisphere air temperature near the ground (land areas) also gridded monthly data (5° degree latitnde
and 10° longitude grid; results presented in (17)). A corresponding global analysis using the ‘hox data’
from Hansen and Lebedeff (6) is in preparation (for an analysis of stratospheric data see elsewhere

(13)).
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Figure 3: Observed 10 yr low-pass filtered mean northern hemisphere temperature fluctuations, solid line (7).

and statistical reproductions using the volcanic SVI«, the solar TSD parameter and the observed CO; incrense,

dashed line, or the ‘equivalent’ CO; increase implying a 20 yr phase shift, dotted

Statistical method

Based on an univariate correlation analysis using annual as well as 3 yr and 10 yr Gaussian low-pass
filtered data, in the first approach a simple linear multivariate regression model was evaluated

A=a+bV +cR+dE + ¢C ' 4 (1)

where A is any climatic element, V any volcanic parameter, R any solar parameter, E any ENSQO
parameter and C the CO; or ‘equivalent’ CO; forcing. All of these parameters V, R, E and C are
alternatively used (only one volcanic, solar etc. parameter in each regression). Omne gets a matrix
of regression coefficients explaining the observed climatic time series variance to a certain extent.
The reliability of the results is checked by means of usual statistical tests of the univariate and
multivariate correlation coefficients taking account for autocorrelation (reduced degrees of freedom)
and non-Gaussian distributed quantities. Moreover, a coherence analysis was applied to assess the
spectral features of the correlations. :

In the second approach time lags (of the climatic elements in respect to the forcing parameters,
the latter leading) are introduced. Fig. 3 presents two examples of alternative reproductions of the
observed northern hemisphere air temperature (land areas) fluctuations, 10 yr low-pass filtered data.
as reproduced by the different multiple regression models. It is found that the observed temperature
decrease approximately 1940-1970 can be hypothetically explained by the volcanic SVI or, alterna-
tively, by the solar TSD parameter (detailed discussion see elsewhere (12)). Fig. 4 shows siimilar
reproductions for the northern hemisphere.

As soon as the regression coefficients are known any climate signals, observed or projected, can he
computed. These signals describe the climate response to any forcing. For instance, a CO, donbling
signal S, related to the air temperature near the ground, is obtained from

S = Amax - Anu’n = f(v, R’ E, Cmax = 600 PPIn) - f(?a ﬁ_, Ea Cn\in = 300 1)1)111) (2)
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Figure 4: Similar to Fig. 3, but southern hemisphere, observed data from Jones et al. (7), solid line, or Hansen

and Lebedeff (6}, dashed-dotted line, statistical reproduction using the ‘equivalent’ CO; increasc without phase
shift, dashed line.

where ¥V, R and E are the long-term averages of the natural forcing parameters and ¢ the CO,
concentrations. Note that these signals describe the response of any climate element only in respect to
one selected forcing paramneter but that, nevertheless, this signal assessinent is hased on a mnltivariate
statistical analysis (using the multiple regression coefficients). In the case that the observed standard
deviation s of the (in general annual) climatic data is defined to represent the climatic ‘noise’ N (=s).
S/N are assessments of the related signal-to-noise ratios specifying the signal confidence levels.

Some results

Only a few results can be presented here neglecting the regional and seasonal pattern of the climatic
response to increasing greenhouse gases. Table 1 sununarizes some of these signal assessinents con-
cerning the mean hemispheric and global data where the signals are evaluated from the multivariate
analysis of 10 yr or 3 yr low-pass filtered data. The Tables specify the following.

1. ‘Industrial’ signals using the observed preindustrial (Cyui» ) and recent (Ciuqz) atmospheric trace
gas concentrations, in case of CO; Cpnin = 280 ppm and C,,,o. = 347 ppm, in case of ‘equivalent’
COz Cmin = 280 ppm and Crma. = 386 ppn (see Fig. 1).

2. ‘Projected’signals, i.e. extrapolations based on the ohservational statistics, in case of CO; C,,/n
= 300 ppm and Ci iz = 600 ppm, in the ‘equivalent’ case C,,;, = 300 ppm and C,.., = 900
ppm.

Note that in the ‘industrial equivalent’ case the same observed temperature (or sea level) change is -
attributed to the increasing trace gas concentrations than in case that ‘only CO3’ is considered. The
introduction of the ‘equivalent’ approach, therefore, means less sensitivity of the cliinate responsec to
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Table 1: Extremely abbreviated results concerning the multivariate statistical assessments of the climate
signals forced hypothetically by the anthropogenic increase of the greenhouse gases; 10 yr or if ‘*’ indicated 3
yr low-pass filtered data. (Explanations and abbreviations see text; + specifies the standard deviations arising

from the different regression models.)

mean - projected signals

mult. ‘industrial’ signals in K or (LGL) cm in K or (LGL) cm

corre- ’equivalent’ reduced CO, equi-
record period lation only CO, (S/N) to CO, doubling valent'

TNH-J 1881-1980 0.76 0.7+0.2 0.6+0.2 (2.4) 0.4+0.1 3.2+0.8 3.5+1.2
TNH-J 1851-1980 0.78 0.7+0.2 0.710.2 (3.0) 0.5+0.1 3.3+0.8 4.1+1.3
*TNH-J 1881-1980 0.70 0.8+0.2 0.7£0.2 (2.6) 0.4+0.1 3.5+£0.9 3.8+£1.0
*TNH-H 1881-1980 0.75 1.010.2 0.8+0.3 (3.2) 0.5+0.2 4.4+1.0 4.6+1.5

TSH-J  1881-1980 0.86  0.8+0.1  0.740.1 (4.1) 0.5+0.1  3.540.6 4.1+0.9
TSH-J  1858-1980 0.85  0.8+0.1  0.840.1 (4.3) 0.540.1  3.5+0.4 4.340.4
«TSH-J  1881-1980 0.81  0.8+0.2  0.840.2 (4.3) 0.5+0.1  3.840.8 4.4+1.0
«TSH-H 1881-1980 0.72  0.6+0.1  0.6+0.1 (3.6) 0.4+0.1  2.740.2 3.340.4

TGL-J 1881-1980 0.81 0.81+0.2 0.710.2 (3.2) 0.4+0.1 3.410.7 3.81+0.8
TGL-J 1858-1980 0.83 0.7+0.1 0.7+£0.1 (3.6) 0.410.1 3.3£0.5 4.0+0.6
*TGL-J 1881-1980 0.78 0.8+0.2 0.7+0.2 (3.4) 0.5+0.1 3.6+0.8 4.110.9
TGL-H 1881-1980 0.77 0.8+0.2 0.7£0.2 (3.3) 0.5+0.1 3.6£0.8 4.1+1.1

SNH-F 1881-1980 0.63 0.5+£0.2 0.5+0.2 (2.9) 0.3+0.2 2.3+0.9 -2.841.3
SSH-F 1881-1980 0.64 0.5+0.1 0.5+0.1 (3.9) 0.3+0.1 2.240.3  2.74+04
SGL-F 1881-1980 0.66 0.5+0.1 0.5+0.1 (3.3) 0.3+0.1 2.3+0.5 2.840.7°
*SGL-F  1881-1980 0.60 0.51+0.1 0.5+0.1 (3.5) 0.3+0.1 2.4+0.4 3.0%0.5

SNH-J  1881-1980 0.75  0.740.2  0.6+0.2 (3.6) 0.440.2  3.1+1.0 3.6+1.4
SSH-J 1881-1980 0.74  0.6+0.1  0.6+0.1 (3.5) 0.4+0.1  2.740.3 3.240.4
SGL-J  1881-1980 0.78  0.6+0.1 . 0.6+0.1(3.5) 0.4+0.1 2.940.6 3.440.9
*SGL-J  1881-1980 0.74  0.6+0.2  0.6+0.1 (3.4) 0.4+0.1 2.840.8 3.3+1.1

LGL-B 1881-1980 0.95 28+3 2714 (5.9) 1742 127413 154422
LGL-G 1881-1980 0.87 16+1 1542 (5.2) 10+1 7016 85110
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Table 2: Similar to Table 1, but implying a phase shift of 20 yr (gas concentrations leading) and only land

based air temperatures.

mean . projected signals

mult. ‘industrial’ signals in K in K

corre- ‘equivalent’ reduced CO, . ‘equi-
record period lation omly CO; (S/N) to CO; doubling valent’

TNH-J ~1881-1984 0.84  0.840.1  0.94£0.1 (3.5) 0.6+0.1 3.8+0.5 5.140.7
«TNH-J 1881-1983 0.74  1.240.2  1.3+0.2 (5.1) 0.840.1 5.3+0.8 7.5+1.1

TSH-J 1881-1984 0.91 1.0+0.1 1.2+0.1 (6.6) 0.7+0.1 4.7+0.4 6.7+0.7
«TSH-J 1881-1983 0.84 1.2+0.2 1.3+0.2 (7.4) 0.8%£0.1 5.2+0.6 7.6+0.9

TGL-J  1881-1984 0.88  0.9+0.1  1.0£0.1 (5.0) 0.7+0.1 4.3+0.4 5.9+0.6
»TGL-J 1858-1983 0.82  1.2+0.2  1.340.2(6.4) 0.840.1 5.3+0.7 7.6+1.0

the greenhouse gases forcing. In consequence, using only the COj3 time series, the climate response is
overestimnated. The ‘equivalent’ approach, however, can be used to assess a ‘reduced’ and therefore
more correct CO; contribution to the climnatic greenhouse effect. This is done in the way that the
‘equivalent’ CO; time series is used for the computation of the regression coefficients but the assessment
of the ‘reduced’ CO, signals is based only on the CO; contribution.

In Table 1 every signal assessment is based on 12 combinations (using only three volcanic pa-
rameters: DVI, AI and SVIx) and additional 24 combinations introducing the ENSO parameters.
The uncertainties + are the signal standard deviations due to the use of different natural forcing
parameters. Taking into account these incertainities, it is concluded that - on a global average and
concerning the air temperature of the land areas near the ground - a temperature rise of 0.5-1.0
K (since preindustrial time) may be hypothetically attributed to the ‘combined’ greenhouse effect
(‘equivalent’ approach, until 1986) and a contribution in the order of 0.3-0.6 K may be due to the C0,
increase. In the case of the SST assessments, in particular using the data from Jones et al. (7). these
statistical assessments are quite similar but in case of the sea level these assessments strongly depend
on the underlying climatic data: 13-17 cm using the data from Gornitz et al. (4) but 25-30 cm nsing

" the data from Barnett (1; same magnitude as the observed overall sea level increase or even more).

The statistical extrapolation to a CO; doubling or corresponding ‘equivalent’ situation learls to a
temperature increase of 2.7-4.4 K (CO;) or 3.0-5.2 K (‘equivalent’, ‘combined’). The CO, assessments
are in fair agreement with the climate model (GCM) projections, see Fig. 2. The corresponting sea
level assessments (70-170 cm), however, may lead to overestimations when compared with the recent
expert statements.

One of the major problems arising in t}us context is that in Fig. 2 equilibrium climate mode]
projections are compared with observational statistics which describe the non-equilibrium reality. It
is, however, difficult, to assess a realistic phase shift of the climate in respect to the greenhouse gases
forcing. Based on a statistical cross correlation analysis and statistical best fit strategies (see Fig. 3 _
and 4) a magnitude of roughly 20 yr may be supposed. Following this hypothesis the statistically
assessed temperature rise in case of a CO, doubling (air temperature near the ground, global average)
would amplify from 2.7-4.4 K (as stated above) to 3.9-6.0 K, see Table 2. Another problem is the
non-linearity of the climate response. Assuming a logarithmic relationship as discussed elsewhere this
temperature response would be da.mped by a factor of approximately 0.7 compensating. more or less.
the phase shift effect.
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Multiple recurrence analysis

F.W. Zwiers! and Hans von Storch?
1Canadian Climate Centre, Downsview, Ontario, Canada, ? Max Plank Institute fiir Meteorologie.
Hamburg,F.R. Germany

Abstract In this paper we extend the concept of recurrence analysis (Storch and Zwiers, 1988}
to the spatial domain and to multivariable problems, and draw a connection hetween recurrence
analysis and multiple discriminant analysis (MDA). We discuss the application of the tools of MDA
to the analysis of climate sensitivity experiments. Diagnostic techniques for assessing the degree of
recurrence displayed in climate sensitivity experiments are described as are several tests for apriori
specified degrees of recurrence. Several techniques are illustrated by applying them to an El Niio
sensitivity experiment conducted with the Canadian Climate Centre General Circulation Model. It is
shown that it is possible to classify observed Northern Hemisphere 500 mb height anomalies into warm
and non-warm (cold and non-cold) events with a considerable degree of success using classification
rules based on data from control and El Nifio climate simulations.
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Current climate lead to global change

_ F. Kogan
NOAA/NESDIS/AISC, Washington D.C., USA

Abstract

This paper presents an evidence that technological progress in the
period of the green revolution is accompanied by a strengthening
in climate impact on Earth. Because of this impact, some global
changes have been detected. An index has been developed for early
detection of these changes. Analysis of this index showed that,
even within the range of the existing climatic fluctuations, some
sizeable global change has been initiated recently. This occurred
due to "confrontation" between climate and technology. The problem
is that technology increases some of the economic indicators so
significantly that they reach a level of climatic constraints.
This study was based on the analysis of a 40 year time-series of
wheat yields in 103 regions around the world. Yield is a
convenient indicator to use in environmental studies because it
correlates with climate and weather. In addition, yield reflects
technological changes and also changes resulting from an
interaction between climate and technology. The latter component
as shown in the study, contributes considerably to global change.
The results of the climate impact are observed currently on the
area which produces nearly 40 percent of global wheat. This area
has a significant negative balance between precipitation and
potential evapotranspiration. Climate impact leading to global
change is increasing in intensity and expanding to new areas.
Calculations indicate that in 15 to 25 years climate related:
stagnation in wheat production will probably affect an area
producing 55 to 60 percent of the world wheat output.
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Detecting shifts, trends and periodicities

C.F. Ansley
Dept. Accounting and Finance, University of Auckland, New Zealand

Abstract

: {
A number of new techniques for analyzing seasonal time series in the time
damain have been developed recently in the statistics literature. First,
there is a class of "structural" models, in which seasonal, trend and
irreqular (stationary or white noise) campanents are cambined in an additive
model. See, for example, Kitagawa and Gersch (1984) and Harvey (1985).
Secand, there are methods (Franzini and Harvey, 1984; Shively et al., 1988)
for testing whether the innovation variances in these camponents are zero,
in effect testing the stability of polynamial trends and seasonal cycles.
Finally, there are new methods for model diagnostics and for detecting
outliers and level shifts in time series (Tsay, 1986; Kohn and Ansley, 1988;
Kohn and Ansley, 1989; Bruce and Martin, 1989.)

This paper reviews structural models and the hypothesis testing and
diagnostic methods for detecting irreqularities or changes in the model
structure. The methods are illustrated by application to monthly rainfall,
mean temperature and sunshine data. Time damain structural models are fit
to each series, isolating the trend, seasonal and irregular camponents, and
these camponents are used to characterize long-term time variablility.
Measures of influence on the results of particular points and groups of
points are given to eliminate spurious fmd:.ngs caused by outliers in the
data.
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Locdting periods with linear trends in climatic data series

Vladimir T. Radiuhin and Boris L. Shilenko
All-Union Research Inst of Hydromet Information, World Data Centre, Obninsk, USSR

Introduction

One of the major characteristics of the climatic signal is the period of its occurrence in the time
series of the climate system parameters. The problem of locating such change points in statistical
characteristics can be treated as that of failure detection in the time series (Nikiforov, 1983).

Statistical properties of certain randomness tests frequently employed in climate change research
were studied (Radiuhin and Mikhlin, 1986) and it was concluded as a result that for detecting mono-
tonic changes in the time series mean value, the test based on the number of inversions of the series
values is a most efficient one of all those considered. If the signal is not present in the whole series in
question but only in a portion of it, then it is clear that the signal is more easily detected by statistical
means if the tests used are computed only from that portion with a trend (at least, the detection will
be the more reliable as the relative portion of the series without a trend becomes smaller).

An algorithm is given below based on computing the inversion test from the running segments of
the series in question to locate portions with monotonic trends in the mean value and estimate the '
signal-to-noise (s/n) ratio in the portions. As in (Radiuhin and Mikhlin, 1987) by the signal-to-noise
we. mean the determined change in the mean value of the time series on the segment where the signal
is present to the standard deviations from the trend concealing the signal,

Algorithm for locating portions with linear trends

Note that the inversion test statistic ¢ is computed by the formula t = 1 — 4Q/n(n — 1), where n
is the length of the part of the time series for which the statistic is’ computed and Q is the nunber
of inversions (reversals??) in this part of the time series. When analysing a time series of length v
computing the inversion test statistic ¢t from the moving parts of length n with the moving step K
generates a series of the statistic values of length L = {(N — n)/K]+ 1 (where [.] denotes integer’
part). The values of t for the part of the series under consideration without a trend fluctuate ahont
the zéro mean level with a distribution according to the null hyiothesis of a trend absence (Kendall
and Stuart, 1973 ; Radiuhin and Mikhlin, 1986). When a moving part covers the part with a trend the
statistics distribution shifts from the centre of the segment, [-1,1] - the range of values of the statistic
t to its ends (to the right in case of a positive trend and to the left in case of a negative trend). The
extent of shift in the statistical series mean depends on the level of the s/n ratio in the initial time
series (Radiuhin and Shilenko, 1989). If the monotonic signal disappears from the series analysed,
the original distribution of the series of values of the inversion test statistic is recovered. Thus. there
occur some changes in the mean value of the statistic series in certain moments (to he more exact,
during some intervals) and one can try to detect these changes.

To implement the algorithm for locating parts of the time series with a monotonic trend the
quantiles of the statistic extreme (maz{t}) and min{t}) distributions for various lengths n of the
moving parts and values of s/n were first estimated using the statistical simulation method (Radinhin
and Shilenko, 1988). ‘

The algorithm for detecting the start and end points of a monotonic trend in the time series mean
comprises the following major steps:- ’

1. Using the initial data series of the climate system characteristic analysed, a series of the inversion
test statistic values is computed from the moving parts of length n;
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2. Maximum and minimum values are determined among the ones of the series t;

3. Using the above values as well as the maz{t} and min{t} distribution quantiles for a zero
signal-to-noise ratio and a corresponding n, the hypothesis Ho of the absence of a monotonic
signal at any significance level is tested;

4. If Hy is not rejected, no further analysis is performed. If Hy is rejected, the alternative hypothesis
Hj of the presence of a monotonic signal with the s/n; ratio is defined using the mar{t} (or
min{t}) value. As an alternative to the null hypothesis Hj is assumed with a corresponding
signal-to-noise ratio, if t ! < maz{t} < t, (~t, < min{t} < —ti71), where ¢t is the o%
quantile of the maz{t} or min{t} distribution when there is a signal in the series with the s/n;
ratio.

5. The change points in the mean of the series of the statistic ¢ are detected by the cumulative
sum algorithm (Nikiforov, 1983), i.e. a series of the cumulative sum (CS) values is computed:

k : .
P = Z[lnw(t,'/go,do) - lnw(t.'/el,al)], k=1...L

i=1

where w(t/6,c) is assumed to be the density of normal distribution, 6;,0, correspond to the
alternative hypothesis assumed at the previous step. Within the series part where the hypoth-
esis of the signal absence is more probable the CS increases, while within the part where the
alternative hypothesis is more probable the CS decreases. Thus, the part with a trend is the
one where the CS decreases. y

The algorithm has been tested using simulated time series and accuracy characteristics for defining
the signal-to-noise ratio and trend start and end moments have been obtained (Radiuhin and Shilenko
, 1988). The conclusion was drawn from this that using the algorithm described one can locate parts
with a linear trend in the mean even at modest signal levels with a varying degree of uncertainty.

Estimating the effect of intraseries statistical persistence

The parameters necessary for the above algorithm’s implementation, the results of testing the algo-
rithm on simulated series have been obtained on the assumption of mutual independence of deviations
from the trend. The results must be dependent on the presence of intra-series persistence, in particnlar.
the time series autocorrelation can he taken for a determined signal even if there is none. Estimates
have been obtained of the inversion test statistic distribution to see to what extent the results are
affected on a sample of 1000 simulated realisations of the stationary Gaussian Markov sequence (cor-
relation function r(r) = exp(—8|r|) for various values of the attenuation parameter 3 characterizing
the intra-series persistence. With persistence increases the probability of rejecting the null hypothesis
whose critical region boundary is set on the assumption of independence of the successive terms of the
series appeared to grow due to the increase of the statistic variance. The values of the null hypothesis
rejection probability estimates are given in Table 1 for various segment lengths.
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Table 1. Values of probability of rejecting K on persistent series

3 095 090 080 070 060 050 040 030 020 0.10

ef 0.39 0.41 0.45 0.50 0.55 0.61 0.67 0.74 0.82 0.90
n=20 | 0.173 0.175 0.177 0.187 0.197 0.209 0.227 0.243 0.266 0.310
n=25 | 0.168 0.169 0.178 0.189 0.193 0.209 0.224 0.233 0.246 0.290
n=30 | 0.179 0.186 0.186 0.202 0.207 0.212 0.231 0.244 0.264 0.298
n=35 | 0.172 0.178 0.192 0.199 0.204 0.216 0.226 0.242 0.268 0.298
n=40 { 0.173 0.180 0.186 0.201 0.211 0.214 0.223 0.234 0.268 0.289
n=45 | 0.172 0.178 0.189 0.196 0.206 0.223 0.230 0.247 0.269 0.314
n=50 | 0.175 0.179 0.184 0.187 0.199 0.211 0.216 0.227 0.251 0.301

From Table 1 one can see the probability of Hop rejection increasingly exceeds the prohabhility of
first kind error a (in Table 1 results are given for a=0.1) with persistence increases (with decreasing
B) expected on the assumption that Hy is true, which under real conditions can be taken as evidence
of the presence of the signal. However, comparing Figure 1la from.(Radiuhin and Mikhlin. 1986):
the dependence of the inversion test power on the signal-to-noise ratio is shown in it for testing
the hypothesis of the stationarity of the time series and absence of persistence against the linear
trend hypothesis) with the results shown in Table 1 for n=50 one can see that the distorting effect
of intra-series persistence is not large. For example, with which corresponds to a twofold decrease
of autororrelation during one time step, the probability of rejecting Ho for a = 0.1 is 0.187 which
accoréinr .. Figure la from (Radiuhin and Mikhlin, 1986) is equivalent to the presence of a signal
with t2» signal-to-noise ratio of approximately 0.3 while with 8 = 0.1 when autocorrelation during
one step becomes but 0.1 smaller the probability of rejection Hp increases amounting to 0.301 which is
equivalent to the presence of a signal with the signal-to-noise ratio of approximately 0.55. The presence
of strong intra-series persistence is thus equivalent to the presence of a very slight determined signal in
the series (equivalence here implies that the presence of autocorrelation is the stationary series canses
Hp to be rejected as frequently as in the case of the linear signal presence).

Location of warming and cooling periods in surface air temperature
data series : ’ -

The algorithm was used for analysing five data sets of hemispherically averaged mean annual and mean
monthly surface air temperatures: a data set compiled by K. Ya. Vinnikov and others (Vinnikov et al.
1980; Vinnikov, 1985) (S1), a data set by P.D. Jones and others (Jones et al, 1982) (S2), ascertainer
series by P. D. Jones (Jones et al, 1986a) (S8), data by K. Ya. Vinnikov (Vinnikov et al, 1987) (S4)
and Southern Hemisphere data (Jones et al, 1986b) (S5) as well as mean monthly (for Januarv and
July) mean annual Northern Hemisphere temperatures averaged over latitude circles. Estimates of
the warming and cooling periods as well as the signal-to-noise ratio values for the portions of the time
series for two lengths of moving segments (n = 25 and n = 50) and 90% significance level are given in
Table 2. '

The zero values of the signal-to-noise ratio given in the Table (and the corresponding time seg-
ments) denote that the null hypothesis is not rejected at the third step of the algorithm used: however.
there are periods in the statistical series when.it constantly has non-zero values. Dashes in some squares
of the Table denote that for the respective series there are not even insignificant (in the above sense)
arguments in favour of rejecting the hypothesis of no trend. When analysing Table 2 rather a good
agreement could be noted of the results obtained from the Northern Hemisphere mean annnal temper-
atures which could have heen expected due to the high correlation of the series (e.g. the correlatinn
coefficient between S1 and S2 is 0.955. between S1 and S8 - 0.933, between S1 and S4 - 0.940.
between $S2 and S8 - 0.973, between S8 and S4 - 0.940 (Jones et al, 1986; Vinnikov, 1985). Portions
with insignificant or weakly significant cooling in the second half of the last centurv are found in series
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Table 1: Periods with linear trends detected in the series of hemispherically averaged annual mean surface air

temperature.

Series n | Warming period s/n | Cooling period s/n
S1 25 1909 - 1936 2.0 1941 - 1969 -0.0
50 1905 - 1936 3.0 1943 - 1958  -1.0

s2 25 1910 - 1936 2.0 1947 - 1969 -0.0
50 1905 - 1937 3.0
1886 - 1904 0.5 1870 - 1886 -0.0

Sss 25 1886 - 1904 0.5 1870 - 1886 -0.0
50 1898 - 1939 1.5 1943 - 1959  -0.0
1854 - 1871 0.0 1871 - 1885  -0.5

S4 25 1886 - 1906 0.0
1912 - 1933 2.5 1937 - 1967 -0.0
50 1900 - 1938 1865 - 1880 -0.0
1944 - 1960 -1.0

S5 25 1889 - 1943 1.0
50 1901 - 1948 2.5

S8 and S4 which agrees with the conclusions of (Jones et el, 1986). In the Southern Hemisphere
series, warming since the begining of this century covers a longer time period. The cooling perind
which is insignificant or weakly significant in the Northern Hemisphere series is not fonnd in S6 with
the help of this algorithm. In Fig 1 illustrating the application of the algorithm described to some
mean annual and mean monthly temperature series the series proper are shown as well as the inversion
test statistic series obtained for the moving segment length n = 25 and cumulative sum value series
portions with significant warming and cooling periods.

Conclusion

The results from the algorithm for detecting in a time series parts with linear trends applied both to
the simulated series with given characteristics and the real climatic time series which are well-known
and well-studied, tell in favour of the suggested method which enables estimating with a varying
degree of uncertainty start and end points of the linear signal obscured by noise. There is evidence
(Radiuhin and Mikhlin, 1986) to believe that this is also true of a monotonic signal which is not greatly
different from the linear one. The algorithm enables objectivizing the process of searching for new
empirical facts of the climatic signals on the basis of many time series, which is next to impossible by
the subjective visual approach.
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Temperature trends at the South Pole

Kevin E. Trenberth
NCAR, Boulder, Colorado USA

Abstract A detailed analysis of the annual cycle and trends in atmospheric temperatures at the
South Pole is presented. Missing data are common, especially in the stratosphere, and the usnal
practice of computing monthly means as an average of all available observations produces unreliahle
results because the annual cycle is aliased onto the interannual variations and longer term trends. A
methodology to rectify this involves computation of the smoothed mean annual cycle for each day of
the year and then analyzing the anomalies. ' '

Introduction

Attention has been focused on the Antarctic temperature trends and atmospheric circulation in recent
years since the discovery of the ‘ozone hole’. The latter refers to the large decreases in ozone over
Antarctica during the southern spring months. Total ozone decreases at the South Pole for 1964-1985
have been documented by Komhyr et al. (1986). Largest decreases are found in the months of Octaher
and November although small decreases also occur in autumn and winter months.

Changes in ozone imply changes in solar heating rates in the stratosphere and thus changes in
temperature. Such effects only occur after the sun has returned to Antarctica but the changes in ozone
are directly responsible for changes in temperature, and the response time should be short (Kiehl ¢t
al., 1988). Also, in the lower stratosphere in winter ozone has a long lifetime and local changes in
both ozone and temperature are dominated by advective processes. In this case, both ozone and
temperature changes should go hand-in-hand. Newman and Randel (1988) found 70 mb temperatures
and total ozone amounts to be highly correlated both spatially and temporally from 1979 to 19386 in
the southern hemisphere. Both Newell and Selkirk (1988), and Newman and Randel note that part of
the ozone decrease in recent years is not paralleled by temperatures. For these reasons in particular.
and because of the larger issue of climate change, perhaps arising from changes in greenhouse gases,
there is considerable interest in observed changes in temperatures over Antarctica.

A major difficulty, usually ignored, in analyzing meteorological parameters, especially in the strato-
sphere, is that of properly taking into account the effects of missing data. Almost always., monthly
mean temperatures are computed solely from the available observations, whether it he 62 (twice dailv)
or one observation. But especially in the high latitude stratosphere, there is a prononnced annal cyele
so that differences in mean temperatures between the first and last days of, say, October at the Sonth
Pole at 30 mb is 27°C. Accordingly, a monthly mean based on a single ohservation on the first or last
day of the month would be expected to exhibit an anomaly of —13.5°C or +13.5°C, respectivelv. What
can and does happen is that the large amplitude mean annual cycle is aliased onto the interannnal
variations and long-term trends.

Data

The Antarctic program of scientific observations is divided into summer, when access is available to
the continent by icebreakers and conditions are more favorable for flying, and winter, when wintering-
over parties become isolated to a large extent. Radiosonde observations have often been made twice
daily in the “summer”, from about October through February, but once daily is more common in the
winter half year. There are also marked differences from year to year (Fig. 1) and a high failure rate
after 1975 below 100 mb.
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Figure 1: Average number of observations as a function of time of year and level at the Sonth Pole for
1961-1976 (left) and 1976-1986 (right).

The result has been only a handful of observations May to September above 100 mbh in the last
decade or so. The pattern is better in Sununer. In 1986 and 1987 additional data are available as n
result of scientific expeditions to Antarctica to document the ozone hole phenomenon. In particnlar,
NOAA recorded many ozonesondes at the South Pole, most of which go to pressures less than 10 mb,
and they have been added to the data set.

In addition to analyzing data from Amundsen-Scott station (the South Pole) a similar analysis
has been done for McMurdo Sound (78°S5 167°W).

Mean annual cycle

We have computed the mean daily temperatures at each level at both stations (e.g. see Fig. 2).

It was not possible to obtain a daily value for each day of the year at 30 and 10 mb. Becanse
many of the daily means are based on few values, there are large standard errors in these daily means.
However, nearly all of the true annual cycle variance can be captured by fitting the first four harmonics
to the daily data, and such results are then based upon many more observations and are mnch more
stable. A least squares fit to the daily means has been used to define the overall mean and first four
harmonics. Where there are no missing days, this gives results identical to standard harmonic analysis.
But this method gives superior results when values are n‘ussmg

The mean annual cycle (Fig. 3) reveals lowest mean annual temperatures at 50 wh but the ampli-
tude of the annual cycle increases with height and the annual range is about 60°C at 10 wb. Lm\ost
overall temperatures, below —90°C, are found at 30 mb in August.

One now well known feature near the surface that can be seen at the South Pole at 500 mbh (Fig. 2)
is the long winter with the absence of a distinct temperature minimum, referred to as the coreless
winter. Lowest temperatures occur in August or September in the troposphere, in early July at 10 mb
and progressively later at lower levels. The spring warming occurs more rapidly than the antiumn
cooling and begins at the highest levels available and progresses downwards. Highest temperatures
occur in December at 10 mb and January at 100 inb. Direct solar heating in the stratosphere following
the return of the sun is important in the springtime warming. The annual cycle asymmetry can be
attributed in large part to the rapid rates of solar heating versus the relatively slow rates of longwave
cooling which occur on time scales of 2-3 weeks. However, the dynamics of the spring warming i<
probably also a factor.
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Figure 2: Mean annual cycle of temperature (°C) at the South Pole at 500, 200, 50 and 10 mb. Shown are
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Temperature trends

To remove any possible effects of the annual cycle being aliased onto interannual variability and
long term trends because of missing data, we first subtract the appropriate mean value from cach
observation and then analyze the resulting anomalies. Time series of temperature anomalies at five
standard pressure levels for 3-month seasons (Fig. 4) show largest variability in the spring at the time
of the stratospheric warmings.
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Figure 4: Time series of temperature anomalies (°C) at the South Pole for the four conventional seasone
December-February, March-May, June—August and September-November at five levels. The mean for each

level is oflset by 10°C. The standard deviation of each series is given at left

In December-February, March-May and June-August the standard deviation of all series is ~1°C.
The downward trend at 100 mb (but not other levels) in December-February arises from December
and January, not February, and is only really noticeable for 1985-87. There is little to distingnish the
March-May or June—August season records. ‘

In spring, September—November, the year-to-year variability above 200 mb is much greater, with
standard deviations of 3 to 4°C. The variability is greatest at the highest levels in October and at
50-100 mb in November (Fig. 5).

In September there is little of note. In October, a dowriward trend in temperatures is most evident
at 50 and 100 mb, but it is only 1985-87 when the values have gone outside the range of previons
variability. There is no evidence of any trend, however, at and helow 200 inb. Note also the sawtonth

- character of the temperature variations indicating the influence of quasibiennial fuctuations that are
also present in other months.
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Figure 5: Time series of temperature anomalies (°C) at the South Pole for October and November. The mean
for each level is offset by 10°C and the standard deviation for each series is given at left

The most extreme variations are found in November with standard deviations of 7.2°C at 100 .
Temperatures in 1985 were very low at 100 and 50 mb but these proved to be modest compared
with 1987 when the lowest values on record occurred at all levels from 200 to at least 30 mh. The
departures from normal exceeded —20°C at 50 mb and ~18°C at 100 mb. At 200 mb the departure
was —7.5°C. Randel (1988) noted these extreme anomalies, which arise from a delay in the spring final
warming of approximately 20 days, were apparently due to the record low ozone levels observed during
1987. Based on the NMC analyses, Randel found anomalies relative to 1980-86 of up to —16°C. Our
anomalies of —21°C relative to 1961~86 means are more representative of the true extent of these
extreme departures. The much colder air in November 1987 is directly attributed to the decreased
solar heating arising from the record low ozone amounts.

A comparison of results in Figs. 5 with results generated by simply computing monthly means
from all available data and subtracting the long term mean, reveals differences in individnal monthly
values as large as 12°C for some Octobers at McMurdo Sound. For recent years, our method gives
mean October temperatures that are up to 8°C lower (mean bias 1980-85 is —4°C) than those by the
straight averaging method, a consequence of a hias in the time of observations toward the latter part
of the month. Thus the recent downward trend is more clearly evident when the distribution of data
is properly taken into account.

The 1979-1986 period has been widely used for comparisons for ozone hole related studies becanse
of the availability of satellite data. In Fig. 5, for October at the South Pole, 1979 was the third
warinest year in the 27-year record above 70 mb and linear trends over the pnst nine vears are not
representative. Only fromn 1985 to 1987 and froin 100 to 50 mb do the 1ccent tewmperatures drop helow
the range of previous variations.

Concluding remarks

The decreases in ozone over Antarctica in the southern spring have led to temperature decreases at
the South Pole from 1985 to 1987 that clearly go beyond the bounds of previous variability . The
temperature decreases arise from a delay in solar heating and thus in the spring warming, and are
strongest between 50 and 100 mb in October and November but there is a residual effect evident
at 100 mb even in December, and January of the following year. The anomalies were most extreme
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in November 1987 from 200 to 30 mb; as much as 21°C below normal. But there is no evidence of
Signiﬁcant trends below 200 mb at anytime, or anywhere from February to September.

Improper treatment of missing data can seriously distort the apparent temperature record. Un-
fortunately missing data is the rule not the exception. An appropriate way to handle the problem and
thus avoid the aliasing of the annual cycle into interannual variations and long-term trends is to define
a stable (smoothed) temperature annual cycle for each day of the year in order to properly identify
anomalies.
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Introduction

Cyclic behavior is often apparent in meteorological observations, most notably due to harmonic forcing
attributable to the earth-sun relationship. Periodic behavior is not always so obvious, however: weather
cycles—if they exist at all-sometimes must be detected statistically. A large body of theory of the
statistical analysis of time series is devoted to second-order statistics (e.g., Priestley, 1981: Box and
Jenkins, 1976), which is particularly appropriate (but not exclusively) for Gaussian noise. since the
higher-order moments vanish identically, in that case. In the case of non-Gaussian noise, however.
the higher-order moments can provide further information about the underlying processes. In this
paper, we describe a statistical method that uses third- and fourth-order cumulants—which can he
expressed in statistical moments (Kendall and Stuart, vol. 1, 1969)—to detect harmonics in data. A
brief introduction to statistical methods for detecting periodicity in noisy data is presented in the next
section. Two new tests based on higher-order spectra are then described. Finally, the performance of
these tests is evaluated on Monte Carlo data that simulate mixed spectra processes.

Mixed Spectra

Consider the zero mean discrete parameter stochastic process of the form

k oo
X¢ =Y Ricos(wit + ¢:) + S aje;
=1 1=0 )
. where {R;}, {w:} and {a;} are constants, {¢;} are independently identically distribnted uniform
(-m, ) random variables, and {¢;} are independently identically distributed random variables. nn-
correlated with the harmonic part. The first series specifies the underlying periodic behavior. and the
second series represents noise; for notational convenience, we denote these by Y; and Z,. respectively.
We follow Priestley’s development of the theory of analysis of this mixed spectrum process {Priestley,
1981; 613-653). It is assumed that the noise process has zero mean, unit variance, and a finite fourth
moment. Other conditions require the summability of sequences involving the alphas.
X, is called a mixed spectrum process because its integrated spectrumn, H(w). can be represented
by the decomposition
H(w) = Hy(w) + Hj(w)

where the right-hand side terms correspond to the integrated spectra for the harmonic process and the
noise process, respectively. Hy is a step function, with jumps at {w;}, and H; is an absolutely contin-
uous function given by the integrated noise spectral density. Let h; and ha denote the corresponding
spectral mass function and spectral density function, respectively. '

In practice, the component spectra and associated parameters are estimated from the data {X,}.
t=1,.--,N. The procedure outlined by Priestley first requires a test for the existence of H;—
the signal; if one or more statistically significant spectral component is detected, the parameters
corresponding to the amplitude and frequency of the harmonic(s) are estimated, and this information
is used to recover H,. In what follows, we describe three tests of the null hypothesis, Ho : R; = 0, V1.
that use the second-order moments (Priestley, 1981), and one by Tsou (1987), based on higher-order
cumulants, for obtaining the mixed spectrum.
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Whittle’s Test:

Whittle (1952, 1954) noted that, under the null hypothesis Ho : R; = 0, Vi, the periodogram of the X,
process was asymptotically related to the periodogram of ¢:

Inx ~ 2why(w)In,(w)
If hy(w) is known, Hy can be tested with the statistic

(W) _ 1SPSLE[“N‘M[IP/%rhz(wp)]
9T T
Z [Ip/th’,(wp)}

p=1

where I, = In x(wp). The statistic follows Fisher’s g-distribution, asymptotically, with [N /2] degrees of
freedom (Fisher, 1929). Usually, h; is not known, and must be estimated; other difficulties arise. in this
case, including a loss of power in the presence of nonzero amplitudes, and difficulty in distinguishing
h, from h,, particularly when the noise process has narrow bandwidth (sample size can be crucial, in
this case).

Grouped Periodogram Test

Priestley describes another test of Hg : R; = 0,Vi, attributed to Bartlett—the grouped periodogram
test. The name arises from the grouping of the periodogram ordinates into [N/2k] sets, where k is
some integer less than the bandwidth of the noise process. From this grouping, the statistic 4, is

calculated
o= —Ipll2mhate)]
S Ip/2mha(wy)
p=(I-1)k+1 .
where .
I /(2mhe(wp )] = (Ip/2mha(wp)]

= max
(I~1)k+1<p<th

Under Ho, vx asymptotically follows the Fisher g-distribution, with k degrees of freedom. Moreover.
ha(w) is approximately constant within each group, for k small enough compared to the noise hand-
width, so the statistic

B
9;: V= Ip’/zIp
p

may be used approximate to 4%. As in the previous case, g{B)

asymptotically follows Fisher's g-
distribution with k degrees of freedom, under Hp. .

P()) Test

Priestley derived a test of Ho, which focused on the tail hehavior of the autocovariance function of -
X(t). He noted that, for large lags, the autocovariance of the noise part vanishes asymptotically.
whereas the autocovariance of the harmonic part is oscillatory, if Hg is not true. Accordingly. he
constructed a function P(A), of the form

P()\) = L Y Cx(s)cos(rs), 0<A<~

m<|aj<n
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where Cx(s) is the sample autocovariance of X, and m is a truncation parameter, heyond which the
sample autocovariance of the noise process essentially vanishes. P(X) is used to test for the presence of
harmonics, by systematically examining the peaks it induces on the sample autocovariance function.

. . . . : 1 2
A more general form of P is used, incorporating two covariance lag windows w; ) and w!? (n and m

are parameters)
N-1

1 2 .
P(\) = or Z [ws,l)(s) - ws,f)(s)]Cx(s) exp(—1iAs)
=—(N-1)
Priestley drew an analogy between a statistic, J,, that uses cumulative sums of P, and the theory
of random walks. He showed that, asymptotically for large N, the density analog of J, satisfies the
diffusion equation, and that

o<acim/2] Ja

lim p <a]l =2%(a)-1
Noe" | [(1/2m)G(m)]?

where m' is chosen to achieve some suitable partitioning of A over the interval (0, 7), & is the standard

normal distribution function, and G(r) = [y h}(w)dw. The P()) test procedure allows iterative testing

for the presence of several harmonics.

High-Order Spectra Statistics

The tests above have some distinct disadvantages. Whittle’s test requires the spectral density function.
which is usually not available, and therefore must be estimated. Moreover, when Hy is false. the power
of the test is greatly reduced, because the harmonic components inflate the spectral density function
at their respective frequencies. Both the grouped periodogram test and the P()\) test require cantions
partitioning of the sample autocovariance function; in the former, k must be chosen to strike a balance
between the ratio of the upper and lower bounds of hz(w), and the degrees of freedom for the test.
We offer a procedure by Tsou (1987) as an alternative, for the case of non-Gaussian noise. It uses
higher-order cumulants of X,. '

Two new statistics are proposed, G(®) and G(); G®) uses a submanifold of the so-called bispectrum,
hX(Av 0)
ot 155%n I/1hx (Ap, 0)]
._,:=1 Ip/th(’\Pv 0)'

and G!) uses a submanifold of the trispectrum, hx(2,0,0)

II;‘}??" Ip/th('\p’ 0,0)|

S I/Ihx(Ap, 0,0)]

=1

G =

Under Ho : R; = 0,Vi, the G statistics follow Fisher’s g-distribution, asymptotically. For a sample se-
quence of size N and significance leve! a, the test rejects Ho for G > z,, where z5 = (-1/n)In(1 = (1 - o)’ ),
and n = [N/2]. This is similar to Whittle’s test, except that the G{*) and G{*) statistics use information
about the mixture process available in the third- and fourth-order moments, respectively. When Hy

is not true, the odd moments-hence, odd polyspectra—of Y;, the harmonic process, are exactly zero:

the fourth-order moment is some specified form, such that |hy(),,0,0)| is small, compared to the

noise trispectrum, |hz(Ap,0,0)|. Moreover, if the {¢;} in Z, arise from a (non-Gaussian) synmumetric
probability density (Z, is then called a symunetric noise process), hz(,0) vanishes, and G will he

used, in that case.
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Table 1: Characteristics of simulated series used in the comparison of statistical tests. SNR is the sig-

nal-to-noise ratio.

Series wy Rl w2 Rz SNR
1 1.5708 0.5000 — — 0.5000
2 2.6507 1.0000 — — 0.5292
3 1.5708 0.5000 1.4726 0.8000 0.8000
4 2.6507 1.0000 2.7489 1.5000 0.7937
5 0.2577 1.2000 = — — 0.4333

The'singula.r disadvantage of higher-order spectra is the increased complexity in estimation. In ad-
dition to the need to compute higher-order moments, or their equivalent cumulants, one is again faced
with decisions regarding spectral windows and truncation parameters. Tsou (1987) discusses some
salient points for this procedure, and provides FORTRAN-77 code for the purpose. The bispectrum
calculation takes the form

N-1
h(X,0)=(27)"2 3" Kam(u,v)Ca(u, v) exp(—itu)
uv=—N+1

\

where K p(u,v) is a smoothing window of lag M, and C3(u,v) is the estimated third-order cunmlant
of X(t). Similarly,

N-1
- h(2,0,0)= (2m)™% 3" Kar(u,v,8)Cq(u, v, s) exp(—idu)
u,v,5=~N+1

where C4(u, v, 8) is the estimnated fourth-order cwmnulant of X(t), and Ky (u,v,s) is a smoothing
window of corresponding order, and lag M’'.

Comparison of Methods

Five simulation datasets were constructed to serve as test models for the statistical procedures de-
scribed above. Each contained a harmonic process and a noise process. In the first four series. N= 256
and the noise process was second-order autoregressive with exponential shocks

Zg = —1.2Zt_] - O.GZt—Z + €

In the fifth series, N=512 and noise took the form of a fourth-order moving average process with
double exponential shocks, i.e., a symmetric non-Gaussian noise process

Zy =Er+ 24601+ 0.464_3 — 0.84c,_3 + 0.21e,_4

The first two series have a single harmonic, and the next two series have two harmonics (Table 1).
The series are specified so that the harmonic part of the spectrum is distinct from the noise part in
the first and third cases, but overlap of the respective spectral peaks occurs in the second and fourth
cases (Fig. 1). ’

None of the tests that use second-order statistics was able to detect all of the harmonics in the
simulations. The statistics of the high-order spectra, on the other hand, left little donbt in rejecting
the null hypothesis of no harmonics in the data (Table 2).
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Figure 1: Simulated time series 1 and 2 (top), and their corresponding periodograms(bottom).

Table 2: Significance probabilities of the statistics obtained from the 5 simulated series.

Series g\ ) (wy) gWNwz) yiz(w1) 7Y12(w3) Jq G®(w) G w;) GNwy) G w,)

1 0.007 — <0.001  —  0.817 <0.001 — <0.001 —

2 0.332 — >0.999  —  0.044 <0.001 — <0.001 —

3 0.977  0.0013  <0.001 <0.001 0.192 <0.001 <0.001 <0.001  <0.001

4 0.459 0.759  >0.999 0.723 0.055 <0.001 <0.001 <0.001  <0.001
5 0.072 — >0.999  — 0144  — — 0.005 —
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In these examples, the tests based on G'®) and G(t) are clearly superior. Of the 7 harmonic compo-
nents in the 5 series, the high-order spectrum statistics were significant at the 0.1% level in all but one
case; in series 5, the Gt} statistic had a significance probability of 0.00513—still a highly significant
result. The grouped periodogram test statistic with 12 groupings was the next most effective; it de-
tected the harmonics in series 1-and series 3. This statistic was sensitive to the number of groupings.
and did not perform as well with group sizes of 4 and 8 (not shown). The Priestley test did not do
well in these examples, but it was the only procedure, other than the high-order spectra tests. that
sensed a harmonic, when the harmonic spectra overlapped the noise spectra; the Priestley test barely
rejected the null hypothesis at the 5% level in series 2, and barely missed rejecting at the same level in
series 4. None of the other second-order tests detected the harmonics in series 4, which had a narrow
separation between w; and ws.

We conclude that the G statistics based on the high-order spectra are more powerful than the
Whittle, grouped periodogram, and Priestley tests, particularly when the harmonic and noise spectra
overlap. Further work is needed, however, to set guidelines for choosing smoothing windows and
truncation parameters that the G tests require. A tool for detecting periodicities in a mixed spectrum
process should find good use in meteorology, particularly for non-Gaussian noise (e.g.. Stewart and
Essenwanger, 1978). We intend to apply this technique on fire weather data described approximately
by a Gumbel distribution (Fujioka and Tsou, 1985).
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Early instrumental data for the Southern Hemisphere - its
usefulness for the reconstruction of climate

P.D. Jones
Climate Research Unit, University of East Anglia, Norwich, UK

Introduction

In order to identify and understand past climatic change we require long series of instrumental climate
data. The lengths of the available time series determine to a large extent what studies can be under-
taken. Longer records help attempts to identify causative factors in climate variations and they enable
ideas and theories which may be statistically based to be tested with independent data. Researchers
often bemoan the lack of long instrumental records in well-known climatological data bases, when. in
many cases, the necessary data are hidden away in some long forgotten meteorological archive.

The purpose of this article is threefold. First, potential sources of early data are illustrated with
particular reference to the Southern Hemisphere. Second, techniques are developed which can bhe
used to assess the homogeneity of long data series. Finally, the potential usefulness of the early data
is shown with two examples - the development of time series of hemispheric scale temperature for
climatic change studies, and the reconstruction of pressure patterns over the Southern Hemisphere.

Early climatological sources

The basic sources of station climatological data on a global basis are World Weather Records (WWR).
Monthly Climatic Data for the World (MCDW) and Reseau Mondial. The first two sources have heen
combined at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado and are
available digitally (Spangler and Jenne, 1986) as the World Monthly Surface Station Climatologv
(WMSSC). Much data has been added to this source by numerous individuals around the world.
Reseau Mondial was a forerunner of MCDW for 1910-34 and, whilst much of this source has been
included in WMSSC, considerable quantities of station data have been omitted.

Additional information to the above can be obtained in two basic ways. First, national meteoro-
logical archives can almost always provide a greater station density and in some countries these data
may be digitised. Second, one should examine meteorological archives in other countries, principally
countries such as the United Kingdom, France, The Netherlands, Germany, Spain, Portugal and the
United States. The early European colonists often took meteorological measurements and these were
taken back to Europe for storage and sometimes publication. In the case of New Zealand, Australia
and parts of southern Africa, there is considerable potential for early data in the United Kingdom.
Meteorological observations made at the Foreign and Colonial Stations of the Royal Engineers and
the Army Medical Department for 1852-1886 were published in 1890 by HMSO, London. Early ob-
servations taken in Auckland, New Zealand for the 1850s are not available in New Zealand (Salinger.
pers. comim.).

Another example concerns mean-sea-level pressure (MSLP) records from Tahiti. The difference
between monthly-mean MSLP data at Tahiti and Darwin forms the most commonly used index of
the Southern Oscillation (Chen, 1982). The data series back to 1935 is well-known and has long been
published. However, because of a fire at Papeete in Tahiti, sometime during the late 1920s, all the
early records were lost. However, because Tahiti is a French dependency, copies of many early records
were returned to France. Using these data, it has been possible to extend the Tahiti pressure series
back to 1876, although there are a few periods of no data, probably because these records were lost
in transit, (see Ropelewski and Jones, 1987 for details).

108



These are just two examples. Other potentially useful publications include Annales dn Burean
Central Meteorologique de France (1879-1914), Journal of the Scottish Meteorological Society, Me-
teorologische Zeitschrift (1886-1940) and Osterreichschen Gesellschaft fiir Meteorologie (1860-1885).
Details of these and many other sources are given in Bradley et al. (1985). Included in Bradley et al.
is perhaps the most important and least known source of early instrumental temperature data - that
produced by H.-W. Déve during the 1830s-1870s and published by the Prussian Academy of Sciences.
In this source, Déve published, with original source details, monthly-mean temperature records from
as many as 1500 stations all with data before 1860. Whilst most of these sites are in the Northern
Hemisphere, there are a few in the Southern Hemisphere (see Jones et al. 1986a). The only copies of
Déve’s publications known to the author are in the Meteorological Office Library in Bracknell. U.K.

Whilst early climate data extend back for some Southern Hemisphere locations to the late eigh-
teenth and early nineteenth centuries, data for the Antarctic region is generally restricted to the

. twentieth century. Routine recording only began during or just before the International Geophysical
Year in 1957/8 although records back to the late 1940s are available for the Peninsula region. Numer-
ous expeditions were made to the region between 1890 and 1950, however, and many of these took
meteorological measurements - sometiines for as long as three years. The most comprehensive list of
information on these expeditions and sources of data has been compiled by Venter (1957).

Even today there are problems in obtaining climatological data from the Antarctic région. Data
are often missing in sources such as MCDW and WWR. In order to improve the basic data base. Jones
and Limbert (1987), through personal contacts and nationally published sources, managed to locate
much of the missing data. A data bank of 29 stations for the continent has heen assembled. Antarctic
data have also been published by Jacka et al. (1984). This source contains much useful information
but perpetuated many of the data inaccuracies in MCDW and from the Global Telecommmnication
System (GTS).

~

Assessment of homogeneity

A climatological time series is said to be homogeneous if the variations are caused only by variations
of weather and climate (Conrad and Pollak, -1962). Although observers may take readings with
meticulous care, non-climatic influences can easily affect the readings. Mitchell (1953) and others
(e.g., Bradley and Jones, 1985) have identified the four most comimon causes of inhomogeneities:-

e changes in instrumentation, exposure and measurement technique
¢ changes in station location
o changes in observation time and the method used to calculate monthly means

e changes in the environment around the station; for temperature with regard to the increase in
city growth around the site, while for precipitation the growth of vegetation around the gange.

The most important factors as far as individual stations are concerned are changes in station
locations and changes in observation time and method (e.g., the change from using maximmum and
minimum temperature to that using measurements based on fixed hours to calculate monthly mean
temperature). Depending on the type of change, jumps in monthly mean temperatures and pressures
can be of the order of 2°C and 3hPa respectively. To ensure the homogeneity of long time series it is
necessary to determine correction factors, which in most cases will vary seasonally. This is hest done
with a period of simultaneous observations at both sites or with the two observation practices. Since
suitable overlapping records, however, are rarely available, it is almost always necessary to resort to
comparisons with other, more distant stations to derive the required corrections.
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Data homogenization

The homogeneization of a time series of station data can be achieved in a two-stage process. Firstly.
transcription and genuine mistakes affecting individual values must be corrected hefore the second
and more important aspect of ensuring the station time series is homogeneous. The time series
may contain data errors from genuine mistakes, or from key punching or (handwritten) transcription
errors. Some such errors can be found by flagging outliers; for example values at least three standard
deviations from monthly means. These outliers can then be checked against the original docnuments
and/or against neighbouring station data if these are available. The ability of this technique to pick
up errors clearly depends on the size of the error relative to natural variability in the data. With
temperature, for example, errors of less than 1°C will often go unflagged, and may only be identifiable
by independent comparison with an adjacent neighbouring station. Errors of exactly 1°C are. in
fact, probably quite common, considering the number of errors noticed where mean temperatures
are exactly 10°C too warm or cold. Another common error is the omission of the minus sign for
temperature. The outlier flagging method can identify such errors, provided the true temperature
value is not near 0°C. Although outlier flagging may fail to identify some errors, it is likely to pick np
all large errors. .

The second stage of homogeneity testing compares records from neighbouring sites (Conrad and
Pollak, 1962; Bradley and Jones, 1985). The methods assume that non-climatic factors influencing one
record will become apparent when the record is compared with neighbouring site records. Generally,
tests of homogeneity involve the null hypothesis that a time series of differences between adjacent
station data sets will exhibit the characteristics of a random series (Mitchell, 1961). Non-randomness
may be apparent either as a trend, a jump, or an isolated anomaly in the difference series. The abilitv
to detect non-randomness in the difference time series obviously depends on the variability of the
series, which in turn depends on the distance between the neighbouring stations and the region of the
world. For temperature, a denser network of stations is required in polar regions compared to the
tropics where temperature variations are less both spatially and from year to year.

To be specific, I will consider the case of a step change or discontinuity in the difference series.
Once a discontinuity has been found it is necessary to check station history information to see what
caused the abrupt change. In some cases there may be no confirmation in either station’s history. For
this reason it is always necessary to look for discontinuities first rather than assume all the necessaryv
information concerning station moves, etc. has been documented. For many stations. station histories
are incomplete and information concerning earlier locations has heen lost.

Once errors have been detected (and this may involve multiple station intercomparisons in order
to identify the errant record), corrections must be made. With abrupt errors, correction of monthly-
mean temperatures through the use of neighbouring records can he easily made (Jones et al. 1986b).
The correction value may vary from month to month. This type of correction procedure has heen
applied to over 3200 temperature records from the Northern and Southern Hemispheres in producing
the Climatic Research Unit/U.S. Department of Energy (CRU/DOE) temperature data set. Details
of the stations compared are given in two technical reports (Jones et al. 1985, 1986a). In our analyses
we have used subjective judgement to decide whether to accept a record, or to correct it or delete it
from the data bank. Judgements have been based on a careful study of many time-series difference
plots. A related technique, involving a more objective judgement, has been applied to the Historical
Climate Network (HCN) of 1219 stations in the United States by Karl and Williamns (1987). These
workers extended the analysis to include precipitation time series homogeneity (using ratios rather
than differences) and attempted to assess the reliability of any corrections made.

o

Urbanization effects

In many examples, the difference time series plots may reveal gradual changes in one or more station
time series. For temperature, the gradual increase at one site may be related to growth of the city
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around the site. With these types of error it is much more difficult to estimate a correction factor
with any reliability since confidence limits on the trend in the difference series are invariably wide,
and since it is difficult to decide just when such a trend began (or ended). Furthermore, trends may
be obscured by other errors. In our analyses, we have omitted stations that exhibit trends when their
records are compared .with neighbours.

It has been suggested, from studies of a few stations over the United States, that the urbanization
effect might explain a significant portion of the 0.5°C rise in hemispheric mean temperatures over
the last 100 years (Kukla et al., 1986; Wood, 1988). The effect of urbanization will, of course, he
considerably reduced by spatial averaging because not every station is affected. The key question is
not how much single sites are affected, but how much regional and hemispheric estimates are affected.

Using the HCN network, Karl et al. (1988) have assessed the importance of urbanization effects
and corrected for the problem in regional average time series. They have corrected individual time
series based on population changes, after first deriving a relationship between population and urban
warming bias. With data for the United States, when the corrected data are compared with estimates
produced by Jones et al. (1986b) for the same region, the latter show a residual urban bias of, at
most, 0.1°C (Wigley and Jones, 1988; Karl and Jones, 1989; Jones et al., 1989). It is unlikely that
the hemispheric estimates are more seriously affected than the United States. The urban warming
problem, is however, potentially more serious in analyses which have not involved detailed. station-by-
station assessments of time series homogeneity (e.g., Hansen and Lebedeff, 1987). In comparisons
with homogenized U.S. data, Hansen and Lebedeff’s data show a large residual warming (0.4°C).
presumably due to urbanization effects (for details, see Karl and Jones, 1989).

Southern hemisphere mean temperature

Until recently, most studies of global temperature assumed that temperature variations over the North-
ern Hemisphere could be used to indicate Southern Hemisphere variations as well. The development
of a Southern Hemisphere time series based on land station data by Jones et al. (1986.a.c). Fignre 1,
shows that this assumption is not valid. Figure 1 shows gradual warming in the Southern Hemisphere
over most of the record, with little indication of the cooling trend between 1940 and 1970 that is so
apparent in the Northern Hemisphere record (Jones et al., 1986b). '

How reliable is this curve of Southern Hemisphere temperature trends? At best, coverage can
only be claimed for about 25% of the total surface area including oceans. The availahility of station
data over the land areas also varies with time. Prior to the 1950s, the area covered is less than 25%..
particularly in the nineteenth century. Nevertheless, the general reliability of the land-based data
is verified by comparison with marine data. On decadal time scales after ahout 1900, the lan/ and
marine data (the latter from Folland et al. , 1984) agree well, even for the uncorrected marine data.
Agreement is even better using the corrected data - note that Folland et al.’s corrections have heen
made entirely independent of any land data. Of course, the marine data are themselves only really
representative of parts of the Southern Oceans. There are few marine data south of 40°S, and verv
little in the southeastern Pacific Ocean except near the South American coast.

To further assess the reliability of the land-based record back in time, it is necessarv to estimate
how well reduced networks can approximate the period of best coverage between 1941 to 1980. This has
been achieved with a technique which has been termed ’frozen grids’. The grid available for successive
decades, 1861-70, 1871-80, etc. is used to estimate "hemispheric temperatures” for the 1941-80 period.
‘Comparisons between the frozen grid estimates and those achieved by using all available grid points
quantifies the additional uncertainty caused by the lack of coverage. Table 1 shows the resnlts for all
possible grids up to 1931-40. Although the earlier grids, particularly. during the last century. imply
a greater uncertainty in hemispheric averages, they indicate that, even in the nineteenth century. the
prevailing level of temperature on a decadal time scale is well estimated by the early sparse networks.
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Figure 1: Southern Hemisphere surface air temperature averages, 1858-1988 based on land values. Values are

expressed as anomalies from the 1951-70 reference period.

Table 1: Comparisons of means and standard deviations for the time-varying and frozen grids.

Mean

(°C)

Standard

deviation (°C)

Max. no. of

Grid type (1941-80) (1941-80)  grid points
Time varying 0.00 0.13 123
Frozen:

1851-60 -0.01 0.22 7
1861-70 -0.03 0.16 11
1871-80 -0.02 0.16 19
1881-90 . -0.01 0.15 25
1891-1900 0.00 0.15 33
1901-10 -0.02 0.13 46
1911-20 -0.03 0.14 57
1921-30 -0.03 0.13 61
1931-40 -0.02 0.13 76
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The most important factor in Southern Hemisphere temperature trends has not yet been covered
- what influence would Antarctica have had to the series prior to 19577 For 1957-87, the mean
temperature for the Southern Hemisphere is the same whether Antarctica is included or not. This
is because the differences between Antarctica and the rest of the available data, given the relatively
small area of Antarctica, are too small to have any marked effect. Whether or not this is the case prior
to 1957 is impossible to say, although, given the 1957-87 result, it is probably the best assumption to
make.

Earlier records are available from Antarctica, from the expedition period around the turn of the
century and during the 1940s/1950s. However, these come either from the Peninsula or the Ross Sea
region, and Raper et al. (1984) has shown that these regions are not representative of the continent
as a whole. In order to get reliable continental estimates, much wider coverage is essential. One
possible way of achieving this is through isotopic information from shallow ice cores which are capable
of giving year-to-year time scale resolution. Fieldwork to extract such cores is just beginning and, as
yet, results are only available from the Peninsula region {(Robin, 1983).

Reconstruction of circulation patterns over the Southern Hemi-
sphere '

- Gridded sea level pressure data (MSLP) for the Southern Hemisphere are available from analvses
routinely undertaken at the World Meteorological Centre (WMC) in Melbourne, Australia. The
monthly-mean charts are derived from daily observations and are available from June 1972. The
analysis procedure used to derive the daily charts is described by Guymer (1978); but see also Karoly
et al. (1986). The relatively short length of this data set is in marked contrast to the Northern
Hemisphere situation where analyses extend back to the nineteenth century. The Australian analyvses
are, however, not the only chart series available for the Southern Hemisphere. Between 1951 and 1962
the South African Weather Bureau produced monthly-mean pressure charts, again derived from daily
charts. All the data have been published in map and numerical form in the journal NOTOS.

‘These chart series can be extended back to the early twentieth century (except over the data-sparse
regions of the Southern Oceans and over Antarctica before 1957) using station sea-level time series
data which are available from a number of sites. The reconstructions have a number of potential
uses. First, reconstructions of gridded data based on the station data allow the reliability of hoth
the NOTOS and Australian analyses to be made by direct comparison. Second, the magnitude and
character of circulation changes over the present century can be examined. Third, comparisons with
regional gridded series produced by New Zealand and by Argentina and the Falkland Islands can also
be made.

The mathematical details of the technique have been detailed elsewhere (Jones et al., 1983, 1987:
Jones, 1987). In particular, Jones and Wigley (1988) describe a similar analysis for the Antarctic
region. The technique uses principal components regression developing a series of equations relating
grid-point MSLP values over the Southern Hemisphere to the available station network of MSLP data
as predictors. After first ensuring the homogeneity of all the individual station time series. the grid-
point network and the station MSLP data are reduced to principal components (PCs). High-order
components which are assumed to be unwanted noise are ignored. Only those PCs that explain most
(e.g., 90 or 95%) of the variance of each data set are retained. The amplitude time series of each
grid-point PC is then regressed against the amplitude time series of the station network P(s. Station
network PCs are retained as predictors only if their t-values are greater than 1. (The choice of t=1 as
a screening criterion is based on extensive experience with this technique in other applications. The
precise value of the t cutoff doesn’t noticeably affect the results.) The PC regression equations are
then transformed back to the original variable space, leading to a set of predictor equations. one for
each grid point. "
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Grid point values can now be reconstructed to the latest first year of the station network data.
The homogeneity of the station data ensures that the reconstructions are also homogeneons and so
contain the effect of long time scale circulation cha.nges insofar as these are an integral part of the
raw station data.

The data set used in this analysis comprised 78 station records. The principal source of infor-
mation is WWR, but this has been augmented in a few cases (Mauritius, Tahiti and the Antarctic
Peninsula). As noted above, before any analysis can be undertaken it is essential to assess the long-
term homogeneity of the assembled station set of MSLP data. Station pressure and MSLP data in
WWR are frequently in error. The two data sets are often interposed and much early pressure data
has not had the correction for gravity applied. Additionally, some station time series contain pressure
data which have been corrected to the 24-hour mean. In recent decades, 24-hour means have not
be used, leading to inhomogeneities in the time series. Obviously, it is more difficult to assess the
homogeneity of stations in data sparse regions such as the island stations in the Southern Oceans
between 40 and 60°S. Here, the best that can be done is to verify extremes in other sources and to
monitor trends or jumps in time series plots. 7

The reconstruction technique was applied by dividing the Southern Hemisphere into three equal
sectors at 20°W, 140°W and 100°E. This separation was made partly on computational grounds. How-
ever, it is also important because of the scale of existing teleconnections. The Southern Oscillation
phenomenon involves a strong out-of-phase relationship between pressure variations in the Indone-
sia/Australian region and those in the central and eastern parts of the subtropical Pacific Ocean.
Correlation coefficients between stations in each region are of the order -0.6 to -0.8 (Berlage, 1966:
Trenberth, 1976). These regions have therefore been considered separately, since any analysis of the
phenomenon based on the reconstructed data demands that the teleconnections not he built in to the
data as a result of the reconstruction method.

. The regression equations were calibrated using the Australian gridded data for June 1972 - April
1985. Ideally, the regression equations should be derived separately for each month of the vear (see
for example, Jones, 1987), but with only 13 cases this is not to he recomumended. Instead. following
Jones and Wigley (1988), the three months of the standard seasons were used as separate cases. This
means the calibration exercise is undertaken with either 38 or 39 months of data. The results in terms
of average explained variance at the 65 grid points in each region are given in Table 2

The reconstructed data were then compared with the NOTOS dats :~r the yvears 1951-62. This
comparison can be considered as a verification procedure for the regression relationships. but it also
acts as a test for the NOTOS data. (In the same way, the calibration results give some insight into the
reliability of the Australian gridded data - for further details, see below and also Jones and Wigleyv.
1988). The best verification results are generally obtained for the spring (SON) season and the worst
for the summer (DJF). This is in contrast with results for the mid to high Northern latitudes (Jones.
1987; Jones et al., 1987), which show a strong seasonal cycle with best results in winter (DJF).

In many parts of the Southern Hemisphere, the results are much better than these average resnlts
would imply. (Equally, there are many areas where the results are worse.) Spatial maps of the
explained variance from the winter (JJA) season, for both the Australian and NOTOS chart series,
are shown in Figures 2 and 3. Similar results are achieved with the other seasons. Calibration
performance (Figure 2) is poorest near Antarctica and over the main-oceanic areas, and is certainlv
related to the lack of suitable ocean island data. Verification period performance (Figure 3) is similar
to calibration period performance in areas where this exceeds 50% of the variance. In calibrafiompoor
regions, verification performance is exceedingly poor.

The reconstructions can be used to compare the Australian and NOTOS chart series. Fignre 4
shows the difference between the NOTQS charts and the reconstructions for the 1951-62 period. The
differences range from +8mb to -2mb, with the NOTOS data being 8mb higher over the southeastern
Pacific in the vicinity of 60°S, 120°W. A similar finding has been made when the technique was applied
to the Antarctic region (Jones and Wigley, 1988). As this area is the largest in the world withont
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Table 2: Regression equation calibration: reconstructions back to 1951
Australasian Season Ng Ng cC Vv
DJF 13 12 0.745 0.490
MAM 12 12 0.739 0.512
JJA 11 11 0.805 0.498
SON 10 10 0.798 0.547

South American Season N¢g Ng - C A%
DJF 13 13 0.665 0.299
MAM 12 11 0.693 0.419
JIA 13 10 0.659 0.426
SON 12 10 0.693 0.454

Southern African Season Ng¢g Ng C AY
DJF 13 10 0.673 0.366
MAM 13 10 0.605 0.377
JJA 13 10 0.650 0.394
SON 12 9 0.728 0.516

Number of PCs of the grid-point pressure network retained (such that Ng < 95% < Ngy1)
Number of PCs of the station pressure sites retained (such that Ns < 95% < Ng, )

Mean variance explained at each grid point over the calibration period (Jun 1972 - Apr 1985)
Mean variance explained at each grid point over the verification period (Jan 1951 - Dec 1962)
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Figure 2: Variance (%) explained by the reconstructions over the calibration period (June 1972-April 1985

using the Australian analyses) for the JJA season.
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Figure '4: Difference in pressure (millibars) between the reconstructions and the NOTOS charts over the
1951-62 period for the JJA scason. Negative values indicate reconstruction charts lower than NOTOS.

any basic station data it is difficult to say which analysis is correct. Elsewhere the NOTOS charts are
about 2-4mb too high along the western coast of South America, about 2mb too high off the western
coast of Southern Africa, about 2-4mb too high over the Indian ocean south of Australia, and abonut
2mb too low over parts of Australia.

The reconstruction technique by its very nature assumes the Australian charts are correct. Data
collected during the period of the First Global GARP experiment (FGGE) in 1979 from drifting hnovs
would suggest the Australian data are nearer than the NOTOS data to the true pressure values in
the 50-60°S zone. Many studies have intimated, however, that pressure was anomalously low in the
circun-Antarctic westerlies during 1979 (Karoly et al. 1984). Only a further drifting buoy study can
“help to answer what the long termn normal MSLP values in the extreme south of the Pacific Ocean
should be. Over the Australasian sector, the New Zealand (NZ) gridded sea level pressure data set
provides another means of directly comparing the Australian (A) and NOTOS (N) data. The difference
map (not shown) is similar in many respects to Figure 4. This suggests that the NZ charts are similar
to NOTOS and in some disagreement with the Australian. This result is confirmed if the NZ and A
charts are directly compared over the 1972-85 period.

Conclusion

Although most early records of instrumental climate data have heen located, there is still the possihility
that important material is hidden away in some archive. However, even if additional data for a site
can be found, it is likely that the new records will not be homogeneous with more recent data. Most
long-term climate records contain periods when the records are non-homogeneous. Reasons for these
inhomogeneities can generally be related to station moves and changes in the methods used to calcnlate
monthly mean temperature and pressures.

Early instrumental data are particularly useful for improving the spatial coverage of data in regional
and hemispheric time series. The available data base of gridded monthly-mean Southern Hemisphere
MSLP data, from Australian analyses, is only available on a continuous basis back to 1972, in marked
contrast to the much longer Northern Hemisphere data base. Considerable amounts of statinn data
are, however, available, some of which goes back to the turn of the century and earlier. These data
have been used in a principal components regression technique to reconstruct gridded MSLP data for
the Southern Hemisphere back to 1951 and, with more limited coverage, to 1910.

The reconstructions allow the Australian analyses to be compared with the earlier NOTOS chart
series for 1951-62 and with other regional chart series for areas of the Southern Heémisphere. Because
the reconstructions contain the effects of climatic change implicit in the station data, the varions
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gridded data sets can be directly compared. The comparisons point to serious discrepancies hetween
the data sets. However, because of the data sparseness in many areas of the Southern Hemisphere it

is not always possible to resolve the differences.
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Wind rose similarity after 140 years

Arnold Court
Emeritus Professor of Climatology
California State University, Northridge CA 91330

Introduction

Wind rose comparison procedures have not been discussed hitherto in the literature of climatology.
nor, for that matter, has even the proper construction of such representation of the frequencies and/or
strengths of winds from various directions. This paper summarizes the development of wind roses
during the middle 19th century, in complete disregard (with one exception) of statistics and graphical
theory. Polygonal and cursive roses, introduced in 1840 and 1842, were gradually supplanted, in the
following century, by spoke roses, at first plain, then barred, feathered, and segmented, eventually
telescoping; finally sector roses appeared. To indicate where Winds, would ferry ships or pollution.
while preserving their names by direction of origin, roses were drawn downwind, Some with inverted
labels and cursive roses were extended inward from outside base circles.

None of these, except some recent sector roses, correctly represented the magnitude (of frequency.
strength, étc.) from each direction by the area enclosed: spokes may be proportional to magnitnde,
but do not cover the sector to which they apply. Two spoke roses for identical numbers of sectors can
be compared visually or statistically, but when each is for a different number of sectors. or the same
number differently arranged (as for magnetic vs. true direction), direct comparison is misleading. This
problem is discussed later, in comparing a 16-sector rose of wind passage from hourly observations in
1848 on a Mississippi barrier island with a 12-sector rose for a nearby buoy, 1981-1984.

First roses

Originally, wind roses were simple circular diagrams of the names of winds from the various directions
-4, 8,12, 16, or 24. As such they showed only direction, without regard to length of radius vector, or
spoke. The first published diagram to be called ‘wind rose’; by Baron (Christian) Leopold von Buch
(1774-1853), did not involve frequencies or strengths of winds from various directions, but instead
the average barometric pressure, given numerically for each of eight sectors of a circle. To show
these pressures graphically, von Buch (1819) didn’t use spoke length, but reverted to Cartesian form.
with pressure on ordinate and direction on abscissa (Fig. 1). This permitted interpolation for the
wind direction associated with overall average pressure, so that the circle could then bhe divided into
directions from which wind ‘brought’ low or high pressure.

H. W. Buek(1826) gave a similar diagram for wind vs. pressure at Hamburg, and among the
diagrams consolidated by Heinrich Wilhelm Dove(1803-1879) from his assorted journal articles into
his ‘Meteorologische Untersuchungen’ (1837) were several showing ‘the influence of wind direction on
the pressure, temperature, and moisture of the atmosphere’ by numbers around a circle according
to wind direction. Radii separated high from low, warm from cold, moist from dry. Four of these,
‘barometric and thermal! windroses’ for the northern and southern hemispheres, appear as part of a
plate in the physical atlas (1840) of Heinrich Berghaus (1797-1884). Wind effects on pressure were no
longer graphed after the realization, around 1850, that ‘the law of storms’ governs wind flow around
pressure centers. .

The first true wind roses to be published illustrated the results of four years’ operation of Alexander
Follett Osler’s (1808-1903) recording windvane and ‘anemometer’, installed in 1837 at the Philosophical
Institution of Birmingham. It recorded continuously the wind direction from a vane and wind pressure
{pounds per square foot) from a pressure plate, which.could be calibrated while an anemometer (for
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Figure 1: First known diagram to be called ‘Wind Rose’ shows average atmospleric sea level pressure in
Paris ‘Lignes’ (1 ligne = 3mb) with winds from each of eight directions (given as vertical lines, not columns)
on rectangular coordinates without any scale (lower) and by numbers around circumference of circle (npper)
for Berlin, Middelbufgh (Seeland, Netherlands) and Ofen (German name for Buda, old west part of Budapest).
Mean pressure lines shown; colors and + and - added. Ueber barometrische Wind-Rosen read 18 May

1819 by Leopold von Buch to Koniglich Akademie der Wissenschaft in Berlin. Abhandlungen 1818-1819,
pages 83-102. ' v
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wind speed) could not, at least until railway trains could attain sufficient speed along a straight
track in calm air. Osler {1840), a glass manufacturer and amateur meteorologist, nowhere explains or
comments on the construction of his diagrams, engraved by J. W. Lowry. Apparently Osler prepared
the originals himself: he was an expert draftsman, illustrating his business. correspondence (now in
the archives of the Birmingham City Library) with sketches of the elaborate chandeliers he made and
sold. v

Osler’s first diagram (Fig. 2) was simply a series of 16 cartesian diagrams, each showing wind
frequency from a specific direction for each hour of the day during the four years, arranged around
the sides of a hexadecagon in directional order. The second was a cartesian diagram of wind force
(pressure) for all directions, by hours, for each season. The third was a series of cartesian diagrams
of wind force by hours for each season and direction, arranged four deep around a hexadecagon.
Finally, Osler’s fourth Figure (Fig. 3) held five polygonal wind roses, with spoke length proportional
to a\}erage wind force, from each of 16 directions for each season and for the entire year. The ends of
the thin spokes were connected by a heavier line to create the polygonal rose, which hecame the most
common representation of winds for the next century. Often the spokes themselves were suppressed,
and sometimes the polygon was rounded, freehand, into a smooth curve.

Development

No comment on the novelty or ingenuity of Osler’s representation was recorded in the account of the
tenth meeting of the British Association for the Advancement of Science in Glasgow. at which the
diagrams were shown. The general reaction was surprise that the diurnal course of wind force so
closely parallelled that of temperature. Nor were Osler’s roses copied very quickly.

Leon (Louis) Crétien Lalanne (1811-1892) apparently had not seen thein when he compiled, for the
French translation (1843) of the ‘Complete Course of Meteorology’ by Ludwig Friedrich Kamtz (1801-
1867), an extensive appendix on ‘The graphic representation of meteorological tables’. He offered
three ways of representing hourly wind data : (1) by isopleths(a technique he developed and used
extensively) on a cartesian grid of hour vs. month (a diagram later called ‘chronoisopleth’) (2) by
eight lines, one for each direction, of wind frequency vs. months and (3) the ‘monthly rose of wind
duration’ of 12 closed curves, one for each month, on a polar diagram of directions — a howl of spaghetti
almost impossible to decipher. He definitely preferred the first (isopleth) representation.

Two cursive roses on the same polar grid were used by (Lambert) Adolphe (Jacques) Quetelet
(1796-1878) in his 575-page Climate of Belgium (1849) to show the annual frequencies from each of
32 directions of (1) surface winds (SW was most frequent on 42338 hourly readings from an Osler
anemometer) and (2) cloud movements (most often from WSW on 15408 observations. 1833-1846.
four times daily). Although he almost certainly had seen Osler’s paper, Quetelet didn’t mention it.
and used cursive roses, not polygonal; dots marked the ends of the spokes, themselves not shown.

Wind roses of an entirely different type were used by Janes Henry Coffin (1806-1873) in his memoir
on ‘Winds of the Northern Hemisphere’ (1854), prepared to answer a request of the Association of
American Geologists and Naturalists in 1845 and read (1848) in preliminary form three years later as
the first paper in the first physical science section of the initial meeting of the successor organization.
the American Association for the Advancement of Science. On sets of three equally-spaced concentric
circles, wind frequencies were shown by shading the areas between vectors pointing inward from the
outer circles in sutnmer, the inner circle in winter; each inter-circle band represented 30%. The shading
extended from the base circle to the smooth envelope of the inward vectors.

Cursive roses without ribs or spokes, similar to those of Lalanne and Quetelet were adopted by
Alexander Dallas Bache (1806-1867), Superintendent (1843-1867) of the U.S. Coast Survey, toillustrate
the results of hourly wind estimates, day and night. by his staff at four coastal sites around the Gulf
of Mexico and three on the Pacific coast, 1847-1855. Such roses may have been shown at the third
meeting of the AAAS, of which Bache was incoming president, to illustrate his prelimminary report
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Figure 2: Report of the British Association for the Advancement of Science, 1840. Plate 2, Figure 1. Report
on the Observations recorded during the Years 1837, 1838, 1839, and 1840 by the Self-registering Ancmomeier
erected at the Philosophical Institution, Birmingham. ~ A. Follett Osler, Esq.
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Figure 3: Abraham Follett Osler (1808-1903): Report on the Observations recorded during the Years 1837,
1838, 1839, and 1840, by the Self-registering Anemometer erected at the Philosophical Institution, Birmingham.
Report, British Assn for the Advancement of Science (Glasgow, 1840) 10 : 321-346.
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(1850) on winds at the first two sites: Fort Morgan, at the east entrance to Mobile Bay, and Cat
Island, 12 km off the present Gulfport MS. Comparison of these 16-point roses to more recent data,
for eight directions near Fort Morgan and for 12 directions near Cat Island, raises some interesting
statistical questions.

Statistical

Statistical considerations first arose in connection with the first known use of Osler-type roses, although
without credit to him. Robert FitzRoy (1805-1865), Captain (later Vice-Admiral) RN, early in 1855.
started his new Meteorological Department in the Board of Trade to produce graphic representations of
the extensive tabulations of marine wind data at the U.S. Naval Observatory under Matthew Fontaine
Maury (1806-1873), Lt. USN. FitzRoy’s instructions to his staff on the preparation of polygonal roses
have been preserved in eztenso, in the FitzRoy Papers in the British Public Record Office. Kew.
Maury’s circular numerical tables of wind frequencies were ‘wind roses’, so Fitzroy called his diagrams
‘wind stars’; they were drawn downwind, ‘to leeward’.

The first Wind Charts bearing ‘wind stars’, for the North and South Atlantic, by seasons, appeared
in 1855, AUG and were circulated to various colleagues, mostly other fellows of the Royal Society.
Archibald Smith (1813 1872), who became FRS in 1856 and three decades later was called ‘a great
‘mathematical genius’ (in the obituary of his co-author, Sir Frederick J. 0. Evans, Captain RN (1814-
1885), in the Monthly Notices of the Royal Astronom.ical Society 46: 184-186, 1886 FEB) replied.
from 14 Ashley Place, London, on 1855 OCT 23:

‘... instead of making the radii of the stars proportional to the number of ohservations on
that radius, they might be made proportional to the square root of this number. In that
case the probability of the wind being between any two radii would be nearly proportional
to the area of the star mtercepted between them.’ (Copy of letter in FitzRoy Papers. BJ
7/6.)

The Papers contain no response from FitzRoy, who did not alter his procedure for the nine addi-
tional maps published in the next half-year, and his reaction is not known.

Actually, Smith was only partly correct: for areas to be proportional to magnitudes. they should
extend half-way to the next radius on either side, not to segments connecting spoke ends : each sector
area should be a ‘pie-slice’, bounded by two intermediate radii and a circular arc. The conventinnal
distortion leaves a sector’s area at the mercy of its neighbors — and the total area of the polygnn
decreases as the variability from spoke to spoke increases. No further comment on this fundamental
aspect of wind roses, or other circular diagrams, is noted for almost a century.

In two papers explaining and analyzing The Circular Normal Distribution, Emil J. Gumbel (1891-
1964) plotted annual cycles on ‘aequiareal’ (1953, with Greenwood and Durand) and ‘equivalent’
(1954) polar coordinates, i.e. with square root scales on radii. They explained (Gumbel et al., 1953)
that ‘Leighly (1928) proposes to trace the square roots of the frequencies’, but actually John Leighly
(1895-1986) said only that ‘Where the area of the figure is critical, the radii vectores ... must bhe
adjusted’ by ‘the fundamental principles of equivalent mapping’ (Leighly, 1928, p. 389). He did
not use square roots on any diagram, there or elsewhere, instead mistakenly. plotting temperature.
an unbounded element, in polar coordinates, which are suitable only for lower bounded variables.
adjusting the spokes to conserve curve slope, not area (Leighly, 1928, p. 390)

Comparisons
Two spoke wind roses, with spokes directly proportional to wind frequency or other attribute. can he

compared satisfactorily by superposition only if they have the same number of sectors. To compare a }6-
spoke rose to one of 8 spokes, the former can be converted to an 8-spoke rose by adding the frequencies
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(but averaging th~ speeds) of the eight intermediate directions to those for the four cardinal and four
semi-cardinal diz. ctions. The simplest method is to divide the intermediate spoke values equally. but
more logical is division of each one in the same proportions as those of the two adjacent major spokes.
Either method will preserve the total length of the spokes — but not the areas enclosing them. on a
polygon rose or on an areally correct (square root) sector rose.

In a uniform (isotropic) wind field, each of four sectors has 25% of the occurrences so that each
of four spokes represents 25%, and a sector rose has a radius of V25 = 5 percentage units. But each
of eight spokes is only half as long, and an 8-sector rose radius is only 2.526... units. The more
sectors, the smaller the sector rose — unless the individual frequencies are divided by séctor width to
make them represent frequency per degree: 0.27778 percent per degree for the uniform field. These
" considerations apply to wind frequencies and other aspects which are summed, such as rain amonnts
from each direction, and to wind passage, the summed product of speed and duration. For speed or"
pressure, weighted averages must be used in reducing the number of spokes or sectors.

For pairwise statistical comparison of two roses, they may be sampled, randomly or systematically,
around the outer arcs. Actually this can be done mathematically, without drawing the roses, hut
visualising them helps.

Such considerations arose in the study°of the hourly wind data collected on the Gulf and Pacific
coasts by the U. S. Coast Survey, 1847-1855. Results of this ambitious program were available only as
wind passage, the product of total hours and average speed from each direction, by months and for
the year. For Cat Island, tabular data are not available, only monthly, seasonal, and annual cursive
16-spoke ros=es with spokes suppressed (Fig. 4) (Dean, 1857). About 27 kin to the southeast. a 12-
meter discus hull meteorological buoy (No. 42007), with sensors 10 meters above water. has heen
transmitting data continuously since 1981. '

In the extensive 3-year summary (NCDC, 1986), wind data are given, not for 8 or 16 sectors.
but for 12, each 30°wide: 000°-030°,..., 330°-360°. For comparison with the 16-point Cat Island wind
passage data, scaled from the cursive annual wind rose, annual wind passage from each of the 12
sectors at the buoy was obtained by multiplying average speed by relative frequency. To make the two
roses nearly the same size, the buoy data were increased 25% before the square root was taken. Even
so, estimmated wind passage at the buoy was less than at the lighthouse, perhaps hecause the latter
was obtained by converting the original force estimate (0 = calm,... 10 = tornado or hurricane) to
speeds using a table usually credited to John Smeaton (1724-1792) but actually due to Sammel Rouse
(1705-1775). Smeaton (1759), including Rouse’s table in his treatise on waterwheels and windmills,
questioned the accuracy of its speeds for wind forces greater than 6. Rouse’s speeds for forces 4 and
stronger are about 50% greater than those now assigned to the corresponding numbers of the ‘Beanfort
scale’, which had been in use on land for more than half-a-century before heing adapted to marine
use around 1790 by Alexander Dalrymple (1737-1808) and in 1806 by Francis Beaufort (1774-1857),
neither of whom ever used speeds for it.

Thus differences between the wind roses (Fig. 7) for Cat Island and Buoy 42007 arise primarily
from the apparent overestimate of wind speeds in computing wind passage at Cat Island. The rose
from the automatic buoy in unobstructed ocean is almost isotropic, while that for Cat Island. at the
western point of the low triangular barrier island, bulges to NE, SE, S, and SW, indicating ohserver
under-use of intermediate directions, and some wind deflection by the island.

Conclusions

"Wind roses, introduced in 1840 and progressively refined and improved, offer excellent representations
of the directional distribution of winds (and other phenomena), but require careful attention to statis-
tical and meteorological principles. Sector roses, in which area, not length, corresponds to frequencies.
speeds, or passage, are most useful, but comparison of roses differing in numbers of sectors demands
statistical adjustments. , :

126



)

WHOLF YEAR

Figure 4: '‘Diagrams representing the quantity of the winds... and their effect on the level of the sea at Cat
Island, Mississippi Sound, from hourly observations by the U. 5. Coast Survey in 1848... The cirenmference of
the small circle nearest the centre of the diagram is the zero from which the distances are plotted... The space
between any two... circles... represents 1800 miles’ A. D. Bache: ‘Report of the Superintendent of the
. United States Coast Survey ® for 1856, Appendix 45, Plate 39. Wind Passage compiled from conversinn to
‘miles per -hour of wind force estimated on 0-10 ‘nautical scale’ from ‘streamer upon a flag stafl". (Bache, Proc.

Amer. Assn Adv. Sci. 3: 50-53, 1850).
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Figure 5: Annual wind passage (miles) at Cat Island MS, 1848, at Data Buoy 42007, 1981-1984; buoy passages
from each of 12 sectors increased 25% to correspond to 16 sector-data from Cat Island.
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Quality /value relationships for climate forecasts in prototype and
real-world decision-making problems

A H. Murphy, R. W. Katz, B.G. Brown
Department of Atmospheric Sciences, Oregon State University
Environmental & Societal Impacts Group, NCAR, Boulder USA

Abstract

In this paper we summarize the results of several studies related to the economic value of
climate forecasts in prototype and real-world decision-making problems. Both single-stage
, problems consisting of individual isolated decisions and multiple-stage problems involving
sequences of interrelated decisions are considered. Prototype problems include (several _
versions of) the familiar cost-loss ratio problem and a generic choice-of-crop problem, and
real-world problems include the haying/pasturing problem, a particular choice-of-crop
problem, and the fallowing/planting probiem. -

. Specific attention is devoted to the relationship between forecast quality and forecast value
in the context of these problems. Analytical and numerical results are presented to illustrate
the general nature and shape of the quality/value "curves.” The latter are shown to be
inherently nonlinear and to be characterized by a quality threshold, below which climate
forecasts are of no value. Some implications of these resuits - and other recent results related
to comparative evaluation of forecasting systems (e.g., quality/value "enveiopes” and the
concept of sufficiency) - for the scientific and user communities are discussed.
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Valuing climate forecast information

S5.T. Sonka, J.W. Mjelde, P.J. Lamb, S.E Hollinger, B.L. Dixon-

.....

Abstract

This presentation will summarize the material reported in a paper of the

Same title that appeared in J. Clim. Appl. Meteor. in September 1987. It

provides a framework for evaluating the economic benefits of the
characteristics of climate forecasts in settings where sequential decisions

are made. The dynamic programming decision model used is f'uliy described in

a forthcoming article in Amer. J. Agric. Econ. (Mjelde, Sonka, Dixon, and
Lamb). In the present paper?, illhstr’ative results are provided for corn
production in east-central 1Illinolis. These resulté indicate that the
production proceés examin.ed has.sufficient flexibility to utilize climate
- forecasts for spec;fic production seasons but the value of thosé forecasts is
sensitive to economic parameters as well as forecast characte%is’tics.
Forecast periods of greatest importance, as well as the relationships between

forecast value, accuracy, and lead time, are evaluated.
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Economic decisions on climatically variable areas

E.E. Zhukovsky
Agrophysical Research Institute , Leningrad, USSR

Int roduction

Different factors in nature determining climate peculiarities at every geographic point are subject to
great spatial variability . These factors define macro-, meso- and microclimatic variability of areas
with different effects on (conditions to realise) many kinds of human weather-dependent activities.
Therefore, the following three main problems are of particular interest: (1) the study of climatic
variability, discovery of reasons for this variability, analysis of statistical structure. mapping, etc. ;
(2) control of climatic variability to smooth or, vice versa, to create favourable climatic contrasts (e.g.
micro-climate control in the field);(3) decision-making and planning on climatically variable areas
(CVA) . The latter problem is least studied, though some aspects are are discussed in (Zhnkov- sky
1987; Zhukovsky et al. 1986; Nasonova and Zakarian 1988). A general approach is discussed below:
within the framework of this approach the decision-making on CVA is considered from the viewpoint
of ideas and methodology widely applied in studies on the optimal use and evaluation of the economic
efficiency of meteorological data (Zhukovsky 1981). :

Methodology

Let the study area vary with climatic factor X which may be mean long-term air temperature. normal
precipitation, probability of some meteorological event, etc. Let us specify a function g(r) showing
¢distribution’ of various X values within the study area. If we assume that the area is divided into
zones where X takes one of the values 2y ...z;,... Zm then the function g{r) is discrete and the ntunhers
g1 = g(21)s--ss gm = g(Zm) would indicate the portion of the total area of zones with appropriate r in
the study area. E.g. g1 = 0.2 means that the area where X = z; occupies 20% of the whole area. It
is evident that 372, g; = 1.

In other cases it would be more natural to assume X as a continuous value varying within a
definite range (z). Here the function g(z) is continuous too and it has all the features of the density
distribution function. In particular, j(t) g(z)de = 1.

Then let us assume that some human acitivity d is planned in the study area. Depending on the
way d is specified at particular points, three types of strategies § should be distinguished; they deal
with the available (detail 7utility? rate of the) information on the area variability in different ways: -
non-differentiated strategies (NDS), or class G; - detail-differentiated strategies (DDS). or class D; -
partly-differentiated strategies (PDS), or class A.

For any NDS it'is ‘typical to make the single economic decision d = const; the simplest variant of
this strategy is to plan according to the mean climatic conditions, i.e, z = ¥ (here and later the bar
means statistical averaging for all possible values of X'). Realization of DDS means that a particular
decision is made at every point according to the specified = value. PDS occupy a position between
NDS and DDS and are made in the following way: the range of the X variation is divided into non-
intersecting steps Hy, Hz, ..., Hn. These steps are used for area regionalisation, i.e. quasi-homogeneous
areas are selected where z € H; (i = 1,2,...,N), and a decision d; = d(H;) is made for every one of
those areas.

In the general case a selection of d for any arbitrary point in space depends on the r value at that
point and on the accepted planning strategy S. Thus, it is possible to put down that d = d(+.5).
Following the general principles of the theory of statistical decisions let us introduce the function
u(z,d) which shows the economic effect (gain or loss) per unit area at the d decision-making at the
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specified z. In this case different planning variants may be compared on the basis of u valne mean per
unit area and determined. as .
Us = u[z,d(.’t,S)] (1)

. For example, for continuous X value it is possible to put down:
Us= [ ulz,d(z, $)lg(a)dz
(X)

For every r among a variety of admissible d solutions it is always possible to make a certain optimal
economic decision d,. Let us assume (for certainty) that u is benefit. Then d, should meet the
condition:

‘ u[z,ds(z)] = mazggu(z,d) (2)

We may assume that at the known (or supposed) X = a the decision will be made in accordance
with (2). Therefore, the terms below ‘planning in accordance with X = a’ or ‘orientation for X = a’
would mean the decision making of ds(a). To simplify the presentatson, d(a) will be used instead of

de(a) assuming that d(a) = d,(a).

Taking into account all mentioned for NDS oriented for mean climatic conditions , {1) may be

presented as follows: i
Us = Ug(Z) = u[z,d(T)] (3)

Similarly, we shall have for DDS :

Up = u[z,d(z)]. (4).
In case of PDS which is made on the basis of mean values of X = #,; within individual steps H;
we shall derive

N .
Ug =Uys({2:}) = Zgiulrsd(fi)] (5)

In (5) the averaging for every i is made according to = € Hj; g; - is a part of area where r € H, .

It is evident that certain relations exist between (3) , (4) and (5), namely Ug < U, < Up, which
show that greater details on the account of climate variability of the area lead to a higher econnmic
effect mean for unit area, produced by the decision-making. In this case the difference

AUp = Up - Ug ' (6)

and dimensionless factor A = —[};D will characterize (in absolute and relative units. respectively) the
maximum possible benefit which may be got due to the use of data on CVA. By analogy to (6} . the
difference ,

AU, =U,s - Ug _ (7)

will show the benefit in absolute terms per unit area, provided by the substitution of non-differentiated
planning into mean climatic conditions using differentiation of decision in accordance with mean .\

values within individual steps, while the relative value v = 2[[, may be used as an efficiency factor of
the study PDS. According to its physical sense v means the portion of losses produced by the climatic
variability of the area, compensated by differentiated planning. It should be noted that this scheme or
the analysis would not change if the values u;; mean losses, not benefits, in the problem. In this case

U 2 Ua 2 Up and differences (6) and (7) should be replaced by the opposite ones. Respectively. (2)
will have not maz but min.
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| Decision-making for the area variable by the probability of a mete-
orological event

As a possible application of the above approach, let us consider a case when the climatic variabilitv
of the area is displayed through a variable probability of meteorological events. The situation when
these events are observed will be denoted by F,, while the alternative situation will be denoted by
F;; respectively. p» would mean the probability of the event Fy, and p; = 1 — p; would represent the
probability of the event Fy. Thus X = p; in the problem considered.

Then let-us assume that one of the two economic decisions should be made, i.e. d; or d; depending
on the specified weather. It is supposed that the first decision is oriented for F, situation, while the
second decision is ‘oriented for the event F;. Let us also assume that the square matrix |ju;; =
u(Fi,d;)|l, (1,4 = 1,2) is known; the elements of this matrix characterise the economic consequences of
appropriate man’s activity under different weather conditions. It is easy to show, that if the decision-
making is based on the Bayesian approach, i.e. according to a statistical criterion of the mean henefit

maximum, then if py and v, (1,7 = 1,2) are specified the selection should be made according to the

following rule
_Jdi ifpp 2T
d"—{d; i < | - ®

where 7 = 8/(1 + 8), B = (uz2 — un)/(un — 12).

If we have information on particular py values at various points of the study area, the above rle
may be applied for a necessary differentiation of economic decisions.

As the first approximation, let us assume: the regionalisation resulted in a number of climatically
homogeneous zones satisfying m values of the variable p; value. Let us denote these values as pi;.
«P1ks --- P1m and let us compare two variants of planning i.e. NDS, when a single decision is made
for the whole area in accordance with (8) depending on the ratio hetween 7 and py; = L, gaPir-
with g, = part of area, where p1 = p1x, and DDS, when the same rule (8) is applied but the optimal
decision is made for every climatically homogeneous area(zone). It is easy to show that the henefit
AUp got in this case may be computed from the following equation

AUp = { (7‘1+T2)Ep,,,5,r(7"-131k)9k %fzjl > (9)
(r14+72) Tpusn(Pre—Tlgr i1 <7

where r; = uy; — u12 and 73 = uzz — Ua1. AUp is a maximum if p; = . In this case it follows from
(9) that '

[A LrD]maz =

T+ T2
2

where Apy; = 3.7 [p1x — P1lgw is the mean absolute deviation of p; from p; at individual points. It is
very interesting to note the analogy between (9) and the results obtained in Winkler(et al., 1983).

Equation (9) may be easily generalized for the case when space variability of the climatic proba-
bility p; is described by some continuous function g(p;). In this case the following ratio will be valid
instead of (9):

Apr

AUD — { (7'1 + r2)fp1£1r(7r - pl)g(pl)dpl ifﬁl > (10)

(r1+72) Jpy>e(Pr — ®)g(pr)dpr i pr <7

To make it concrete , it should be taken into account that the range of p, variations is always
physically limited from 0 to 1. Proceeding from this it is possible to use the beta-distribution for the
analytical approximation of the function g(p1):

9(py) = P2~ 11 - p1)*"/B(a,b) (11)
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Here a and b are positive parameters, and B(a, b) is the Euler integral of the first order, determined
as

o |
B(a,b) = [ pi7i(1 - p1)*~ldp: = T(a)T(8)/T(a + b)

(T - gamma function). If we put (11) into the general formula (10); we obtain (Zhukovsky. 1987):

_J (r1+ 7)) [nIx(a,b) - Prlx(a+1, b) ifpr>n 12
AUp = { (r14 r2)[Prle(a + 1,b) — wl,(a,b)] if py <= (12)

Here I.(w, z) is the incomplete beta-function ratio determined as
"
Lw,z)= [y (1 - p1) " dpa/B(w, 2)

tabulated by Karl Pearson and J(w, z) is the integral of the function I,(w, z) up to 1. f; = a/(a+ b)
For the case when p; = , it follows from (12)

[AUD]maa: = (7'1 + 7'2)1-’1[Iﬁx(a’ b) - Iﬁx (a + 15 b)' .

If we change a and b, parameters in (11) it is possible to get a great variety of symmetric and
asymunetric distributions. In particular, a family of curves symmetric relative to the point p; = 0.5
corresponds to the situation a = b; moreover when a = b = 1 this will be the simple uniform
distribution g(p;1) = 1. For this case (10) gives

- (ra+ ) (x?)/2 ifr < 0.5
Alp = { (r: + r:)(l -m)?/2 ifr > 0.5

If a < b (11) determines one-peaked curves with a positive asymmetry, while in case of o > b the
asymmetry is negative. Fig. 1 gives curves showing that in case of various types of g(p,) distributions
the character of relations between AUp and = is subject to changes. The asvinmetry of p; distribution
causes the fall of [AUp},nq- value, moreover its maximum value is in accordance with the law of uniform
distribution.

It is interesting to give a specific case here. Let F; and F, indicate a presence or lack of some
dangerous mieteorological event, and d; and d; indicate realisation or non-realisation of protective
measures. Then the values of u,; mean losses, moreover, a model is used in many studies where the
matrix ||u,;|| is as follows:

d, d,
FF C L
F, C 0

Here C' indicates losses for protective measures and L means damage caused by the dangerons
event if protective measures are lacking. (Thompson, 1976; Murphy, 1977; etc). Taking into acconnt
the general relations obtained above, it is possible to show that in this case the losses at NDS mean
per unit area would be as follows: .

vl € #m>c/L
ST\ Lpy, ifp<C/L

while the relative factor A characterising the gain due to differentiation of decisions is determined as

follows:
2= Ic/i(a,b) — (Lp1/C)c/r(a+1,b) if pr > C/L
Ic/L(ﬂ + 1 b) - (C/Lpl)IC/L(a b) ifﬁ] < C/L
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Figure 1: AUp value as « function in case of different variants of p; distribution. 1 - for uniform distribution
a = b = 1; 2 - for positively asymmetric distribution a = 2, b = 4; 3 - for negatively asymmetric distribution

a=4;b=2. .

The maximum A value is observed at C/L = p, and, as it follows from the above formulae. at the

arbitrary values of a and b ‘
Amaz = Iﬁl(a’b) - Iﬁx(a + l’b)

Let us take a definite situation when a = b = 1. In this case A\mar = 0.25. Le. mean losses per unit
area because of the climatic variability of the area tend to decrease by 25% in this case.
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Estimates of dimension and entropy of weather and climate
attractors
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Introduction

Standard atmospheric circulation statistics provide physical information in terms of means, higher
moments, space-time filtered or cross-spectral properties of the basic meteorological field variables:
mean temperatures, eddy fluxes, energy conversions in appropriate space-time or wavenumber-frequency
domains. Another type of data analysis is the phenomenological statistic. It is closely related to the
real weather phenomena: storm tracks of tropical and extra-tropical cyclones changing with season or
related to large scale flow anomalies, etc. This statistic accounts for individual weather pattern and
leads to the phenomenological aspects of the dynamical system. In recent years another method of
analysis has been used which complements the other two statistical approaches in the sense that math-
ematical properties are deduced; dynamical systems theory is applied to the weather and climate
system.

In this sense nonlinear (or fractal) analysis techniques are developed to gain information on the
route from linear systems towards an understanding of the nonlinearity of complex dvnamics (Ta-
ble 1) such as the weather or the global climate; several features on this route have been topics of
meteorological and oceanographic research: '

Table 1: From linear to nonlinear dynamics

Linear B Coherent —— ~ Chaotic =—- Nonlinear
Dynamics Structures Dynaimics Dynamics
Balance: Dispersion/ Nonlinearity/
Dissipation Dissipation
A\
. LIRSS
Lo
(

Basic concepts: Dimension and Entropy

Much of the present research interest on dynamical systems analysis methods applied to weather
and climate processes can be traced back to Lorenz (1963). He revealed the dynamics of a low-
order spectral model of convection and provided a mathematical model for turbulence or chaos: After
discounting the initial transients, the flow of many of these nonlinear systems with three or more
variables is firstly confined to a subset of the phase space of states spanned by the model components.
and secondly characterized by a sensitive dependence on the initial conditions. That is, this subset or
strange attractor is of smaller dimension than the phase space, and the flow, if applied to forecasts
with initial errors, has limited predictability. Accordingly two properties are introduced to characterize
the structure of a strange attractor and the flow on it, dimension and entropy.



Dimension

Dimension is roughly estimated by the number of independent variables (degrees of freedom or active
modes) involved in the process and thus is a measure of its complexity. Dynamical systems theory
defines ‘a hierarchy of dimensions (some listed in Table 2), of which the correlation dimension is
frequently used in meteorological applications, because its determination is relatively easy.

Table 2: Dimension
Generalised dimension D(q) = limy_oln Y (p(¢)?)/ lnl)/(q -1)

Hausdorff dimension (g — 0)  D(0) = — limy_o In M(I)/Inl

.. A measure for the number cells increasing with I — 0

Information dimension (¢ — 1) D(1) = —limy_olnS(!)/In!
.. A measure for the information, S(!), increasing with I — 0

Correlation dimension (¢ = 2) D(2) = limj_oln ¥ (p(:)?)/Inl
.. (p(i)?): probability for pair of points in the same box
I: size of a cell or a box ¢ in the phase space
3¢ sum over all cells i = 1,..., M(l) covering the
attractor
p(i) = im N(i)/N: probability of finding a pomt of the attractor in
box i; IV data points ‘
S(1) = =T (p(i)Inp(i)): Shannon information of locating a trajectory in
a specific cell ¢
D(0) > D(1) > D(2)...

Entropy

Entropy may be understood as a dimension in a space of time sequences (I in Table 3) or cylinder
sets. In this sense entropy is a measure:- '

1. for the rate of information about the state of a dynamical system changing with time;

2. for the rate of divergence of initially close pieces of trajectories on the attractor: an infinitesimal
sphere expanding into an ellipsoid to which only the diverging axes contribute, that is the sum
of positive Liapunov exponents I(k) > 0 (for fractals the I(k) are weighted by the dimensions of
the principle axes);

3. for a predictability time scale (1/K ) or e-folding growth of initially small errors. Note that NWP-
predictability refers to errors approaching the noise level, which is slowly?? due to nonlinearity.

Analysis techniques

Before computing dimension and entropy measures by suitable algorithms, the phase space of the
system needs to be reconstructed from the data, because many observations provide only scalar signals.
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Substitute phase space

To reconstruct the attractor, which is embedded in the phase space of the dynamical system. the
classical method of delay-coordinates is used. This provides a state vector, X(t;) = [=(ti)s.yr(ti +
(m — 1)T)), in an m-dimensional (embedding) phase space spanned by samples of the time series,
z(t;), delayed by a suitable time scale T'. Delayed vector variables can also be used.

Algorithms

Two basic methods to calculate dimension (and entropy) may be mentioned (Table 4): The ‘hox-
counting’ algorithm is a direct application of the definitions. The ‘pair-counting’ algorithms provide
another way to estimate dimension and entropy. Note that these algorithms give global estimates
for the attractor properties; but, for example, the spectra D(g), K(g) provide some insight into the
inhomogeneity. Some experiences are noteworthy:-

. About n = 10P data values?? are needed to resolve attractors of dimension D, although
saturation has been achieved with smaller data sets;

. The first zero-crossing of the auto- correlation defines an approximate value for the delay-time
T (linear independence); ’

. An attractor is sufficiently embedded when its dimension has reached saturation by satisfving
the scaling law over a range of magnitudes. The embedding dimension m and the integer above
the attractor dimension D are measures for the number of variables sufficient or necessary.
respectively, to model the dynamics; ’

. Excessively high-dimensional embeddings lead to convergence of the correlation exponent (D(2))
for any dynamical system;

. A time series cannot be distinguished from random noise if, using for example the maximmm
norm, C(q¢ = 2,m,r)=C(g=2,m= 1,m)™; ‘ ’

. For error estimates see, for example, Holzfuss and Mayer-Kress (1985).

Instead of averaging the variable, number of pairs, to yield estimates of probabilities p(m,r) for
balls of fixed radius r, averages are taken over the variable radius, r(m, p), of balls containing a fixed
number of pairs (nearest neighbours) or probabilities p.

Applications

Results from dynamical systems analyses of weather and climate time series are presented in the

following (Table 5).

Climate variables

In climate theory a hierarchy of models has been constructed which includes both the deterministic
and the stochastic ansatz?? for model building. Many of the deterministic models are low-order
systems exhibiting dynamical structures which range from zero-dimensional fixed points. through
one-dimensional limit cycles to quasi-periodicity on tori of higher dimension. As the model-feedback
construction has often been conceptual, there was a need for more quantitétive information: the
degrees of freedom involved or the number of active modes or variables needed in modelling. Nicolis
and Nicolis (1984), Fraedrich (1987) and, recently, Maasch (1989) claimed an attractor dimension
between 3 and 6, based on deep sea core records. Grassherger (1987), however, emphasized that
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small data sets and smoothing procedures may lead to false conclusions.- Nonlinear systems analysis
methods were also applied to ENSO signals on monthly and annual time scales (Hense 1987. 1988:
Fraedrich 1988); a relatively low dimnensionality (2-6) was detected in monthly data; no saturation was
reached by the anually averaged SOI-signals so that the sampling time limited the predictability.

On the other hand, the stochastic hypothesis to explain climate fluctuations follows a concept
which contrasts the deterministic one. It is hoped that these methods provide more insight into this

problem.

Weather variables

The state of forecasting and modelling appears to be more advanced than for the more complex climate
system. Therefore, practical aspects are related to predictability whereas the dimensionality and the
number of modes involved is a more fundamental question. Associated with predictability is the
spectrum of characteristic exponents which describes the rate of divergence of phase space trajectories
in terms of a mode related instability or error growth rate (Table 5). Furthermore, hesides the large
scale flow, mesoscale and boundary layer processes also attracted attention. Studies of large scale
variables by Fraedrich (1986, 1987), Essex et al. (1987), Henderson and Wells (1988), Kepenne and
Nicolis (1988) suggest that the regional attractors associated with some meteorological time series
of large scale variables (daily surface pressure, 500mb heights at various stations) are of relatively
low dimension (6-8). But note also that other authors did not come to the same conclusions when
using different large scale variables. A relatively large predictability (up to 20 days) was derived by
Fraedrich (1987) and was substantiated by Kepenne and Nicolis {1989). Analyses of smaller scale
processes of the atmospheric boundary layer (thunderstorm gusts, free convection) also suggest a low
dimensionality of this (local) attractor (4 and 7-8, Henderson and Wells 1988; Tsonis and Elsner 1988).

Cyclone tracks

As most of these analyses are applied to a single variable time series, results from analyses of tropical
and mid- latitude cyclone tracks (position vectors) are evaluated in the following (Fraedrich and Leslie,
1989):-

mid-latitude tracks Most interesting results were obtained for the eastern and western North Pacific
storm tracks (12 hourly sampling, January/February 1972-86) after further subdivision into
large scale flow anomalies (defined by the Pacific/North America pattern index; positive for
stronger Aleutian low and Canadian ridge, and -vice versa). Two subsystems with scales larger
and smaller than about 700km can be distinguished in the eastern basin analysing all cvclone
tracks; negative (positive) index months show a relative low dimensionality, D(2) = 1.2 - 1.4
(2-3), of the larger scale storm tracks and a predictability time scale of 3-5 days; the smaller .
scales have a noisy behaviour. This has implications for medium range pred.lctabxhh and its
prediction.

tropical tracks Cyclone tracks in the Australian tropics (1959-80, 6 hourly sampling) reveal a dimen-
sionality of 6-8 and a predictability time scale of 1-2 days. The tracks show some similarity with
the Brownian motion process which should also be considered for the development of practical
forecast tools.

Outlook

Future issues of meteorological and climatological applications of dynamical systems analysis are
the question of a local or global representation of a possibly low-dimensional weather or climate
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attractor; the spatial dependence of these measures, their local singularities, scenarios to chaos and
the universality in the transition to turbulence; suitable measures for folding or curvature of the
trajectories on the attractor and a mathematical concept for weather predictability and its prediction.
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Table 3: Entropy

Generalised entropy K(q)= lim,,_,w limy .o Ep(I)"/n(q -1)
Kolmogoroff entropy (g 51) K= K1) = lim, oo limy_—o S p(I)Inp(I)/n
Order-2 entropy (g = 2) K(2) = — lim, .o limy_.0 TpI)?n>K

. ‘ I time sequence of n cells or boxes ig,i1,...1n of

-size I. 3 : sum over I sequences of cells.

p(I): joint probability that a trajectory X (¢) is in hox
ig at t,..., box i,y at t + (n — 1)T, with sam-
pling time T.
K = Y I(k) of all Liapunov or characteristic ex-
ponents I(k) > 0.

Table 4: Algorithms
box counting application of definitions (Tables 1 and 2)
pair counting (i) fixed radius (Grassbergér ‘and Procaccia 1983)
p(m,r) = 1/(N — 1) [No. of pairs X (t;), X(t;) with ||[X(#;) — X ()|l < 7]
C(g,m,7) =< p(m,r)?~? >1/14-1) where <> signifies average
i.e. 1/NY over all points j = 1,.., NV in the embedding phase space
scaling(:=) of dimension: C(g,r) := rD(@) for suitable m
and entropy: C(g,m) := exp{—(g — 1)mK(q)} for suitable range of r
(ii) fixed mass (Termonia and Alexandrowicz 1983)

Table 5: Analyses of weather/climate time series

Authors : Dimension/Entropy Time series

Nicolis & Nicolis 1984 3-4 0-18

Fraedrich 1986, 1987 6-7/20days; 4-5 sfc-p(day): 0-18
Grassberger 1987 no sat. 0-18

Hense 1987, 1988 2.5-6 ENSO: RR,SST(mon)
Essex, Lookman &

Nerenberg 1987 6 9+500m) heights
Henderson & Wells 1988 5-6.5; 4-5.5 500mb index;gusts
Fraedrich 1988 no sat./ly ENSO: SOI(year)
Kepenne & Nicolis 1988 7-8/ >20 days 9+500mb heights
Tsonis & Elsner 1988 6-7 . w(in 11m,10s-mean)
Osborne, Kirwan, Provencale

Bergamasco 1988 1-2 3xbuoys(Kuroshio)
Radnoti 1988 no sat. 500mb (wave 5)
Fraedrich & Leslie 1989 6-7/1-2days cyclone tracks
Maasch 1989 4-6 14%0-18 records

Mohan, Rao & Ramaswamy 1989 no sat. 0-18 record
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Deterministic chaos model for the prediction of climatological
' weather cycles

A. Mary Selvam
Indian Institute of Tropical Meteorology, Pune, India

Introduction

The recently identified universal inverse power law form for the atmospheric eddy energy spectrnm of
the meteorological and climatological scales of temperature fluctuations indicates a close coupling be-
tween the short and long term periodicities in weather cycles (Lovejoy and Schertzer, 1986). Numerical
weather prediction (NWP) models have had limited success because of the inherent nonlinearity of the
governing equations which are sensitive to initial conditions and give chaotic solutions characteristic
of deterministic chaos. In recent years there is growing conviction that NWP models based on con-
ventional meteorological concepts and nonlinear partial differential equations are inherently unstahle
to computational approximations and round-off errors and are therefore incapable of improved perfor-
mance with further increase in the resolution of the meteorological data network or computer precision
and capacity (Lorenz, 1979; Weil, 1985; Mason, 1986; Lighthill, 1986; Reinhold, 1987; Shepherd, 1987:

Tennekes, 1988). Accurate modelling of short and long term weather phenomena therefore require °
alternative conceptual models of atmospheric flows with robust computational techniques (Ottinn et
al., 1988). In this paper the newly emerging intensive research area of deterministic chaos is applied for
atmospheric flows using the concept of ‘cellular automata’ computational technique. The energetics
of atmospheric flows are modelled by structurally stable scale invariant governing equations which
predict universal and unique spatiotemporal patterns for atmospheric flows.

Deterministic chaos in the ABL

Lorenz (1963) was the first to identify the existence of deterministic chaos in a mathematical model of
atmospheric lows derived by severe truncation of the Navier-Stokes equations. Later extensive studies .
by other mathematical scientists revealed the existence of deterministic chaos in all mathematical
models of physical systems (Fairbairn, 1986; Tavakol, 1988). The field of chaos is characterized by
the strange attractor design with self-similar fractal geometrical structure. A selfsimilar ohject is
characterized by its fractal dimension D wluch is equal to dinM/dInR where M is the mass contained
within a distance R in the object. The physxcs of deterministic chaos is not yet identified. Conclusive
obhservational evidence for the existence of deterministic chaos in the planetary atmospheric boundary
layer (ABL) was provided by Lovejoy and Schertzer (1986) who showed that the global cloud cover
pattern exhibits fractal geometrical structure on scales ranging from the convective to the planetarv.
scales. Further, the observed universal characteristic for shape and spectra.l slope of atmospheric eddy
energy spectrum which follows an inverse power law of the form f-* where f is the frequency and b
the exponent (x~1.8) is basically the 1/f noise spectrum generic to the field of chaos (Tang and Bak.
1988).

Conceptual model of deterministic chaos in the ABL

The turbulent shear flow in the ABL has an inherent mean upward momentum flux of frictional origin
at the planetary surface. The turbulence scale upward momentum flux is progressively amplified in the
vertical by buoyant energy supply from microscale fractional condensation by deliynescence even in
an unsaturated environment and amplified further by the exponential decrease of atmospheric density
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with height. Helical vortex roll (or large eddy) circulations form as a natural consequence of such
turbulence scale buoyant energy flux in the ABL and are manifested as cloud streets and mesoscale
cloud clusters (MCC) in the global cloud cover pattern (Mary Selvam, 1988a). Townsend (1956) has
derived the following relation between the root mean square (r.m.s) circulation speed W of the large
eddy of radius R which grows from the turbulence scale eddy of length 7 and r.m.s circulation speed
w

w?= 20,2 | (1)

The rising large eddy carries the turbulent eddies as internal circulations which mix the environmental
air into the large eddy volume. The steady state fractional volume dilution k of the large eddy hy
turbulent eddy fluctuations is given as

k= -e (2)

where w, is the turbulence scale buoyant acceleration and dW the corresponding acceleration of the
large eddy. It may be computed and shown k > 0.5 for scale ratio Z < 10 where Z=R/r. Therefore
_identifiable large eddy growth occurs for scale ratios of 10 or more only since for smaller scale ratios the
large eddy identity is erased by turbulent mixing. Large eddy growth therefore occurs in successive
decadic scale range intervals giving rise to the ohserved coherent cloud structures which consist of
a hierarchy of turbulent, convective, meso-, synoptic and planetary scale eddies. the larger eddies
containing the inherent smaller eddies as internal circulations. Integrating equation 2 for large eddy
growth starting from the turbulence scale length a at the planetary surface, the growth occurring at
discrete length step intervals dR=r we obtain

. Wy
W = —’-c—-an (3)

k = 0.4 for Z = 10. The model therefore predicts logarithmic spiral airflow in the ABL with the von
Karman’s constant k& being equal to 0.4 as a natural consequence of the eddy growth mechanism by
the universal period doubling route to chaos. The von Karman’s constant is therefore more universal
than the Feigenbaum’s constants for organised chaos. The above concept of large eddy growth from
microscopic domain eddy dynamical processes is analogous the computational technignes of ‘cellnlar.
automata’ and ‘molecular dynamics’ recently being applied for fluid flow simulations (Hayot. 1987:
Rapaport, 1988). The strange attractor design traced by the atmospheric flow trajectories therefore
consists of a nested continuum of logarithmic spiral curves, each spiral consisting of the npward and
corresponding return downward flow. Further, it may be shown (Mary Selvam, 1988b) that the perind
doubling growth of eddies in atmospheric flows gives successive eddy lengths following the Fibonacci
number sequence as a natural consequence, one complete vortex roll circulation heing completed in
five length step increments each on either side of the primary perturbation. The internal structure of
. one complete vortex roll circulation (Fig. 1) consists of balanced counter rotating circulations tracing
out the quasi-periodic Penrose tiling pattern identified as the quasicrystalline structure in condensed
matter physics (Janssen, 1988). The short range balance requirements of the eddy circulations with
the Fibonacci winding number impose long range orientational order in the quasicrystalline structure
for large eddies in atmospheric flows and is consistent with the observed long range spatiotemporal
correlations of weather phenomena e.g., the El Nifio Southern Oscillation (ENSO) cycle.

Dominant weather cycles (Limit cycles)

It was shown above that identifiable large eddy growth occurs for successive decadic scale range
intervals. Therefore from equation 1 the following relations are derived for the length and time scales
for the limit cycles in atmospheric flows. '

a:R = a:10r:10% :10%r: 10%
t:T = t:40t:40% : 40%t : 40%¢ (4)

144



The 40-50 day oscillations in the general circulation and the ENSO phenomena may possibly arise
from the diurnal surface heating since they correspond respectively to the first and second decadic
scale range of eddy growth (4). Similarly the QBO (Quasi-biennial Oscillation) may arise as a result of
the semi-diurnal pressure oscillation (QBO = 0.5 day x 40%2. The 20-year periodicity in solar cycle and
the associated weather patterns may be associated with the newly identified 5 minute oscillation of
the sun’s atmosphere (20yr ~ 5 min. x 405. The growth of large eddies by energy pumping at smaller
scales, namely, the diurnal surface heating and the semi-diurnal pressure oscillation as cited ahove
is analogous to the generation of chaos in optical phenomena (Harrison and Biswas, 1986). Spectral
analysis of long term high resolution surface pressure data will give the amplitude and phase of the
limit cycles in the atmospheric flow pattern.-

)

Climate prediction

The deterministic chaos model for atmospheric flows also predicts that vertical mass exchange occurs
in the atmospheric eddy continuun fluctuations extending from the troposphere to the ionosphere
and above resulting in the transport downwards of negative space charges from ionosphere and the
simultaneous upward transport of positive space charges from lower troposphere. The charged aerosnl
current generated by the vertical mass exchange is shown to quantitatively generate the observed atio-
spheric electric field and the geomagnetic field and is consistent with the observation that atmospheric
circulation patterns closely follow geomagnetic field lines and further, that climatic variations are pre-
ceded by corresponding geomagnetic field variations, Close monitoring of the global geomagnetic field
variations may enable prediction of future climatic trends (Mary Selvam, 1987).

Stratospheric Ozone and Climate

The recently identified stratospheric ozone depletion (Heath, 1988) and a tropospheric ozone increase
(Penkett, 1988) may be a manifestation of increased vertical mass exchange due to global warming
related atmospheric eddy continuum energy enhancement.

Conclusion

The deterministic chaos model for atmospheric flows enables to predict the observed meteorological
and climatological periodicities as simple multiples of solar insolation related fundamental periodicities
in the ABL.
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ODABL — FAT RHOMBUS

BCDE — THIN RHOMBUS

.

Figure 1: The internal structure of the large eddy circulation pattern in the ABL. A primary turbulence
scale perturbation R,O generétes compensating return circulations on either side along isosceles triangles of
successively increasing base lengths (large eddy radii) ORy, OR2, OR3, OR4, ORs such that the winding number
OR;/OR; = OR3/OR; =. .. . = V5 + 1/2 = golden mean. The internal struc‘ture of one complete vortex
roll (large eddy) circulation with the Fibonacci (golden mean) winding number consists of the guasiperiodic

Penrose tiling pattern formed by a mosaic of fat and thin rhombi as shown separately.
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On a diffusion climate model

Stephen Goulter
New Zealand Meteorological Service

Introduction

Mixing length ideas were introduced into the theory of the general circulation of the earth hy De-
fant(1926) who treated cyclones and anticyclones as turbulence elements. Then, it appeared to agree
with calculations based on such a hypothesis, for estiinates of the mixing length and the direction of
transport were reasonable for heat content.

Turbulence ideas were invoked by Rossby(1941) in explaining the westerlies of middle latitndes,

for an indirect Ferrel cell would otherwise give easterly winds at high eleVations in middle latitndes -

(Figure 1), by momentum considerations.

NORTH|POLE S
w 2

D
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Figure 1: Schematic representation of the meridional circulation. After Rossby, 1941.

However difficulties soon appeared. The advent of extensive upper air soundings during the sec-
ond world war enabled calculations of eddy fluxes and hence determinations of the budgets of heat.
momentum, moisture etc for the earth’s atmosphere. These showed that the direction of transport
indicated by classical turbulence ideas was sometimes opposite to observed, with for example, energyv
transport towards lower latitudes, rather than higher, colder latitudes. The associated concept of
negative viscosity has been extensively discussed in the interesting work by Starr(1968).

Rossby(1947) assumed a mixing hypothesis for a source of vorticity at the North Pole, and a sink
at the South Pole, and by integrating the steady state vorticity equation, derived a westerly wind
maximum in middle latitudes, (Figure 2) as well as explaining the distribution of zonal momenta on
the sun. '

Jet streams posed a problem also. The newly acquired knowledge of the upper winds shower that
frequently a double jet occurred, one in sub-polar latitudes, and one in sub-tropical latitudes. This
double jet structure caused Palmen(1951) to revise the Rosshy model of the general circulation, Figure
3.

Rossby concluded that different laws may hold north and south of a jet streamn and that something
more complicated than classical turbulence theory was needed. However, it is clear that there may
well be something in Rossby’s approach since it is capable of predicting a westerly maximum in high
middle latitudes.

Riehl(1973), sumunarising approaches based on classical turbulence theory, says: ‘attempts to
describe the main features of the average general circulation maintained through simple analvtic

solutions have not been entirely successful on the polar side of the statistical wind maximmmm. For the -
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Figure 2: Zonal flow, as fraction of equatorial velocity, and function of vorticity parameter é. and latitude.
Distribution of zonal motion in a thin atmospheric shell, measured relative to the underlving planetary surface,
and expressed in fractions of the equatorial linear velocity of the planet. All profiles computed on the assnmption

that the polar angular velocity of the shell is equal to the angular velocity of the planet itself. After Rocchy,
1947.
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Figure 3: Schematic representation of the meridional circulation and associated Jjet stream cores.in winter
After Palimen(1951). From Chapter 1, by H. Riehl, in World Survey of Climatology, editor H. Flohn
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interaction between the hemispheres a more realistic first approximation may have been found. Very
few efforts have been made to solve basic aspects of the general circulation with this type of approach; .
and these efforts have died out with the advent of high speed computers. Nevertheless the simple
approach remains tempting and may be revived. Hypotheses alternate to Rossby may be advanced
and tested.’ :

Here an alternate approach is outlined where one principle, that of momentumn, is used to suggest a
velocity profile, and then the consequences for vorticity transport, mixing and stability are examined.
Some surprising and direct consequences are demonstrated. One is motivated here partly by the
attractiveness of a simple approach, partly by Rossby’s partial success, and partly by his, and Rieh!'s
comment that different physical laws may hold predominant influences in differing regions of the earth.
Exploration of the properties of simple analytical models is a valuable way of generating insight.

An objective is to find simple grounds for explaining large scale atmospheric structure, with a
minimal set of assumptions. If some similarities are obtained, further simplification may he sought.
If however no such similarities appear, fundamental revision is indicated. A possible criticism of the
Rossby approach is the assumption of a critical latitude ¢. polewards of which vorticity mixing occnrs.
The jet structure only appears for suitable choice of ¢. and a question is: are other approaches possible.
where such a parameter need not be assumed?

A Diffusion Hypot hesis

Suppose
8u 8%u :
s =D:— (1)
ot Ay
where D > 0. If D is constant we can therefore fit a simple diffusion model, using an estimaterd
momentum fluctuation, and an expression for the spatial variation inferred for the zonal speed u.
For diffusion, one seeks some expression giving a momentum gradient. For emphasis placed on
geometric factors which govern atmespheric flow on the large scale, we choose to work with the
horizontal, zonal, frictionless equation of motion. Fixing the right hand side, we have

du Y__ l_@i)_
dt v= pOr

The right hand side is the pressure gradient force in the z-direction. which by integrating aroun
the latitude circle can be supposed zero, since pressure is a continuous quantity. Since v = 'f,!", one
gets integrating with respect to time,

u—fy=gqt+c

Alternatively for a limited range of longitudes, by time averaging over sufficiently long time scales, '
one could reasonably suppose the right hand side constant, of small magnitude, sununing the fluctn-
ating pressure gradients of opposite sign. Each approach will give rise to different mean qnantities u.
etc which we shall continue to denote by u, etc. o

Given u = up + fy then by choice of ug, easterlies in low latitudes can he accommodated, and
also a finite westerly momentum at the poles, in contra-distinction to the requirements of angular
momentum conservation, which requires infinite velocities there. Since infinite velocities are not
observed, the approximation u = fy may not be unreasonable at some higher latitudes. v is the non-
linear product of the form y sin ay. Near the equator the dependence is approximately quadratic. hut
close to the poles the variation is near linear. This may be regarded as a vorticity potential analogous
to a stream function as a potential for velocity in classical 2D flow. '

We use a 3-plane approximation. g—-;‘ =f+ y%ﬁ = f + By. The flow is inertially unstahle. for

f-% =By <0 Also 3¥ = 3 + 3+ 2y, where 8 = 9f/8y = 20 cos6/R. and 33,y -
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~2Qsin@/R? = — f/R?. Therefore

9%u fy
ay? =2-
Since 8 = % we therefore have %:7‘" = 02fcosd :n-mey _ _z],;_) (2cos@ — Bsinf).

The relative (anticyclonic) vorticity gradient ceases xncreasmg and begins to decrease, when
O’u
= 0. Then
P () =(2cosf — fsinf) =0

Thus one derives the transcendental equation for the roots of ¥
ftanf = 2

which may be solved numerically, giving roots at 6 = +61.8°. For |#] < 6, one has an increasing
growth rate of ‘9“ with increasing southern/northern latitude, i.e. increasing anticyclonic vorticitv
with latitude in exther hemisphere. At 6, there is a change in sign of rate of vorticity increase, and
closer to the poles, the rate of growth of the anticyclonic vorticity becomes negative. The zonal speer
u = fy continues to increase with increasing latitude. Poleward of 8, there is a cyclonic tendency in
the growth of vorticity, as the growth rate of anticyclonic vorticity becomes negative.

1020,
|

iOVEMBER (928 - ARRIL 1939 MEAH PROFILE

o\ / o

-

& 5 € 8§
O3 >
N

PRESSURE (MILLIBARS)

1013 Sha~ /

f\_./

R bt IO e Laas L L T o e Ll e
LATITUDE

Figure 4: Latitudinal Pressure Profile for Northern Hemisphere. After Rosshy . 1947,

Figure 4 shows the latitudinal profile for the northern hemisphere as published hy Roschy (19411
A minimum in pressure appears just north of 60° N. The mmodel predicts the position of the suh-polar
trough, as found ohservationally. Inspection of Rossby's diagram on his three cell meridional maelel
shows placement of the trough and sub-polar front near this position.

The vorticity across 6o is cyclonic with increasing latitude in both hemispheres by the model.
Because of the sxgn cha.nge, the development of easterlies polewards is. indicated. considering the
changes in sign of ¢ from the diffusion equation. This is similar to the arguments of Kuo(1951)
concerning strengthemng easterlies/westerlies with damping barotropic eddies.

Figure 5 shows the pattern of winds and vorticity implied. The model predicts:

du
5{ > 0 for |9| < 8y

'Zf < 0 for |6] > 6

By Rawlexgh’s criterion(as modified by Kuo for motion on’a rotating sphere). a change in sign of
the gradient of absolute vorticity is associated with instability of small harmonic perturbatinns..and
disturbances of more general form (Taylor, 1915). Thus one expects disturbances to amplifv. znd a
preferred position for this is then 6,, say.
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Figure 5: Profile due to Barotropic Diffusion Model.

The absolute vorticity is given by f — 'ey = —ypB and the gradient of this is

8- ay, =3 — (28 — fy/R?) = 0. For the location of a sign change this requires solution of
ftanf =1

which gives roots at §; = £49.3° i.e. equatorward of the position of development of cyclonic tendency
by some 12 latitude degrees. This is a latitude of barotropic instability(Kuo, 1949). A region enclosing
this axis may be expected to have unstable i.e. amplifying disturbances.

Trenberth (1981) has analysed the eddy statistics of the southern hemisphere height fields in an
examination of storm track locations and concludes that the main storm track is at 50° S (where a
maxima in variance of the geopotential height field is, on short time scales.)

He presents a schematic meridional profile for the dominant dynamical processes operating at most
longitudes. The separation and locations of the circumpolar trough and the main storm track closely
matches the values 6y, 6;. See Figure 6.

Figure 6: Schematic depiction of a meridional cross section of the dominant dynamical processes operating at
most longitudes and for the zonal mean in the Southern Hemisphere. The subtropical jet (J) and the subtropical
highs are located at 30°S. Transient baroclinic eddies in the storm track at 50°S produce a strong poleward eddy
heat flux (solid arrow) in the lower troposphere, and a convergence of westerly momentum in the middle and
upper troposphere (shown by the differences in the length of each open arrow which represent the momentum
transport by the eddies) and drive a strong Ferrel cell, with maximum mean vertical motion in the circumpolar
trough at 60-65°S. After Trenberth, 1981.

It is therefore suggested that the location of the storm track may be determined bharotropically.

with amplifying disturbances in the high troposphere weakening the zonal flow at 50 S.
Lin(1945) showed the transverse acceleration on a vortex filament is

ay r//v’dzdzdy- // (ﬁ--——) dzdy
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where I' = [ [ edzdy is the circulation around the vortex element. Thus at the stationary value of the
‘abhsolute vorticity, the transverse acceleration is zero, while because of the change of sign in dZ/dy
the directions of accelerations reverse. For regions in which the vorticity gradient is of one sign, small
perturbations north or south of vortices are stable, whereas because of the sign change in the gradient
at @) instability may arise due to no returning acceleration. Kuo (1949) finds that longer wavelength.
slower moving disturbances are amplifying, while the shorter wavelength, faster moving disturbhances
damp.
If we equate the momentum transports to those due to vorticity transport, (Taylor, 1915):

24 au)? u 82 2

o= -4(r(%)) = -aggy - ogx
where D = —211’3—; > 0 for diffusion. The positivity of D, and the sign of g—‘;, implies that /I’ < 0 in
the northern hemisphere, and /I’ > 0 in the southern hemisphere. This is a very interesting result. for

w'v' = 1’ (3u) < 0 in northern hemisphere
dy >0 in southern hemisphere

i.e. equatorward momentum transport. The model predicts exactly the reverse structure to the
observed poleward transport of momentum, which must occur to balance frictional dissipation in
middle latitudes, and which occurs by quasi-geostrophic eddy flux (Holton, 1972).

The solution to the particular problem involves a function giving the velocity as initial state. and
the equilibrium solution must have = 0. Hence ﬁ = 0 and the equilibriuin profile is linear in y.
Because of the sphericity of the ea.rth a non-beta plane treatment must take this into acconnt.

For diffusion, the equation 1 may have substituted the wave solution form e *¥*«!) which vields
on substitution the relation w = ik?D. Hence

A

u= Re{ei(ky+ik2Dt)} — €-k2D1 cos l'y

is a solution, and the waves are dissipative and dispersive, for w/k = ikD. The summation over
all frequencies k at a specified time gives the characteristic normal density function as the required

solution with time dependent spread. For the FT of e~**Dt,
. 2
I udk = [ e ¥Dtethvgr = | /Ee~ipi and o? = 2Dt

If the process is generalised, so that D can be negative, (negative viscosity) then u is unstable. Thus
the up-gradient momentum transports (poleward) could be associated with unstable amplifving. an
dispersive(concentrative) waves. Hassanein(1949) showed time dependent solutions of the Rosshy wave
equation have sloping ridge-trough lines, the tilt being positive(acute)/negative(obtuse) according as
they are north/south of the zonal current, if they are amplifying. Damped waves give an increase of
the zonal flow at the expense of eddies north and south, with reversed tilts to amplifving.

Therefore, if barotropic type(Rossby) waves behave as diffusion processes in the N-S direction. we
may argue that poleward of the instability axis, the amplifying waves would give upgradient momen-
tum transport. Equatorward of the jet stream axis, the amplifying waves would give downgradient
transport of momentum at the expense of the mean flow. The process could correspond to a sharp-
ening of velocity gradients, to the north and south of the instability, at the expense of the local mean
flow. The exponential growth would soon render the formulation invalid, because other processes of
eddy viscosity and flow deformation would take over.

One suspects therefore that these concentrative type amplifying barotropic waves may he related

to the formation and location of the large scale jet streams, probably by interaction with the larger
scale baroclinic processes. These ideas are consistent with those of Kuo(1951) concerning the role of
amplifying/damping barotropic disturbances in respectively weakening/strengthening the zonal flow.

Earlier, Kuo had derived the condition for barotropic instability(1949) and in illnstrating his
theory, had considered velocity profiles, choosing the sine curve for the horizontal velocity profile. The

s
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choice was arbitrary in that it was not deduced: the location of the axis of instability was determined
by the choice of parameters.

This approach however derives a monotonic profile, also possessing the point inflectional character.
related to the sine curve variation of Kuo, and based on a physical argument of horizontal and gnasi-
geostrophic flow. It uniquely locates a necessary axis for instability, which coincides closely with
the location of the sub-polar trough as determined by Trenberth. Further, this suggests that the
arguments given in Kuo’s paper relating to a similar profile could apply here. Since these ideas related
to momentum transport and the building up and weakening of zonal flow the relation to jet stream
theory is obvious. Kuo used these arguments to outline a theory of the index cycle.

The e-folding time depends on le = 4—,{‘;— These vary as the square of the wavelength, so the
longer the wavelength, the slower the rate. Also, if momentum and vorticity transports are equivalent,
the e-folding rate is given by s«’ ll'au/a , so the smaller du/dy or the smaller the mixing length [, again
the slower the time development. A partxcu]arly interesting feature of this development in the model
is that both particle and wave properties are embodied in the expression for D.

Shukla (1983) finds the deterministic limits of prediction of the long waves are of the order 4-6
weeks and for the shorter scale features in middle latitudes, of up to 2 weeks. The above model gives
qualitative answers in this sense, comparing space scales with development times. ’

While the above approach is not capable of explaining jet stream structure in its present form. the
diffusion formulation allows explanation of two major features of atinospheric structure: the sub-polar
trough and a necessary latitude for instability. The presence of conditions for instability, allows hoth
stable/unstable diffusive/concentrative waves, in a unified treatment. By contrast, Rosshy’s mixing
approach only allows diffusion i.e. smoothing, requiring choice of a parameter to fit a jet stream
structure. Similarly, the arbitrariness of choice of functional formx and of location of an inflection
point in Kuo’s work on barotropic instability is removed.

If time dependent diffusion processes govern barotropic eddies, sloping structure can be expected.
which gives freedom for the transport of quantities to satisfy the requirements of the balance of the
general circulation.

Summarising, Lorenz(1967) says: ‘It would therefore greatly facilitate the theoretical study of
the general circulation if the statistical properties of the large scale eddies could in some manner he
represented in terms of the zonally averaged motion upon which they are superposed.” ‘The procedure
which most naturally suggests itself consists of assuming that the horizontal eddy transports of angnular
momentum and sensible heat are proportional to the gradients of zonally averaged angnlar velocity
and temperature, the factors of proportionality being suitable chosen Austausch coefficients.” However
he notes ‘the introduction of these large scale coefficients would give the wrong answer in about half
the atmosphere’ ! and later gives an argument why such a procedure may not he expected to work.
vet concludes that the adoption of similar approaches does lead to a number of correct conclusions.

It is suggested, by symmetry considerations, that the modification to classical turbulence theorv
required to ‘give the right answer’ in the other half of the atmosphere comes through allowance of the
diffusion coefficient to be time dependent, of opposite sign according to whether the process(harotropic
or baroclinic) is amplifying/damping(possibly involving also the relative velocity shear, by the vor-
ticity equivalence argument). It is suggested that the diffusion equation setting allows a generalised
description of the meridional transport properties of time dependent barotropic(or haroclinic) pro-
cesses, as well as suggesting a definite axis of instability. These barotropic controls may determine the
preferred location of the jetstreams, where large lateral gradients of velocity of opposite sign may be
located.

The work of Kuo and Rossby has laid the basis for this approach, Rossby through the key physical
insights concerning the possible role of diffusive processes, and Kuo through mathematical insight into
the barotropic process. It is suggested combination of these ideas of diffusion and barotropy may he

my emphasls
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fruitful in developing insight into general circulation theory, even though the simple theory presente
here is obviously quite preliminary in form.

The development and elaboration of further, alternate sxmple models is a subject of ongoing
research.
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Prediction of monthly mean temperature in Japan

T.Ueno, T.Aoki, K.Kurihara, N.-Watanabe, K.Koizumi, Y.Miura
Long-range Forecast Division, Japan Meteorological Agency

Introduction

Some statistical models using multiple regression equations have been used for some kinds of weather
forecasts beyond one month. New statistical models are being developed for experimental forecasts of

monthly mean temperature in Japan.
Explanatory variables (predictors) used in the models are 500 hPa geopotential height values in the

Northern Hemisphere (for the Z500 model) and global sea surface temperature (for the SST model)

and both of them (for the mixed model).
AIC (Akaike Information Criterion) is used for selecting the useful predictors and determining the

model for our prediction.

First, real mnonthly mean temperature data were used as objective variables (predictands). Second.
we used the coeflicients of principal component analysis (PCA) of the data as predictands.

Some verifications of the models were made changing the period in which lag correlations were
calculated. Procedures of calculation in the models and the results are shown as follows.

Procedures

Each model is prepared under the following steps and AIC is used for selecting predictors or regression
equations to be used at each step.

Calculation of lag correlations

Lag correlations are calculated between a predictand and all of predictors. Statistical significance
is examined of each of the correlation coefficients. AIC is used for the check of significance. The
correlation coefficients with no statistical significance are replaced by zero.

Selection of high correlation areas

A grid point with the maximum value of the correlation coefficients (the first Key-grid) is picked up. If
two or more neighbouring grid points of Key-grid have non-zero values of the correlation coeflicients,
these points are defined as ‘a high correlation area’. Second Key-grid is picked up out of the rest of
grids. Same procedures are repeated. Thus, some high correlation areas are selected.

Check of independence of each grid point within a high correlation
area o

Correlations are calculated between a Key-grid and all other grids within a same high correlation area.
The grids are excluded when the correlations are not significant. AIC is used again for the check of
the statistical significance.

Average value in each of high correlation areas

A weighted average of grid values in each of high correlation areas is calculated by utilizing AIC as
the weights. This AIC is the same one as used for the check of the significance in section 2.1.
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Prediction by multiple regression equations

High correlation areas above-mentioned are candidates for predictors. Number of the candidates is
- limited to 15 in this case. Multiple regression equations are obtained in all possible combinations of
~ the candidates. ' ‘ . -
Best five equations with small AIC’s out of all equations are chosen. The AIC-weighted average

of the results of predictions by selected equations is a final prediction.

Experiments

Two experiments of monthly mean temperature forecast for coming three months were made for
the period 1981-1987. One of them is a experiment by a model in which the predictands are raw
temperature data and the other is a PCA model experiment in which the coefficients of the principal
component analysis are used as the predictands. The models in these experiments used the independent
data set 1951-1980.

Performance of the models was investigated using the skill forecast=100, random forecast=0. false
forecast=-100). ' '

We used three models in the first experiment (non-PCA model experiment). These are Z500 model
(monthly mean 10x10 grid point values of 500hPa geopotential height in the Northern Hemisphere
are used as the predictors), SST model (monthly mean 4x4 grid point values of the global sea surface
temperature as the predictors) and the Mixed model (both of 500hPa gph and SST are used as the
predictors). The second experiment (PCA model experiment) was made only using 500hPa gph.

Each experiment was made for three different kinds of periods in which the lag correlations were
calculated, i.e., 3-month, 6-month and 11-month periods. )

Results -

Table 1 shows the skill scores of the experiments. The leftside column (Z500, SST, Mix. PCA) indicates
the kinds of the models. Z500, SST and Mixed models are non-PCA models. Numerals of 11. 6 anl
3 in the second line mean the period in which the lag correlations were calculated, that is, the period
of the predictors (predictor period). ”11” means that data of predictors in last 11 months were nsed
for the prediction. “Persist” means the persistency forecast. l-mnonth, 2-month and 3-month in the
first line mean the coming first month, second month and third month, respectively (lead tiime).

The followings can be said from this table.

1. The persistency forecast has better skill score than the model forecast for the coming first
month, but its skill score become less for the second and third month than the model forecast's
one.

2. Z500 model forecast has better skill score than SST model and Mixed model. The skill score
for the first month is the best when the predictor period is the last 3-month.

3. For the second and third month, Z500 model has better skill scores in the longer predictor
periods.

4. PCA model has better skill scores than other models on the whole, especially in the case that
the predictor period is 6-month.

Figs. 1-4 show the skill scores of PCA model in each forecast month. L=1, 2, 3 mean the coming
first month, second month and third month, respectively. "M” means ‘the predictor periods’. The
following can be said from these figures.



1. Persistency forecast has the best skill scores in the cold season for L=1 and L=2, but its skill
score becomes less for L=3.

2. The skill scores of PCA model for L=2 and L=3 are not less than that for L=1. The skill scores
of PCA model for L=3 and M=6 are the best in the warm season (Fig.4).

Conclusion

The persistency forecast has better skill scores for the first month except for spring. A statistical
model is important for the second and third month because it has better skills than persistency. PCA
model has the best performance among statistical models on the whole.

A statistical model whose predictors are 500hPa and/or SST is not so satisfactory for the forecast
of monthly mean temperatures. We may have the better skill scores in combination with the model
forecasts and persistency forecast for each lead time and each season. In addition to that. it is more
important to study the factors which affect the global climate in order to improve a statistical model.
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Table 1: Skill Scores of each model. L: lead month, M: Lag calculation period (month), Per: Persistency
forecast

L 1-mth 2-mth 3-mth
M 11 6 3 Per | 11 6 3 Per | 11 6 3 Per
Z500 | 3.9 2.8 114 9.2 7.6 7.8 6.2 4.3 2.0
SST | 3.4 0.4 4.0 16.9 | 2.8 1.4 04 6.1 3.4 46 3.3 2.2
MIX | 3.6 1.5 5.1 4.0 -1.0 9.1 3.2 6.0 5.3
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Figure 1: Seasonal change of skill scores of PCA model forecast and persistency forecast for lead month=1.
M: Lag calculation period for PCA model.
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Figure 4: Seasonal change of skill scores of PCA model forecast for M=6.
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Forecasting seasonal monsoon rainfall over India and adjoining
countries

S.V. Singh, R.H. Kripapani, K.D. Prasad, S.D. Bansod
Institute of Tropical Meteorology, Pune, India

Abstract

The indian summer monsoon rainfall shows considerable
interannual variability. Attempts for its forecasting have
been made now since well over 100 years through empirical tech-
niques. A large number of regional and global parameters have
been tried by various authors. . Besides several authors have
shown definite potential predictability in the Indian summer

monsoon (Singh and Kripalani, 1986, Mon. Wea. Rev.).

The present authors had developed multiple regression
equations for prediction of all India monsoon rainfall by using
the subtropical ridge positions over 1India and West Pacific
(Singh, S.V.,< et al. 1986, Adv. Atmocs. Sci.). Subseqguently
we have explcred the relationship of about 30 regicnal and
global atmospheric/oceanic parameters (including ENSO parameters)
for prediction of mecnscen rainfzll. We have selected 3 of
these parameters, which represent different regiocnal and glcbal
processes and show variance inflation factor ‘of less than 2
in the multiple regression analysis, for further analysis.
The multiple regression equations are developed by using these
3 parameters for prediction of monsoon rainfall on different
spatial scale (from meteorclogical subdivisions to whole India)
and temporal scale (monthly to seasonal) and cross validated
by a jackknifed method. A sample of 37 years (1951-87) has
been used. The Heidke skill scores for 3‘nearly equiprobable
category verifications have ranged from .3 to .5. Some positive
skill scores ranging from .2 to .3 are obtained even for the
subdivisions in the western and central 1India. Encouraged
by these results we are now developing forecast technigues
for prediction of seasonal rainfall for several tropical countries
viz. Burma, Thailand, Phillippines, Indonesia, Sri Lanka, lying
towards east of India.
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Non-linear time series models of ENSO Indice_s .

F.W. Zwiers! and Hans von Storch?
1 Canadian Climate Centre, Downsview, Ontario, Canada
2 Max Plank Institute fiir Meteorologie, Hamburg, F.R. Germany

Abstract The class of ‘Threshold auto-regressive time series models’ (TAR; Tong, 1983) is intro-
duced. These non-linear models describe variations of the moments of nonstationary time-series by
allowing parameter values to change with the state of an ancillary controlling time series and, possibly,
an index series. The index series is used to indicate deterministic seasonal and regimal changes with
time. Fitting and diagnostic procedures are described in the paper.

This class of models is applied to a 102 year seasonal mean tropical Pacific Sea Surface Temperatnre
index time series. The models are controlled by a seasonal index series and one of two ancillary time
series:. seasonal mean Adelaide SLP and Indian Monsoon rainfall, which have previously been identified
as possible precursors of extremes of the Southern Oscillation (SO).

Analysis of the fitted model gives clear evidence for the seasonal variation of the stochastic char-
acteristics of the SO. It also shows that both the annual cycle and the autocorrelation structure of the
SO index depend on the state of the SO. We found that the TAR model was able to make effective
use of information in the time series of year-to-year change in Nov-Dec-Jan (NDJ) Adelaide SLP. The
fitting procedure objectively chose an upper and lower threshold for this change in SLP resulting in 3
kinds of stochastic behaviour for each season. Tests of indépendence showed that the occurrence of a
threshold crossing was related to the occurrence of an Warm or a Cold SO event.
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Effects of missing data on circulation statistics

Kevin E. Trenberth John W. Kidson
NCAR, Boulder, Colorado Meteorological Service, Wellington, NZ

Abstract The impact of missing data on general circulation statistics, including means, variances,
and covariances, is assessed by systematically decreasing the number of twice-daily ECMWF analyses
included in the monthly mean for several parameters. Because the standard error of a monthly
mean depends on the standard deviation of the daily values and the effective number of independent
observations during each month, results have been expressed as the ratio of the root mean sqnare
error (RMSE) in the monthly mean to the daily standard deviation, thus allowing fairly universal
relationships to be developed for application to many parameters, and to different seasons, latiturdes
and longitudes. Results could be modeled sufficiently well with a first order autoregressive (Markov)
process to allow simulated data to be used for further tests. If missing observations are randomly
spaced, the RMSE increases by factors of 2-3 over ‘equally spaced data and there is virtually no
advantage due to autocorrelation in the data. If the missing data occur in one block, another factor
of up to 2 increase in RMSE occurs.

Introduction

Various assumptions have been used to deal with missing data in analyzing station observations and
analyses from operational forecast centers and it is worth while examining systematically the impact
of missing data on climatological and general circulation statistics. The main interest is in compiling
statistics for individual months so that questions about interannual variability can be addressed. and
thus the number of observations available and their distribution throughout each month is important.

Discussion of the treatment of missing data in most papers is poor. Oort (1983). in his atlas of
general circulation statistics, used a data cutoff of 10 observations per month for inclusion of a station
in monthly statistics. Oort (1978) states that on average most rawinsonde stations report between
60 and 90% of the time and that ~5% of the stations report less than 50% of the time. A iore
complete review of problems with missing data is given in Kidson and Trenberth (1988) (henceforth
KT). There appears to be a chronic problem with insufficient or missing data, although the problem
is often ignored. We therefore need to know the impact of missing data on various statistics and what
confidence can be placed on means, variances and covariances computed when some data are missing.

Sampling Experiments

Methods

Sampling experiments have been performed using global twice-daily grid point analyzed values from
the European Centre for Medium Range Weather Forecasts (ECMWF). The data set is suhsampled
and the effects on statistics computed. The parameters examined were the zonal and meridional wind
components, temperature, geopotential height, specific humidity and vertical motion (u,v, T, Z, q and
w, respectively) together with the variances u'2 and v'?, and covariances u'v’ and v'T'. Here the focus
is on u. '

For convenience in varying the sampling interval 6t, statistics were derived for 32-day ‘months’
beginning at 0000 UTC on the last day of the previous month. In the first series of tests, estimates
of the monthly mean statistics were computed using §t = 0.5, 1, 2, 4, 8, and 16 days, corresponding
to N = 64, 32, 16, 8, 4, and 2 12-hourly observations in each sample. The resulting statistics are
compared with those for N = 64 as the ‘truth’.
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The mean of the subsampled series will usually differ from the true mean. If the N values are
independent, the mean will vary about the true mean with a standard deviation (the standard error) of
o/ N, where o is the population standard deviation of the individual values. Results differ from this
because the values are not independent and, as we are interested in statistics for individual months,
the interannual variance is excluded.

In meteorology, time series typically have a red noise character; that is they are dominated hy
the low frequency part of the power spectrum. Often they can be reasonably statistically modeled
" using a first order autoregressive (Markov) process, AR(1), which is completely determined by the
autocorrelation at lag 1. The extent of autocorrelation is linked to the equivalent sample size, and
using the concept of effective time between independent observations, T,, the effective number of
independent observations in a sample N,s; = Nét/T, can be estimated. Methods for computing the
appropriate T, are given by KT. In general the relation between the standard deviation of the mean

and the total standard deviation is
Om = 0/4/Neyy. (1)

Sample standard deviations s of a parameter z are computed relative to each monthly mean .
rather than population standard deviations, where N refers to the number of observations. This
standard deviation does not include interannual variations but has the advantage that it can he
uniquely computed from each month of data. We also compute the standard deviation of mean valnes
Iy relative to Zes4, sny(Z). This is the root mean square error (RMSE) due to missing data as a
function of V.

We anticipate from (1) that sy (Z) will be related to s(z) but with a correction needed ton allow
for the absence of the interannual variance. Accordingly, we express these as a ratio which lies in the
range 0 to 1 and, if the autocorrelations are also computed from individual months, then the ratio
hecomes .

sn(Z) _ 1 1 1z
3(1) N,f,(N) Nef_f(64)

(2)

(see KT). This is, to a good approximation, the expected ratio of the RMSE of the monthlv mean
to the daily standard deviation when all values are computed without the interannual variabilitv
included. We refer to it as the ‘RMSE ratio’.

Thus, for an AR(1) process with 7; = 0.8 at 12-hour lag, Table 1 gives the expected valnes of
certain parameters of interest.

Table 1: Values of 7, in days, Neysy0m/o (from (1)) and sx/s (from (2)) as a function of N and & for an
~AR(1) process with »; = 0.8. .

N 2 4 8 16 | 32 | 64
5t 16 | 8 4 2 1| 1/2
T, - - | 5.36 | 4.48 | 4.24 | 4.19
Ness | 2 4 (596714755 7.64
om/o | 0.71 | 0.50 | 0.41 | 0.37 | 0.36 | 0.36
sn/s | 065|037 1021010004 00

Note that it is only when IV > 4 that N.s; #= N in this case. The ratio of the population standard
deviations o0,, /0 decreases exponentially to the interannual variability value while the RMSE ratio
sy /s decays to zero as N increases. :
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ECMWTEF data

As expected from (1) and (2), the standard deviation of the monthly means decreases with the sampling
interval and generally retains the samne geographic distribution as the standard deviation for tlie month
for individual gridpoint values. The zonally averaged standard deviation of i has been averaged over
all months of the year as a function of latitude (Fig. 1).

. 10 N N

Q e

& 8

(5]

o 7

Z s

=3

a s

= 4

2 s

o 2

a 1

© 9

805

LATITUDE
JAN - DEC

Figure 1: Zonally averaged standard deviation of the westerly wind component at 500 hPa and monthly means
obt-ai‘ned using sampling intervals of 1, 2, 4, 8, and 16 days, in m s~}

The standard deviation of the sample means sy(u) generally follows the same pattern as the
standard deviation of the twice-daily values, s(u), which shows the well-known minimum in'the tropics
and maxima at mid-latitudes.

The distribution of the ratio of sy (%)/s(u) for all gridpoints and months is given in Fig. 2.

Figure 2: Histogram of RMSE of monthly means of the zonal wind component
16 days expressed as a fraction of the daily standard deviation for all gridpoints

excluded.
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The overall mean values of the ratios for 6t = 16, 8, 4, 2, and 1 day sampling intervals are 0.64.
0.38, 0.20, .09 and .04, respectively. In absolute terms these values correspond to the mean of the five
lower curves in Fig. 1. To compare with (1) it is necessary to add the interannual variances and the
new mean ratios are 0.67, 0.46, 0.33, 0.27 and 0.25 for the sampling intervals above.

When compared with results for an AR(1) series with the same autocorrelation (Table 1), sy (u)/s(w)
is quite close to that expected from (2), but as N increases the ratio of 0,, /0 decreases exponentially
to 0.25 rather than 0.36 in Table 1. This discrepancy arises because there is less interannual vari-
ability in the actual u series than for the corresponding AR(1) series. Thus there is an advantage in
considering the RMSE as a fraction of the daily sample standard deviation, as in (2).

More generally, (2) was evaluated from the observed autocorrelations out to a lag of 64 half days
for N = 2, 4, 8, 16, 32 and compared to the observed ratios for u, v, Z and w at each grid point
over the first 12 éarnple months. Generally the RMSE ratijos show good agreement between those
computed and those expected from (2). :

Equal-spaced sampling of simulated data

An alternative approach to the estimation of RMSEs is to use the same sampling procednre with
artificially generated data. For linear variables such as u, data were generated using =; = pr;_; + ¢
where p is the autocorrelation at a 12-hr lag and ¢ a normally distributed random number with
standard deviation o(z)(1 — p?)!/? and means are zero. The interannual variance due to the monthly
means is removed and the results (Table 2) can be compared with those from ECMWTF data for 7 and
W. The excellent agreement confirms the validity of the statistical approach for data with high and
low autocorrelations. '

Table 2: RMSE ratios sy (F)/s(z) obtained for 2 to 32 tegularly-spaced simulated data with 12-hour lag

correlations between 0.0 and 0.9. Also shown are the mean results for @ and &, along with their 12-honrly

autocorrelation.

12-hr { Number of Observations °

Corr. 2 4 8 16 32

9 | T BT T T a1 s | o7 | o3
.8 . .64 | .38 .20 | .10 | .04
.6 .68 .45 | .27 | .14 | .06
4 .69 | 47 (.30 | .17 .08
.2 .69 ! 48 | .32 (.19 | .10
0 70 49| .33 | .21 | .12

%(.80) .64 ~ 1.38].20] .09 | .04

w(.34) | 69 1.47].30].18] .09

It may appear surprising that the results in Table 2 show little sensitivity to changes in the
autocorrelation. Because the interannual variability is excluded, the RMSEs do not follow from (1)
but rather follow from (2), and there is a big difference hetween o and s. It is emphasized that Tahle 2
gives the ratio of the computed standard deviation of the monthly mean arising from less than perfect
sampling to the within—-month standard deviation. As a cbnse’quence of this lack of sensitivity to the
autocorrelation, the results for ¥ and i are less dependent on the method of averaging over manv
gridpoints and months.
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Random sampling

Simulations were also undertaken to see how the variance ratios for the linear variable r would vary if
the samples were taken at random throughout the month. The results (Table 3) show that the RMSE
ratio depends mainly on the number of observations in the sample and corresponds to the results in
Table 2 for r; = 0 unless the lag correlation exceeds 0.8.

Table 3: Random observations: As a function of the 12-hour autocorrelation p are given the standard deviation
of the monthly means based on all 64 observations V.i/?, and the RMSE ratio. (61, 58 and 51 observations
correspond to 5, 10 and 20% missing values respectively.)

P Va/? | Numbers of observations N ;

_ 16 [ 32| 51 (58|61
0.9 | .511 .18 .08 |.02[.00] .00
0.8 | .367 .20 .11 ] .04 .03 | .00
0.6 | .250 .22 | .12 | .05 | .03 | .01
0.4 | .192 .22 {.12].05 .03 .02
0.2 | .154 | 22 | .12 | .06 | .03 | .03
00| .126 ; - .22 .12} .06 | .04 | .03

The conclusion from Table 3 is that randomly missing observations are much more serions than
systematic sub-sampling, apparently because those missing parts of the series are under-represented.
Persistence in the series does not help improve the statistics if computed only from the available data.
Persistence, however, does help one replace missing data by interpolation or statistical modeling. Ap-
parently for small data gaps (< T,) and for linear statistics, interpolation of missing data is desirable.
However, interpolation may have undesirable effects on second moment statistics.

Missing blocks of data

The worst (but not uncommon) case for missing data occurs when consecutive observations are lost.
This was simulated by selecting a random starting time within the month to sample the required
nwnber of consecutive observations. The results (Table 4) show that the RMSE ratio increases sul-
stantially with the lag correlation. _ _ .

For 20% missing data the RMSE ratios increase from 0.04-0.06 to 0.09-0.16 for the range of
autocorrelations 0.3-0.8. As well as causing largest errors in computed statistics, missing blocks of
data are also generally impossible to replace using interpolation or statistical modeling.

Applications

To apply these results and obtain magnitudes of the RMSE, values of s are needed. Fig. 3 shows a
cross section of s(u) for January 1979-1985 from ECMWF data.

The 12-hour annually averaged lag correlations for u are ~0.8 which may be used with Tables 2-4
to determine the RMSE. At 300 hPa s(u) exceeds ~15 m s~! in midlatitudes. Thus from Table 2.
if data were available only every 2 days, the RMSE in ¥ of ~10%, or 1.5 m s~! at 300 hPa wonld
be expected. Or if only 11 equally spaced observations were available, the RMSE at 300 hPa would
be ~ 0.16 x 15 or 2.4 m s~!. Alternatively, if 20% of the 64 possible 12-hourly observations were
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Table 4: Contiguous missing data: As a function of the 12-hour autocorrelation p are given the standard
deviation of the monthly means based on all 64 observations V,,l,“, and the RMSE ratio. (61, 58 and 51
observations correspond to 5, 10 and 20% missing values respectively.)

P ,,1./ ? | Numbers of observations N

16 ° 32 | 51 | 58 | 61
0.9 | .511 .64 .40 | .18 | .08 | .02
0.8 | .367 ~.b3 32 .16 | .09 | .04
0.6 ; .250 .39 1 .24 (.12 1 .07 | .04
0.4 | .192 .31 .19 | .10 | .0G | .04
0.2 | .154 .26 .15 | .08 | .05 | .03
0.0 | .126 .21 | .13 | .07 | .04 { .03
s(u) m s™1? - January 1979-1985
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Fignre 3: Cross sections of the standard deviation of the wind components u averdged around latitude circles
for January from 1979 to 1985. Units m s~ 1.
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randomly missing, from Table 3, the RMSE in u would be ~0.6 m s~1. If the 20% of missing data
were in one block, from Table 4, the RMSE would be ~2.4 m s=1 at 300 hPa.

It is common for stations in Africa and South America to report with only 11 observations per
month. Oort (1983) required a minimum of 10 observations/month for his statistics. For 11 obser-
vations/month randomly distributed the factor would be ~ 0.27 so that the RMSEs in u at 300 hPa
would be up to 4.1 m s~1. KT provide other examples.

Our results give larger RMSEs due to temporal sampling than those of Qort {1978), mainly hecanse
Oort used once daily data which already contain RMSE errors in u of ~0.5 m s~! compared with twice-
daily sampling. Another factor is that Oort averaged the RMSEs over the hemisphere whereas we
suggest that it is more appropriate to average the ratio of the RMSE to the daily standard deviation.

Conclusions .

The ratio of the RMSE of the monthly mean to the daily standard deviation depends on the antocor-
relations and intervai between samples. For the more persistent variables Z, u, T fewer observations
at regular intervals are needed to define a month!~ mean.

The observed RMSE ratios may be reasonabi - simulated using series generated by a first order
Markov process. Random sampling increased the RMSE substantially compared with the same number
of evenly spaced observations and had the effect that the percentage errors accumulated as if the series
were white noise. When the missing ohservations were grouped together rather than heing evenly
spaced, the RMSE increased several fold. . ‘

The number of observations required to estimate a monthly mean depends on the variance of
the daily data and the desired accuracy. Interpolation from the tables shows that the minimmm
requirement of 10 ohservations per month used by some investigators leads to a RMSE of 17-27%
of the daily standard deviation. Clearly station data are not perfect and missing data can be an
issue. We recommend that the amount of data missing and how it was handled should he reported in
observational studies, especially where inferences concerning interannual variability and longer-term
trends are being addressed. .
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Cluster analysis of variables in climate research

K. Wolter
Climate Analysis Center, NMC/NWS/NOAA, Washington D.C. USA

Abstract

~ Anyone dealing with climate research will sooner or later face the dilemma to choose between
climatic data fields that are relatively clean and short, or "noisy", n’d&led with gaps, and often
longer. How can the latter kind be analyzed ? This paper is about one particular technique that
exploits the inherent covariability of geophysical fields in order to retrieve the large-scale signal
from noisy fields: cluster analysis of variables. It operates under the assumption that climate
variability does not occur randomly in space - just like there are preferred and identifiable
long-wave patterns in the midiatitudes, there are preferred regibns of (co-)variability in the tropics,
the most prominent example being the two surface pressure dipoles of the Southern Oscillation.
Such 'ccnu;:rs of action’ are defined, delineated, and separated from noisy regions by cluster
analysis of variables. Note that this technique reiates to the more popular cluster analysis of cases
just as the "T mode analysis" of principal components is related to "S mode analysis”. It has been
applied to tropical ship data (Wolter, 1987), but appears extendable to global ship data (COADS),
and various satellite-based data fields (e.g., high reflective cloudiness - HRC), to name but a few
areas of interest.
Questions addressed include the choice of the clustering algorithm, cluster size selection (both a

" priori and a posteriori), statistical significance, and advantages and disadvantages compared to
other techniques (e.g., roiatcd principal component analysis (RPCA)). What are these clusters
good for ? Two examples: classification of regions m order to créate time series that monitor

climatic change, and use of such time series as inpus into RPCA studies (Wolter, 1988).
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Cluster analysis as an aid to the identification of persistent states

John W. Kidson
Meteorological Service, Wellington, New Zealand

Introduction

In recent years the question has arisen whether, by analogy with simple non-linear models, the atmo-
spheric circulation exhibits multiple equilibria (e.g. Legras and Ghil, 1985; Hansen and Sutera, 1986).
whether some of these preferred states show unusual persistence, and whether there are predictahle
paths for transitions between them. Mo and Ghil (1987) have claimed a number of similarities be-
tween quasi-stationary states of the southern hemisphere circulation defined by zonal wave numbers
0-4 and a relatively simple nonlinear dynamical model of large-scale atmospheric flow. Their resnlts
are not particularly encouraging as persistent states only occurred for 18% of the time during winter
with an average of 2 events having a mean duration of 8 days per season. Only half the nnmber of
persistent states was observed during the summer (Mo, 1986) and overall the southern hemisphere
was found to be less persistent than the northern hemisphere (Horel, 1985; Trenberth 1985), even with
less restrictive measures of persistence. '

Although Mo and Ghil’s analysis used zonal filtering to retain only the long waves, it still inclndes
some short period fluctuations associated with synoptic events and it is desirable to see whether more
promising results might be obtained for the longer periods which are prominent in spectra for both
southern (Kidson, 1988a) and northern (Shubert, 1986) hemispheres.

The results presented here relate to the low-pass filtered variations in the southern hemisphere
circulation. Their characteristic modes have been determined by EOF analysis and cluster analysis has
been applied to see whether multiple equilibria exist. As will be seen, the results are basically chantic
without evidence of preferred trajectories or clustering of states (except about the overall mean). It
is difficult to group the analyses into a small number of preferred states without setting unreasonably
loose criteria for merging and consequently the use of transition tables for prediction as advocated.
for example, by Mo and Ghil (1987), has little value. Further details are given in Kidson (1988h)

Data

The data set. used for this study is the archive of ECMWF analyses available online at NCAR for
January 1980 to December 1986 on a R15 Gaussian grid at 0000 and 1200 UTC. Further details are
provided by Trenberth and Olson (1988).

Analysis was concentrated on the 500 hPa level where, after removal of the mean annual cycle. a
low-pass filter was applied to remove most of the variance for periods below 50 days.

EOF analysis

EOF analysis was undertaken for the complete 7-year sample and for 4 sub-samples grouped into 3-
month seasons using a subset of 621 points from the R15 grid to give an approximately equal weighting
by area. '

The proportion of the variance associated with the first 10 EOF's for each case are given in Tabhle
1. For the unnormalized data, the total variance contribution from the first 10 EOFs is 73.5% for
the year and ranges from 82 to 85% for the individual seasons. The corresponding variance for the
normalized data for the complete year is 67.0%. Overall there are approximately 100 independent data
points for the year and 25 for each season so that the criteria of North et al. (1982) give the relative
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error for each eigenvalue, §);/),, as +28% for seasons and +14% for the year. Consequently EOF
patterns 2 and 3 are not well separated in the annual case;, and some mixing can bhe expected hetween
patterns 4-10. According to the test of Craddock and Flood (1969) only the first three eigenvectors
are significant. They will be referred to later As Z; — Z3. The projection of all states onto EOFs 2

Table 1: Percentage of variance contributed by first 10 EOFs for the complete year and for the seasons Spring
(SON), Summer (DJF), Autumn (MAM) and Winter (JJA) using non-normalized low-pass filtered 500 hPa
height anomalies, and for the complete year using normalized anomalies.

EOF Year Spring Summer Autumn Winter Year
(norm.)
1 18.6 219  27.2 19.5 - 18.8 23.4
2 11.1 12.1 14.8- 12.5 17.3 8.3
3 10.7 115 9.5 10.5 14.0 7.1
4 7.0 8.7 8.6 8.8 8.7 5.8
5 5.9 7.0 7.6 8.0 6.3 5.0
6 4.9 6.5 4.8 6.5 5.1 4.3
T 4.7 5.0 4.2 5.4 4.2 3.8
8 3.8 4.4 3.5 4.2 3.6 3.4
9 3.5 3.4 2.6 3.7 3.0 3.1
10 3.3 2.7 2.2 3.0 2.5 2.8
1-10 73.5 83.2 85.0 82.1 83.5 67.0

and 3 is shown in Fig. 1. As for the projections on the EOF 1,2 and 1,3 planes the pattern is chaotic
with no evidence of any preferred paths or attractors.

Cluster analysis

Cluster analysis (Hartigan, 1975) provides an objective technique to group similar states in what
is essentially a search for analogs. Initially there is one cluster per state, and the clusters are then
repeatedly merged on the basis of the separation between them to form a tree structure. The separation
between states can be computed in various ways and two important variations are simple linkage and
complete linkage. In simple linkage the separation is taken to be the smallest distance hetween anv
members of the two clusters, so that it is possible to formx long clusters in which the end states
may differ appreciably from each other. For complete linkage, the separation is taken as the largest
distance between any members of the two clusters so that the size of the cluster is kept as small as
possible. While the process may be continued until the tree is complete and there is only one cluster
comprising all the original states, it is normally stopped when a small number of clusters remains or
the separation between the remaining clusters becomes too large in some sense. While objective tests
may be constructed to decide the maximum separation below which merging is possible. this may he
better decided subjectively on other than statistical grounds (Gabriel, 1985).

The cluster analyses below were made using complete linkage and both rms differences and pattern
correlations hetween states were tried as measures of similarity. The pattern correlation is obtained by
correlating the anomalies at matching grid points over the two states (e.g. Mo. 1986) and differences
in amplitude are less important than differences in the phase of the patterns in determining their
degree of similarity. Since the mean patterns associated with clusters determined on the basis of rms
differences became increasingly bland as more states were added, and those obtained using pattern
correlations tended to be more distinctive, only the latter are presented here.
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LOCUS OF 50-DAY S.H. EOFS 2 AND 3
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Figure 1: Locus of twice-daily states in phase space projected on to the planes defined by EOFs 2 and 3

All states

It was not feasible to calculate the separations between the anomaly patterns defined at 5-day intervals
over all 621 grid points and instead the coefficients of the first 10 EOFs which account for 73.3% of
the variance were used. Since the EQOFs are orthogonal over the complete grid, the pattern correlation
between pairs of states is identical to the pattern correlation between grid point values that are resolved
in terms of the first 10 EOFs. Because of the 50-day low pass filtering of the original data, most of the
initial merges were between consecutive states. The number of clusters remaining was still 108 when
the pattern correlation dropped to 0.5 and when it was further dropped to 0.0 a total of 37 clusters
remained from the original 499 states. A pattern correlation of 0.0 hetween the most distant points
in the cluster implies that some of the states in the cluster have virtually no relation to each other.
though all are positively correlated with the cluster mean.

The mean anomaly patterns for the states in the three clusters with the highest nunber of members
are shown in Fig. 2. If multiple equilibria exist they are most likely to be associated with these
patterns. Although the probability density of states is greatest near the origin the mean state is not
identified with any of the most populous clusters. This may result from using pattern correlations
rather than RMS differences to determine the separation between states, as small departures from the
overall imnean are easier to imerge in the latter case.

Persistent states

Persistent or quasistationary states may be defined as intervals when the atmosphere is moving rela-
tively slowly through phase space. These intervals may be detected by isolating a sequence of states
which have relatively small differences between them compared to the differences between random
pairs of states. '

A persistent state or event was defined to be a sequence of 3 or more states separated by 5
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ANOMALY PATTERN 948 _ : ANOMALY PATTERN 954
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Figure 2: Mean a.nbmaly patterns associated with the most populous clusters derived from 499 analyses
separated by 5 day intervals: (a) Cluster 948, 31 members; (b) Cluster 954, 22 members; (c) Cluster 957, 21 -

members.
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day intervals for which the pattern correlation between all pairs of states exceeded some minimmmm
threshold. While the number of events found depended strongly on the minimum correlation, their
average length showed little change. For a minimum correlation of 0.5, 123 events were found with a
mean duration of 3.31 consecutive states at 5-day intervals. Increasing the threshold to 0.7 redunced
the number of events to 58 but the mean duration dropped only to 3.07 states. Reducing the threshold
to 0.0 increased the mean duration to 5.25 5-day periods but these can hardly be considered persistent
states when they contain some patterns completely uncorrelated with each other.

To examine the distribution of these persistent events in phase space, plots were made of their
coordinates projected onto the planes defined by EOFs 1-3 which account for ~40% of the overall
variance.

Figure 3: Plot of Z; and Z; coordinates of all analyses included in persistent events determined hy a minimnm

pattern correlation of 0.7

Fig. 3 shows the distribution in the Z;-Z; plane of all states included in the 58 events ohtained
using the minimum pattern correlation of 0.7. A similar but denser pattern is obtained for the events
obtained with a minimum correlation of 0.5. No obvious evidence of clustering can he seen and the
same holds for the plots for the Z,-Z, and Z;~Z planes (not shown). A comparison of Fig. 3 with
Fig. 1 suggests that the density of persistent states does not increase towards the origin to the same
extent as the density of all states and this is confirmed by a plot of the ratio of the two density
distributions (not shown). States with large departures from the origin in any direction are more
likely to be persistent than those close to the origin but they tend to occur when the movement slows
as the anomaly reaches maximum amplitude in a similar manner to a simple harmonic oscillator snuch
as a pendulum. .

- Although the distribution of the 58 persistent states obtained above in the EOF 1-3 planes ap-
peared fairly homogeneous, cluster analysis was again carried out using the pattern correlation between
~ the mean anomalies at each of the 621 grid points to form the similarity matrix. When the minimmm
pattern correlation for the multiple linkage clusters was set at 0.7, the same value as used to determine
the persistent events, 50 clusters still remained. This number of clusters fell to 35 when the minimnmm
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Pattern correlation was reduced to 0.5, and to 11 when it was further reduced to 0.0. Since these
clusters are likely to depend on the data sample used rather than any underlying physical cause they
are not reproduced here. Five of the 11 clusters (including 20 persistent events) showed predominantly
wave number 3 patterns, there were 2 partial and 2 complete wave number 4 patterns (inclnding 27
events) and the remaining 2, which were merged from 11 events, depicted large anomalies in the sonth
Pacific.

Summary and conclusions

From 7 years of 500 hPa analyses from the southern hemisphere three principal EOFs were fonnd
which accounted for 40% of the variance of the lowpass filtered fields.

Plots of the trajectories of the daily analyses in phase space projected on to the planes of the
principal axes of variation, EOFs 1-3, showed apparently chaotic behavior and no sign of clustering
about multiple equilibria. This was confirmed by cluster analysis using pattern correlations between
the first 10 EOF's as a measure of similarity. The total of 499 states separated by 5-day intervals conlil
be .condensed only to 37 clusters by allowing some totally uncorrelated states to bhe included in the
same cluster.

Persistent events were derived from this same set of 499 states with the requirement that the
pattern correlation hetween all states included in the event exceeded some minimum value. The mean
duration of these events did not exceed 3, or occasionally 4, consecutive states at 5-day intervals and
was not very sensitive to the choice of minimum pattern correlation. A threshold of 0.5 produced 123
events, while increasing it to 0.7 reduced the number of events to 58 with little change in their mean
duration. Cluster analysis again failed to provide a small number of groupings of similar events.

Since only 36% of states are included in persistent events when a reasonable criterion for matching
patterns is used (pattern correlation of >0.7), these events are clearly separated by more than fhe
fast excursions through large and infrequently visited parts of phase space ohserved in Mo and Ghil's
(1987) model. The persistent states are widely distributed in phase space and a manageable number
of clusters is obtained only through use of a criterion that allows some totally unrelated states to
be grouped together. Even when persistent states are grouped by season and the number of clusters
is small, most transitions occur between persistent and non-persistent states. The few transitions
between persistent states that are observed are insufficient to establish ai‘climatolog'v’.
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Nearest neighbour analysis as applied to the geographic
distribution of tornadoes
K.K. Leiker
Department of Geography, Westfield State College, Westfield Mass. USA

' Abstract

Nearest-neighbor analysis, a spacing index, is used to examine
the spatial distribution of tornadoes in New England. Tornado
distribution maps are often used ﬁo assess tornado hazard
potential. However, a major question about distribution maps
concerns whether the distribution ie random? Nearest-Neighbor
analysis, developed by botanists in the 19508, provides an index,
R: which objectively describes any point distribut;on pattern.

The nearest-neighbor index , R, is equal to the actual mean
spacing distance, Dobs' divided by the expected mean distance,

D if that distribution were random. D ise the mean of the

exp’ obs

distances from each point (i.e, tornado) in the distribution to its
nearest neighbor. Dexp is a Poisson function given as 1 over 2
times the square root of N/A, where N = number of points and A =
the area of the distribution.

R ranges in a continuum from zero to 2.15: R = 0 indicates
extreme clustering; 1.0 indicates a random pattern; and R > 1.0
represents dispersed patterns.

‘Nearest-neighbor analysis was apélied to the distribution of
tornadoes in the US New England region during the period 1950-1986.
There were 334 tornadoes during this period, distributed in a very
uneven pattern. The results show a heérest—neighbor index of

R = 0.87, which indicates the distribution is not random and tends

toward clustering.
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Climatic stability at Bidar, Bijapur and Bellary

B.P. Ratnain and A.R.S. Bhat
University of Agricultural Sciences, Dharwad-580005, India

Introduction

The year-to-year fluctuations in the rainfall in India cause the shift of the climate of a statinn in the
extreme years into the wetter or drier type from the normal. As much of the agriculture in India is
rainfed the study of the frequency of climatic shifts into the wetter or drier side at a station over a

long period is vital.

Material and methods

Three representative stations in North Karnataka viz., Bidar (17°51'N, 77°39'E, 664m), Bijapnur
(16°50'N, 75°47'E, 5941n) and Bellary (15°09'N, 76°55'E, 449m) (see Fig.l) were selected. Montlly
rainfall and temperature data for the period 1901-1974 were available.

7 7 76 ” e

.

Figure 1: Location of the stations
The following three methods of climatic classification were used:-
1. The aridity index of de Martonne (1926),
I= Annual precipitation (mm)/{Mean annual temperature(°C)+10]

The climatic classification based on this index is as follows:- greater than 30- forest; 20 to 30 -
prairie; 10 to 20 - dry steppe and less than 10 - desert.

2. The moisture index of Thornthwaite and Mather (1955), .

I = 100 x (P-PE)/PE
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where P and PE are annual precipitation and potential evapotranspiration in mm.

Based on the moisture index the climate is classified as follows: above 100- A perhumid; 100 to
20-B humid of four sub-types; 0 to 20-C; moist subhumid; -33.3 to 0 - C; dry subhwmnid; -66.7
to -33.3 - D semiarid and -100 to -66.7 - E arid.

3. Troll (1965) used the duration of humid months ie., the months in which the

precipitation exceeds PE to classify the clixﬁate thus: 12 to 9.5 - tropical rainy; 9.5 to 7 - humid;
7 to 4.5 - wet-dry semiarid; 4.5 to 2 - dry semiarid and less than 2 - arid.

The climatic type of each individual year from 1901 to 1974 was determined for Bidar, Bijapur and
Bellary according to the above three methods. The histograms showing the frequency of the different
climatic types at each station were plotted in Figs.2a,2b, and 2c separately according to the three
classification methods. _ v

To study the degree of distortion from symmetry, skewness as computed by the Karl Pearson
coefficient of skewness v = (mean — mode)/(standard deviation). In the present study it was difficult
to find out the modal value. Hence the approximationmean — mode ~ 3(mean — median) was employed
to give the actual formula used g = 3(mean — median)/(standard deviation).

Results and discussion

Bidar is situated in the transitional belt in the northeastern corner of Karnataka, receiving a normal
annual rainfall of 908mm. Both Bijapur and Bellary belong to the dry belt of North Karnataka, the
normal annual rainfall being 521 and 528mum respectively (Fig.l). The normal annual PET at Bidar,
Bijapur and Bellary are 1437, 1496 and 1600mun respectively. Because of the high PET Bellary is the
driest station.

According to de Martonne(1926) prairie prevailed at Bidar in 55% of the years. Dry steppe was
observed in 64% and 70% of the years at Bijapur and Bellary respectively (Fig.2a). The coefficient of
skewness was 0.04 at Bidar, 0.37 at Bijapur and 0.04 at Bellary. The climatic tilt is from the most
frequent type to the drier climatic type. At Bidar the tilt is from prairie to dry steppe. whereas at
the other two stations it is from dry steppe to desert.

Semiarid is the most frequent type at Bidar(59%) and Bijapur(57 %) and arid(62%) at Bellary
according to Thornthwaite and Mather(1955) (Fig.2b). The coefficient of skewness was -0.10 at Bidar.
0.23 at Bijapur and 0.20 at Bellary. Interestingly at Bidar the climatic tilt is towards the wetter side
viz., from semiarid to dry subhumid whereas both at Bijapur and Bellary it is towards the drier side
viz., from semiarid to arid.

At Bidar dry semiarid prevailed in 88% of the years, whereas and was the most frequent type at
Bijapur(57%) and Bellary(69%) according to Troll(1965, Fig.2c). The coefficient of skewness was 0.12
at Bidar, not estimable at Bijapur and -0.1877 at Bellary. The climatic tilt is towards the drier side
at both Bidar and Bijapur viz., from dry semiarid to and whereas it is towards the wetter side viz.
from arid to dry semiarid at Bellary

Potential evapotranspiration (PET) occurring in the numerator in de Martonne's aridity index is an
underestimation. Hence the most frequent climatic type is dry steppe at Bellary. Troll's classification
puts a rigid condition that P must exceed PET for a month to be classified as wet. Therefore at
Bijapur arid type has the highest frequency. Thornthwaxte and Mather classification has heen widely
used and the results are realistic.
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Applications of the theory of extreme values in climatology

) R. W. Katz T. Farago ‘
ESIG/NCAR, Boulder, Colorado Central Meteor. Institute, Budapest, Hungary

Introduction and Summary

The importance of considering extreme climate events in assessing the impacts of climate on society
is now widely recognized (e.g., Mearns et al., 1984; Wigley, 1985). Among other things, scenarios
of future climate must adequately reflect any possible changes in the likelihood of extreme events.
Little attention, however, has been devoted to developing methods that are appropriate for making
assessments of the impact of extreme climate events.

Nevertheless, a well-developed statistical theory of extremes does exist (e.g., Leadbetter et al..
1983). Although there have been many attempts to apply it in climatology, this theory has not vet
been successfully integrated with realistic applications. Most of the research has either: (i) dwelled on
the theory of extremes with only a superficial application to climate (e.g., Tiago de Oliveira, 1986): or
(ii) treated realistic climate problems without the proper application of theory (e.g., Tahony. 1983).

We review some of the specific issues that arise in attempting to apply the theory of extreme valies
to climate, issues for which clear-cut solutions have yet to be identified. First, the classical theory of -
extreme values is briefly outlined, both for the maximum of a sequence as well as for the nunber of
exceedances of a threshold. Then the issue of the effect of serial correlation of climate time series on
the theory of extreme values is considered. In particular, a blatant example of the inisapplication of
a theory based on means to extremes is identified in the climate literature. Next, the issue of how to
take into account the seasonal cycles of climate time series is considered. The various approaches that
have been proposed for dealing with this problem each possess certain advantages and disadvantages.
making it unclear which one is preferable. Finally, one way in which the application of the theory of
extreme values might aid in the resolution of certain questions related to climate impacts is suggested.
Specifically, the question of how the likelihood of extreme climate events would change with changes
in the average and variability of climate is addressed.

Classical Theory of Extreme Values

In this section, the so-called classical theory of extreme values is briefly reviewed. This theory is con-
cerned with the extreme values of a sequence X, X3, - X,, of independent and identically distribhnted
(with common distribution function F, say) random variables. The distribution of the maximmmn

M, = max(X,, Xz, , X,) , (1)

as the sample size n tends toward infinity is of interest. In addition, the distribution of the number
of exceedances of a threshold

n
No = 3 X(Xi>ca) (2)
. i=1
where x is the indicator function, is considered as the threshold ¢, and sample size n both become

large.

At least from a probabilistic point of view, the classical theory of extreme values has been derived
in nearly complete generality (e.g., Leadbetter et al., 1983). This theory is developed in a parallel, if
not completely analogous, fashion to that for averages. In place of the Central Limit Theorem. it can
be shown that the distribution of the maximum M, tends toward one of three possible distribntions
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(termed Type I, Type II, and Type III extreme value distributions). Specifically, if
lim, .o Pr{an.(M, - b,) < t} =6G(z) (3)

where @, > 0 and b, are normalizing constants, then the distribution function G must he one of
three possible forms. For instance, the Type I extreme value distribution, most commonly applied in
climatology, is given by

G(z) = exp(—e77) (4)

where, —00 < z < o0.
except for a change in location and scale.

Necessary and sufficient conditions for the three possible forms of distribution function G in (3)
to arise depend upon the shape of the right-hand tail of the distribution function F of the individual
random variables [i.e., the behavior of 1 — F(z) for large z]. The Type I extreme value distribution
appears in (3) when F has an infinite right-hand tail [i.e., F(z) < 1 for all 2] with 1 — F(z) decreasing tn
zero at a sufficiently fast enough rate as z tends to infinity. In particular, nearly all of the distribntions
(e.g., exponential, gamma, lognormal, normal, Weibull) commonly fit to individual observations of
climate variables give rise to the Type I extreme value distribution as the Limiting distribution for the
maximum. .

It can also be shown that the limiting distribution of the number of exceedances NV, is Poisson. if
the threshold ¢, is increased at such a rate that, as the sample size n increases, the mean number of
exceedances of the threshold remains roughly constant. Specifically, )

e—ka
lim, .o Pr{N, =k} = 3 (5)
where .
7 = lim,_ o n[l — F(c,)) (6)

This Poisson approximation has been applied, for instance, to the exceedance of thresholds bv time
series of wind speeds (Ross, 1987) and to the occurrence of below freezing temperatures (Wavlen,
1988). Moreover, Revfeim and Hessell (1984) represent the sequence of occurrences of extreme events
(e.g., wind gusts) as a Poisson process.

Persistence of Climate

Although the classical theory of extremes makes the asssumption of independence, it is well known
that climate time series typically possess positive autocorrelation. This guestion of the effects of
serial correlation on extremes has created much confusion among climatologists. In particular. it is
apparently commonly believed that the concept of the ‘effective number of independent samples’ is
relevant in accounting for the effects of dependence on extremes (e.g., Tabony, 1983). This claim is a
blatant example of the misapplication of a theory based on means to extremes.

In an attempt to clarify this issue, the nature of the extension of the classical theory of extreme
values to the case of weak dependence is briefly reviewed. Recall that the Central Limit Theorem
for averages still holds for stationary processes with weak dependence, but the normalizing constant
representing the standard deviation of a time average must he adjusted. In particular. the persistence .
of climate time series inflates the variance of a time average relative to the independent case. This
adjustment for variance inflation has led to the concept of the ‘effective number of independent samples’
(e.g., Madden, 1979). '

The effects of dependence on extreme values are, however, quite different. For weak dependence,
the normalizing constants a,, and b, in (3) for the limiting distribution of the maxinmm are exactly
the same as in the independent case. Even the rate of convergence to the limiting extreme valne
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distribution has been shown in some cases (e.g., stationary normal process) to he essentially unaffected
by dependence. Similarly, the Poisson limit (5) for the number of exceedances of a threshold still
holds under weak dependence. In this regard, it has been suggested (e.g., by Buishand, 1986) that
the Poisson approximation works better in practice for climmate time series if ‘clusters’ of individual
exceedances are combined into a single exceedance event.

The type of stochastic processes usually employed to model climate time series (e.g., antoregressive-
moving average process) do possess weak enough dependence that the classical theory of extreme valnes
is still in force. Specifically, when dealing with a stationary normal process, the dependence is weak
enough if the autocorrelations pn, = Corr(Xi, Xitn) tend to zero at a fast enough rate that

lim, .o pnlogn =0 (7)

An issue that does have significant implications for applications of the theory of extremes concerns
whether climate time series actually possess stong dependence (or ‘long memory’). Under strong
dependence [when, in particular, (7) does not hold in the case of a normal process], other forms of
limiting distributions for the maximum than the Type I, II, and III extreme value distributions are
possible (Leadbetter et al., 1983). In this regard, the so-called Hurst Phenomenon, which concerns
the behavior of the ‘rescaled adjusted range’ (a rather complex formn of extreme value statistic). is
exhibited by many time series considered in water resources research (e.g., precipitation. stream flow).
One of the possible explanations for this phenomenon is strong dependence (Mandelbrot and Wallis.
1968). Given this combination of theoretical developments and empirical ohservations. it is surprising
that this issue has received so little attention in the climatological literature.

Seasonal Cycles

Although the classical theory of extremes makes the assumption of identical distributions. climate time
series naturally contain seasonal cycles. Several approaches have heen proposed for dealing with this
problem. One technique involves simply standardizing each random variahle to remove any seasonal
cycles that might be present in the mean and variance; that is, constructing a new sequence of random
variables _
X! = X. - E(X))
" [Var (X))
The classical theory of extremes can then be applied to the standardized sequence X3
X}4,-+-, X (as has been done, for example, in the case of extreme wind speeds by Zwiers. 1987).
Although this procedure is theoretically sound, it may leave much to be desired from a practical point
of view. The method measures extreme values at different times within the year relative to their
respective mean and variance, rather than in absolute terms. Such a measure wonld not he very
meaningful for many climate impact studies in which thresholds for extreme values are taken as fixed
quantities. :

A second approach consists of applying extreme value theory separately to individual time periods
(e.g., months or seasons) and then combining these results to obtain a single distribution for the
annual maximum (Carter and Challenor, 1984). If it is assumed that the maxima for the individnal
time periods are independent, then the combined distribution is simply the product of the individnal
extreme value distributions. A debate has raged in the climatological literature over whether this
method is superior to simply fitting a single extreme value distribution directly to the annual maxima
(Tabony, 1983).

The classical theory of extreme values has also been extended to this particular case of nonsta-
tionary time series. Expressions showing how the normalizing constants a, and b, in (3) become more
complex for periodically varying means have been derived (Horowitz, 1980; Leadbhetter et al.. 1983).

(8)
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However, it is not clear how realistic some of these theoretical developments are for climatological ap-
plications. Ballerini and McCormick (1988), for instance, show that the form of limiting distribhntion
for the maximum in the case of a stationary process with weak dependence and periodically varving
mean and variance is determined by the period of maximal standard deviation. They use an exam-
ple of time series of daily temperature to motivate the problem. However, temperature is generally
most variable in the winter, not the season during which the annual maximum temperature ordinarily
occurs!

Climate Impacts

As mentioned in Section 1, the need to consider extreme events in climate impact studies is now
recognized. Mearns et al. (1984) addressed the question of how the probability of occurrence of an
extreme event would change as the overall climate changes (e.g., in terms of means and variances).
Extreme high temperature events, such as the maximum temperature on a single day or on a run .
of consecutive days exceeding a threshold, were considered. A simulation approach was employed to
obtain numerical results concerning the relationship between the likelihood of these extreme events an
the mean, variance, and autocorrelation of time series of daily maximumn temperature. More insight
into the nature of these nonlinear relationships could be provided by direct reliance on extreme valne
theory. Specifically, this approach would enable analytical results to be derived. If progress is to be
made on factoring consideration of extreme events into climate impact assessment, then the theorv of
extreme values needs to be exploited.
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Bayesian error update of climatological distributions

: A.R. Boehm
ST Systems Corporation, Lexington MA, USA -

Abstract

The natural variability of weather causes noticeable error in
specifying climatological distributions. Estimating this error is
neceséary to provide design engineers with the risk  of exceeding a
value. The binomial distribution gives the probability of a sample
(iid) Dbeing above a given value. Thus, given a sample and a suitable
prior distribution, Bayes law shows that the beta distribution gives
the error in probability for a given value. One way to specify a
beta distribution is with a mean and a sample size. Given that the
beta mean can be specified for any value of the climatological
distribution, the error in probability (fractile error) can then be
calculated for any value. In addition, since the beta distributions
continuously wvarying with value provide a joint density in
fractile/value space, the error distribution for value at a specifiéd
fractile can also be calculated.

Weather samples are not independent. An equivalent independent
sample size, Nc, provides a method of taking dependence into acceount
when specifying error. However, N: for the variance of a sample can
be quite different than N= for distribution error. This difference
is true in theory, e.g. a first order ARMA process, and with observed
weather data. N: has been investegated for several weather elements
in particular sky cover and total sunshine.

The -same theory can be used to specify 'grfor in spatial
intefpolation schemes. N= is used both as a weight to account for the
relative error amohg observation sites (due either to different
observation instruments or periods of record) and is itself analyséd
in space taking into account the increase in error with increasing
distance from observations. »
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Assessment of recent great Salt Lake climatic conditions using a
Box-Jenkins model

R.C. Balling
Department of Geography, Arizona State University, Temipe AR, USA

Abstract

ABSTRACT. Between September, 1982 and June, 1983, the Great Salt Lake
in western Utah rose an unprecedented 1.5 m resulting in serious economic
and environmental damage i: ihe area. Several researchers analyzed
snowfall, temperature, and precipitation data from the watershed and
concluded that the climatic events leading to the rise in the lake have a
recurrence interval of about 100 years. Other'information suggested a much
longer recurrence interval for the unusual climatic events of the early 1980s.
In this investigation, a Box-Jenkins model is applied to the long-term (1848-
1987) water levels of the Great Salt Lake. The residuals from the model
show that the:recent disruption in lake levels is more than twice as large as
any previous change inr the 140-year record. Further statistical analysis of
the Box-Jenkins residuals produces a recurrence interval of approximately
7000 vears for the recent rise in the lake: the result is an order of magnitude
higher than most previous estimates. The Box-Jenkins 'modeling_ approach
used in this study appears to be useful in assessing a multi-dimensional

departure from “normal” climatic conditions.
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A framework for interpreting rainfall models

K.J.A. Revfeim
Meteorological Service, Wellington, NZ

Introduction

The appearance of phrases such as ‘a new distribution’ or ‘a new method’ in summaries or abstracts
of papers on geophysical subjects is inclined to leave a reader somewhat skeptical about the substance
of the claim. If it is a ‘new’ variant then the question will be _ is it better? Finally while the criteria
for judging how it is better may be sound for comparative purposes, the logic, realism or descriptive
use of the statistical model underlying the geophysical process may make the claim presumptious.

The words ‘new’ or ‘improved’ most often describe increases in mathematical or statistical complex-
ity unrelated to physical limitations on the process. For example the usual form of the 3-parameter (sn-
called) Generalised Extreme Value (GEV) distribution, considered as an advance on the 2-parameter
Extreme Value(EV) distribution, sets upper or lower limits on the data range depending on whether
the introduced third parameter is positive or negative. Usually there is no restriction on parameter
sign in the estimation method and in most published examples the estimates of the index k take
negative values. Thus by implication the process still has no upper bound which perpetuates the
conceptual contradiction in flood studies of ‘improved’ predictions of mean maxima using GEV and
probable maximum precipitation or flood (PMP or PMF). Justification for such studies seems to he
that it involves more parameters to describe the process so it must be better.

Physical questions concerning the processes underlying rainfall totals or maxima can be built into
statistical models for data analysis. After analysis questions can be asked about how well the physically
meaningful model parameters represent mean or maximum numbers of events (rates of occurrence) or
event sizes for particular regions or locations . Empirical models include:-

Parameters | Extremes Total Amounts
2 Gumbel (Type I EV) Gamma (T')
Frechét (Type II EV) Log-normal
Weibull (Type III EV) " | Kappa (Mielke, 1973)
3 Jenkinson (GEV, 1955) Generalised Ganuna
Generalised Pareto (van Montfort & Witter, 1986) | Shifted log-normal

Log-logistic (Ahmad et al, 1988) .
Two-component EV(TCEV Rossi et al,1984) TC total amount(TCTA)
Wakeby (Greenwood et al, 1979) e )

4
5

Assessment of which distribution(s) give better {or best) representations of past data is usnally
based on goodness of fit or accommodation of ‘outliers’. However one should always be aware of
the falsity of trying to model a mixture of processes or régimes with an over-simplified model or
without some judicious censoring or prior classification (Klemes, 1986). Eventually the direction, if
any, of further generalisation becomes difficult to justify and is usually tempered by prohlems with
parameter estimation. On the other hand there is a quite natural progression in extending simple
models based on assumptions about processes underlying rainfall extremes or totals. Some of these
process generated models have direct analogues in the empirical distributions while others show up
some of the unrealistic expectations of ‘improvement’ in the empirical search for ‘truth’.
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Physical models

The simplest 2-parameter physical models of rainfall maxima and totals are well documented in the
literature; see Revfeim (1983) for other references. Assuming a Poisson distribution of event occurrence
(at rate p) and an exponential distribution of event sizes (with mean p) we get the distribution funcfinn
for maxima (within a prescribed time interval)

Ga(z) = (exp[—pe_’/“] —e ?)/(1—e7") (1)

and density function for totals

ha(e) = ~te "=/ 3 (pz /) /ri(r ~ 1) (2)

r=1

There are obvious extensions to 3-parameter models by including the more realistic assumption of
Gamma or Weibull distributed sizes with non-zero mode i.e. the most frequent amount in a rainfall
event is not zero! Relaxation of the point process model can also be made assuming independent
exponential distribution of durations (Rodriguez-Iturbe et al , 1984; Revfeim. 1985). Various other
ways of introducing a third parameter might be tried such as including some stochastic dependence
in size or occurrence (Leadbetter et al, 1989), or in some negative exponential relationship hetween
size and occurrence.

In the point process model above it is assumed that the size and number of events is unbhonnded,
or at least that the effects in the underlying distribution tails is negligible. Natural 3-parameter
generalisations are obtained by including a size limit parameter (representing the concept of prohable
maximum precipitation PMP) or the maximum number of events that can occur in finite time (the
quasi-binomial nature of synoptic events). For example if we retain Poisson occurrence but assmmne
that event sizes have a Beta distribution with F(z) = 1 —(1~z/un)" then the distribution of extremes
becomes ' '

Gar(2) = {expl—p(1 — z/um)") — e #}/(1 — e7°)

"If e”® is negligible Ga; is easily recognised as an analogue of the so-called Generalised Extreme
Value distribution (Jenkinson, 1955) but restricted to positive values of 7 and defined on the range
0<z<pun :

On the other hand if we retain exponentially distributed sizes but assume that the nnumber of
events have upper limit A, and occurrences have a binomial distribution with mean rate p. then it is
easy to show that

Gaz(x) = {(1 — pe™*/# /X — (1 — p/A)}/{1 = (1 - p/N)}

. If (1 — p/2)? is negligible we have the alternate exponential limit form of the EV which is surely

just as general as G3;(z). Better still G3; and G3; have physical interpretations and could be nsed
appropriately depending on whether a bound on the size of event or number of events was the dominant
constraint. Further details are given in Revfeim (1989).

Both of the above 3-parameter generalisations can equally be applied to the Componnd Poisson
distribution of totals h, although they do not lead to convenient closed forms; for instance the Beta
distribution does not have the additive reproductivity of the Gamma distribution. However expressing
the moments of these distributions in terms of the parameters is quite straightforward and can he nsed
to test the realism of estimated bounds if there are feasible solutions to the moment eguations.

Additional parameters can be introduced with powers of data values (z¥,v > 1 similar to Weibull
replacing exponential) to give more realistic non-zero modality of event size, or by adding some form
of dependence. However allowing for sensitivity to, and the practical use of, increasingly sophisticated
models there is perhaps more purpose in considering a mixture underlying extremes or totals.

192



Mixtures

Concurrent weather processes or alternate régimes are often recognised by the description of types
of events or the nature of seasons (e.g. state of ENSO index). First we need to establish the clear
distinction hetween a distribution arising from a mixture of two (or more) concurrent processes anl a
mixture of two (or more) alternate régimes. Suppose we have two Poisson processes of events occenrring
at rates p;, p; where each event has size distribution F), F, respectively. Distributions arising from
these two types of mixtures are set out below where the probalilities of the alternate régimes are p
and¢g=1-p. .

Concurrent Processes Alternate Régimes
All observations (P1Fy + p2F2)/(p1 + p2) (porF1 + gp2F3) [(Pp1 + 4p2)
Maxima G1G; PG1+ ¢G>
Totals e ”H, +e H, + H ® H, pH, + qH,

In the pdf array G;, H; correspond to equations (1), (2) and the convolution Hy; ® H, correspons
to the combined total from joint occurrence of both processes.

The concept of two component processes underlying maxima has heen considered by Wavlen
and Woo(1982; who by classifying floods into rainfall-generated or snowmelt-generated were really
monitoring alternate régimes) and Rossi et al (1984). In the latter case the TCEV may be written in
terms of recurrence rates p + € and sizes u + § as

Gy 81p{—(p+ e)e"/(““‘) _ (p _ e)e—ar/(u—é)}
exp{—2pe [l — oz /pu+ 7(z/p)?]} + O(&/pu)?

where o = (6/p)(6/11—€/p) and T = (§/u)?/2. While it is possible to derive approximate equatinns for
moment and maxiinun likelihood ( ML) estimates of the parameters they may not provide a feasible
solution. It seems more important to question the lack of realism in an implied underlyi ing mixture of
exponentially distributed event sizes. Unexceptional events with mode near zero might be approx-

imated by the exponential distribution. However one would expect that the alternate component of
a mixture would have a significantly non-zero mode; at least if it was expected to he distingnishabhle
from ‘ordinary’ events. Thus a model with relatively high order gamma or similarly distributed event
sizes would seem to be more applicable. Such a model was considered for dealing with the mixture of
‘regular’ storms and rare tropical cyclone events in Revfeim(1986).

Two-component total amounts(TCTA) could be expressed empirically as the sum of two gamma
distributed values but for the parameters to be estimable the two modes need to be readily distin-
guishable in a histogram. Such observations would seem to be rare in the ‘noisy’ histograms of real
rainfall data although there are exceptions e.g. Landsberg(1975).

Similar to the considerations for maxima above a more realistic approximation might be the sum of
a compound Poisson variate and a lower rate alternate Poisson process of non-zero-modal distributed
sizes. Of course this introduces a fifth parameter for the modality of the sizes. Assuming that tliere
are conceptually plausible models for two-component processes with tractable methods for estimating
parameters then results from analysis of totals should give parameter estimates comparable with the
analysis of maxima particularly over typical event duration times such as 1 or 2 days.

X

&

Alternate régimes

This class of models does not appear to have received much attention (at least in the literature) hut
it does pose some of the questions about rainfall data that one might seek an answer to. For instance
is there any evidence that in some years (or rainfall seasons) there are greater rainfall amounts from
similar numbers of event occurrences? Or are the data representative of régimes with differing rates of
occurrence but similar event sizes? At least in the latter case there might be supporting information
from data on numbers of days with rain or counted frontal passages.

193



The case of the same exponentially distributed event sizes with mean s, and Poisson ocenrrence
with differing rates pte is a 4 parameter estimnation problem for régime probabilities p, ¢ with moment
solution (if it exists) for total amounts obtained from

L; = k2 - 2uk = 4pq(en)?

Ly = ks— 6p(kz — pky) -8pg(p — q)(en)®

Ly = ki~ 12p(ks — u(3k; — 2uky)) = 16pg(1 — 6pg)(ep)*
where k,, k2, k3, k4 are the first four cumulants, leading to a quartic in pu, L,Ly — L2 + 2L3=0. If a
solution exists then p = {1 + [1 — 1/(1 + L3/4L})]'/2}, ¢ is obtained from the relationship L, and p
from the mean k; = plp + €(p — q))- ‘

The complementary case of two régimes with the same rates of occurrence p but differing expo-
nentially distributed sizes with means g + § may provide a moment solution from

Ly, = paz/ry—al = 4pg(ép)?
Ly = pasry/rz—aja; = 8pgu(ép)iry
Ly = pasri/r3—al = 16pg(uépry)?

where a,, a3, a3, a4 are the first four raw moments and ry = 2 + pyT2 =6+ 6p+ p2, .
r3 = 24 4+ 36p + 12p? + p3. The resulting equation is of order 7 in pand LyLy — L% = 0 has at least
one real root but the existence of real solutions for the other parameters p, u, 6 is still not assured.

In a purely empirical setting the right skewed tail would invite a ‘normalising’ transform. The nsnal
Taylor series expansion shows that a square- root transform of an h;(z) CP variable has approximate
mean ,/pfi(1—1/4p) and variance u/4, and a logarithm transform has approximate mean In(pu) —1/p
and variance 2/p. This provides a possible ML solution for both cases of constant u and constant p
which translate to an mixture of approximately normal variables with constant variance. Ran’s(1948)
solutjon to a mixture of normal variables with different means and constant variance is a simplification
of the original 5-parameter (including different variances) problem of Pearson(1894) with its nonic
equation solution for moment estimates. The 5 parameter model of a mixture of régimes with different
event sizes and rates of occurrence is likely to be as elusive in application as the search for mixtures
of normal distributions.

Analyses of maxima from alternate régimes (pG; + ¢G;) for typical event durations such as 1 day
should give supporting parameter estimates; moment solutions are tractable but unattractive.

Examples

The clear bimodiality in annual rainfall totals for Dakar(Landsberg, 1975) invites fitting of an alternate
régime model to Sahel region data. Data for the period 1896-1983 (kindly supplied by P.D. Jones)
were first analysed assuming the simple single process model ha(z) given by (2) with results as shown
in Table 1.

Table 1. Mean recurrence rates g and mean event sizes ft for Dakar rainfall.

Month P f 17 Mean total
(events/month) : (size/event) (mun)
June 1.5 | 9.8 14
July 3.6 | 224 80
August 6.7 ; 32.9 219
September 9.3 | 15.7 ’ 146
Octobher 1.9 23.6 44
November | 0.3 \ 9.3 2

Initial estimates were then made for the alternate régime model assuming constant p or y. The
results in Table 2 show greater consistency for constant u than constant p and would encourage further
enquiry as to the mixed model representativeness of the rainfall climate in the Sahel region.
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Table 2. Moment (MO) and maximum-likelihood (ML) estimates of alternate régime (probabhilities
p, 1 — p) parameters. '

same rate/different amounts different rates/same amount

Month P F) i 3 B E ‘ i

 June MO [033] 55| 1.6 27017 | 03 4.8 4.1

ML | 0.21 | 2.1 3.9 3.9 1069 | 43 3.2 4.5

July MO | 0.49 | 8.1 9.9 5.3 || 025 5.2 5.2 10.3

) ML | 0.55 | 1.1 |114.6 44/ 0.67| 4.9 1.8 18.8

“August | MO | 0.40 [ 20.1 | 10.0 4.5 [ 0.45 | 18.2° 8.0 11.5

ML | 0.41 1.9 | 146.9 12.3 il 0.46 6.8 1.0 31.8

September | MO | 0.47 | 17.7 8.1 . 2.7 1026149 7.3 7.9

ML | 0.46 | 11.9 12.1 3.3 | 0.43 9.7 14 14.6
Conclusions

The application of 3, 4 or 5 parameter statistical distributions from the ‘standard’ repertoire to rainfall
data may occasionally show a ‘better fit’ of a particular distribution under certain comparison criteria.
For a different data period for the same station or for different locations it may be found that the
distribution is not the best. That is justification for a model may not he universal and the practitioner
is unable to identify the problem because the parameters do not have a physical interpretation.

Generated models of rainfall processes can provide as much variety of shape in statistical distribn-
tion as the standard repertoire. The nature of the local rainfall climate can be included in the model
as interpretable parameters. Limits on the numbers of synoptic rainfall events that might ocenr can
be estimated as well as upper bounds on the size of events. Refinements to these models are an orderly
procedure within a natural framework but are restricted for the present by problems of identification
and parameter estimability. '
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_Statisticill problems of climate monitoring

G.V. Gruza _
" Hydromet Centre, Moscow, USSR

Abstract

- Monitoring of changing climate became nowadays a new important
task of climatology; The goal of climate monitoring (CM) is:
collecting and summarizing of climatic data and determination of
characteristics of current Earth climate, probabilistic evaluation
bor» anomaly range of climate system state, revealing of natural and
man-~-induced causes of o‘bserved anomalies and maybe glso' the estimate
of scales of probable climate changes in the future. While determi-
ning CM a distinction should be made between operative monitoring
of climate system parameters and CM as a scientific problem.

, On air temperature data a set 'of statistical parameters is
proposed that enables us to characterize anomalies of different
scales and purposes in compatible unities; Statistical characteris-
tics of Climate anomality indices for spatlial and :or different
time intervals and methods of visual pepresentation of climatic

trends are presented.
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Identification of a time vé.rying transfer function model for the
variations of air temperature

H. Madsen J. Holst
IMSOR Technical University, Lyngby, Denmark Dept. Math. Stats, Univ. Lund, Sweden

Introduction

Transfer functions models are frequently used for describing relations between climate variables, but.
traditionally, only models with constant coefficients (i.-. homogeneous models) are considered. How-
ever, it is well known that the dynamical behavior of many climatological phenomena show variations
in time. In these cases timevarying (i.e. inhomogeneous) models should he determined and studied in
order to get a more adequate process description.

In Madsen et. al. (1987) a homogeneous continuous time model for the variations of air tempera-
ture is proposed. The model relates the variation of air temperature to the variations of the gronnd
level net radiation. Thereby the well-known asymunetries of the diurnal variations of air temperature
(e.g. Hansen and Driscoll, 1977) are explained as effects of the variation of net radiation. But. phys-
ical arguments and data suggest an annual variation of the dynamical characteristics, which is not
described by the homogeneous model. _

This paper describes the formulation and estimation of a timevarying stochastic transfer function
model for the variations of the surface layer air temperature. The net radiation at ground level is
exploited as an external input process. The variation in time of the dynamical relation is found hy
recursive estimation of the parameters in a homogeneous transfer function model. A recursive least
squares estimation technique including exponential forgetting is used. ‘

The observed trajectories of the recursively estimmated parameters confirm the annual variation
of the dynaiical relation. It is shown that the variation for somie of the parameters is negligible.
i.e. they can he regarded as constant, while for the rest of the parameters the annual variation can
be described by a few terms in the fourier expansion of the periodic parameter trajectory. Finally.
such an inhomogeneous model is identified and its parameters are estimated by a maximum likelihnod
technique.

The data ' : .

In the analysis nearly seven years of hourly observations of both air temperature and net radiation
have been used. The ohservations are taken at the climate and water balance station Hgjhakkegaard.
which is situated about 20 km west of Copenhagen, Denmark. The station is freely exposerd and
surrounded by ordinary agricultural fields, and the soil at the experimental site is covered by dense
and short grass. :

The air temperature is measured two meters above the ground by a resistance thermometer in
a convective open box. The net radiation is measured by a polyethylene shielded net radiometer
constructed at the Royal Danish Veterinary and Agricultural University (Jensen and Aslyng. 1967).
The radiometer is mounted one meter above the ground. The signals from the thermometer and the
radiometer are measured every 10 minutes. From the measured values hourly averages are constructed.
and these hourly values are used in this investigation.
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Formulation of a transfer function model

The energy balance at the surface of the earth relates the net radiation R,, to the various heat fluxes
as

R,=H+LE+G (1)

where H, LE and G are the sensible, latent and soil heat- flux, respectively. The sensible heat flux
is accomplished by a vertical gradient of the air temperature, and the variations of air temperature -
just above the ground is thus closely related to the variation of net radiation. The magnitude of the
various terms in (1) depends on a variety of factors, as e.g. wind speed, roughness length, humidity
deficit in the air, vegetation and the amount of available water in the soil. Virtually all these factors.
are varying in time. Hence, it is reasonable to conclude that a dynamic model, which describes. the
variations of air temperature by using the net radiation as explanatory variable, has to be timevarvi ing.

It is well known that the overall averaged diurnal variation of air temperature is asymmetric. the
time interval from the minimum to the maximum is less than that from the maximum to the minimum.
In stochastic models (e.g. Hansen and Driscoll (1977) and Hittle and Pedersen (1978)) the dinrnal
variation of air temperature is typically described by harmonics, determined by Fourier analvsis,
and the deviations from the harmonic functions are considered as noise and typically described hy
autoregressive models. The asymmetry in the diurnal variation is then accounted for by introdncing
higher harmonics. :

In Madsen et al. (1987) a homogeneous linear second order differential equation in state space formm
was suggested for the variations of air temperature. The structure of the model was based upon simple
assumptions about the most important heat capacities and transfers in the physical system. The net
radiation was taken as an exogenous variable. Thereby the asymmetries of the diurnal variations of
air temperature are explained as effects of the variation of net radiation, which is almost constant
during the night but exhibits the typical ’half cosine’ variation at daytime, due to the cnntnhntmn
from the global radiation.

By integrating the differential equation in Madsen et al. (1987) through the sample interval, -
[t,t + 1], a discrete time representation of the state space model can he achieved. The transfer
function is then obtained by eliminating the state space variable.

Let T(t) and R,(t) denote the air temperature and net radiation at time t, respectively. By
introducing the back shift operator ¢! (deﬁned by ¢71T(t) = T(t-1) ) and polvn011ual< of order n,

" np and n, of the form P(¢~!) = po + p1g~ ' + -+ + Pn,g”~ "7 where ap = co = 1, the transfer fnnchon
can be written
AT -T) = B(q")(R (t) — Ry) + Clg™)e(t) (2)

where T and R,, are the the long term averages of the air temperature and net radiation. respectively.
The error term €(t), which accounts for both measurement disturbances and model approximations.
is assumed to be Gaussian distributed white noise with zero mean and variance R.

Variations in time of the dynamical parameters

Due to the previously discussed variation in time of wind speed, soil humidity, vegetation, etc.. the
parameters in the transfer function model are expected to vary in time. In this section a simple
method for tracking or adapting regular and slow changes in the time-dependent dynamical relation
is discussed.

Let us write the transfer functxon (2) in the form

A(g™H)T(t) = B(g7Y)Ra(t) + d + C(g~ 1 )e(t) ' (3)

where d is defined as d = A(1)T — B(1)R,.
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The model strﬁcture in (3) is linear in the parameters, and the model can be written in the comunon
linear form T(t) = ¢7(t)0 + €(t) where

B(t) = [~T(t=1)-- = T(t=ng) Ra(t) - Ru(t —mp)e(t —1)---e(t — n) 17
8 = [01"'Gn,bO"'bnbcl""Cntd]T

In the recursive least square (RLS) method the estimate at time ¢ of the constant parameter #
is found as é(t) = argming 5(8,t) where

5(6,t) = S(T(s) — ¢7(5)8)? = §(8,t — 1) + (T(t) ~ ¢7(¢)6)’ (4)

If S is quadratic in @ (which is the case if n, = 0) then the minimum is obtained by a single
Newton-Raphson iteration

6(t) = 6(t — 1) — Hs(6(t — 1),t)"1VeS(8(t - 1).1)

where Hg is a matrix containing the second partial derivatives of S(6(t — 1),t) - the Hessian matrix.
If §(6,t) is quadratic in 8, the Hessian matrix is independent of §. Hence it follows from (4), that

Hs(t) = Hs(t — 1) + 2¢(1)¢7 (t)
and, since 6(t — 1) is the minimum at time ¢ — 1,
VeS(6(t - 1),t) = ~20(1)[T(2) — ¢” ()8(t — 1)]
Now introducingP~!(t) = Hs(t)/2 the recursions hecome
6(t) = 6(t—1)+ P(t)p(t)e(t)
e(t) = T(t)-oT(1)8(t ~1) (5)
P7Yt) = P7l(t-1)+¢(t)8" (1)

If n. > 0 then §(6,t) is not quadratic in 8, and the minimum is not obtained in a single step. The
recursions can, however, be used anyhow, and converge in most cases to the true estimates (Ljung and
Séderstrom, 1983). The procedure is then called the recursive extended least square (RELS). and is
a kind of recursive pseudo linear regression (RPLR).

In the exponential forgetting method for estimation of a timevarying parameter. 8(#). the
criterion includes an exponentially decaying weight of the old ohservations

5(6(t),t) = 3 _ AT (s) - 67 ()6(t))* = AS(B(t),t — 1) + (T(t) — ¢7 (+)6(¢))?

where 0 < A < 1. That is, in every step only a part, A, of the old information is reused. It is readily
seen that the only difference, compared to (5), is in the recursion for P(t), which hecomes

Pl (t)= APTY(t - 1) + &(t)8 (t)

The effective number of observations behind the information is constant and equal to
Ny = T2 X = 1/(1 - A). '

Different values of the forgetting factor, A , have been considered, and A = 0.999 is found adequate
in order to obtain rather insensitive estimates of the long term variations of the dynamics. For the
order of the polynomials in the transfer function, the values n, = 3, n, = 2 and n. = 0 have proved
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Variation of the parameters
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Figure 1: Trajectories of recursive estimates with A = 0.999 of the parameters in the transfer function model

(3) with ng =3, n, =2 and n. = 0.

to be reasonable (Madsen, 1985). The trajectories of the parameters during the alinost seven vear
period used, are shown on Figure 1. ' :

Some variation in the parameters is observed and an annual variation is seen for bo, by and perhaps
az. A clear annual variation of the parameters belonging to the A-polynomial is rather difficult to
observe in Figure 1; but - as will be shown in the next section - a different parameterization of the
polynomial may show a clear annual variation.

The method is readily generalized to variable forgetting, where the idea is to adjust the forgetting,
A(t), according to the actual fit of the model. For the actual data an application of the variable
forgetting method (Madsen, 1985) has shown almost the same results as for the constant forgetting
method. For a description of several recursive estimation methods for timevarying dynamic systems.
see Ljung and Séderstrom (1983).

A parameterization of an inhomogeneous model

It is noticed from Figure 1 that the trajectory for b; is very similar to that of bo, but of opposite
sign. This may indicate that the zero of the B-polynomial is constant. For a parameterization of
the annual variation of the parameters, the B-polynomial is thus conveniently rewritten as B(q~1) =
bo(1 + b1/bog~ ') where the annual variation then is described by bo, while b, /bg is constant.

An investigation of the variation in time of the poles of the A-polynomial has shown a very clear
annual variation for the pole nearest the unit circle in the complex plane. The variation of this pole.
called p, is shown in Figure 2(a). This pole is obviously large during the winter - especially in Jannary
and February - and small in the autumn. Since only the pole p; in the A-polynomial exhibits a clear
annual variation, it seems natural, in order to obtain a reasonable parameterization, to rewrite the
polynomial as A(¢7!) = (1 — p1g~1)(1 + ajg~! + abq~?) where a; and @} are fixed in time.

Based on (3) we introduce

v=d/40) =T - 2R, =T - H)R,
where H(1) is the stationary gain in the transfer function from the net radiation to ajr temperature,
The value of 7 is thus a measure of the difference between the stationary value of the air temperature
and the stationary temperature induced by the stationary net radiation. If the recursive estimation
with exponential forgetting and an appropriate forgetting factor are used, then v thus expresses that
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part of the long term variation of a.. ' ..iperature, which is not describable by the long term variation
of the local net radiation. The variations in time of 4 are shown in Figure 2(h).

A very clear annual variation is observed also for 4. The quantity is seen to be negative in spring
and positive in autumn. This means, for instance, that the local air temperature in the spring is lower
(on average about 4°C) than expected due to the local net radiation. The reason is most likely that
the temperature of the air masses is influenced by the rather cold surrounding sea and oceans.

Although a very clear annual pattern is observed for v, it is evident that the variations of twn
different years are not identical. Consider, for instance, the local minimum in Figure 2(bh) - the
minimum is still decreasing until 1970 and afterwards an increase seewms to hegin. This pattern is
perhaps due to long term climatic variations. It is believed that recursive estimated signals, as v, can
be helpful in tracing or recognizing climate cycles or changes.

In sunumary, it seems reasonable to consider the following inhomogeneous transfer function

model . : .
(1= P1(t)g™")(1 + alg™" + ayq ) (T(2) = (1)) = bo(t)(1 = 2147 ) Ru(t) + €(t) (6)
The variation in time is thus limited to a variation of p;, by and v. For these parameters a very clear
annual variation is found. A fully adequate description of these annual variations must he based on
stochastic models for the parameters or parameter models that includes the dependence of external
factors. However, it seemns natural, as a first approximation, due to the regularity of the observed
annual variation, to consider deterministic harmonic functions as a parameterization of the annual
variation of p; , bo and y. Hence, some terms of a Fourier expansion of the mean annual parameter
variation can he used in the parameterization. Estimates for a}, aj and z; in the inhomogeneous
model (6) can be found by the maximum likelihood method under a Gaussian assumption for €(?).
This is shown and more deeply discussed in Madsen (1985).

Summary

The identification of a timevarying transfer function model for the variation of air temperature is
outlined. The model takes the net radiation as an external input process.

As a starting point for the identification the variation in time of the parameters in a homoge-
neous transfer function model is found using a recursive least square estimation technique inclnding
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exponential forgetting. By selecting a reasonable parameterization it turns out that a clear annnal
variation is ohtained for some of the parameters, while others could he considered as constant. The
annual variation of the paraineters can be approximated by deterministic harmonic functions.

The trajectories of the recursively estimated parameters show, besides the systematical annnal
“variation, also variations of apparently random nature. Future work will concentrate on research,
aiming at models which contains a description of both the systematical annual variation and the
random variation of the parameters. Models including dynamical models for the variation in time of
parameters have previously been discussed by e.g. Young (1984).

The recursive estimation technique including a forgetting structure is frequently used for tracking
changes in dynamical systems. In climatology it is believed that this estimation technique will prove
as a method for filtering out signals, by which climatic changes and cycles, can he recognized.
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Statistical analysis of temperatures in Hong Kong

E. Hui Koo and W.L. Chang
Royal Observatory, Kowloon, Hong Kong

Introduction

Temperature rises have been observed in many cities. Briefly, the main requts summarized from the
comprehensive survey given, in Landsberg (1981), are:

1. Dronia (1967) estimated that on average, urban temperatures worldwide increased by 0.008°C
per year between 1871 and 1960.

2. Dettwiller (1970) found that between 1891 and 1968, maximum temperatures for Paris rose by
0.011°C per year while minimum temperatures rose at a slightly faster rate of 0.019°C per vear.

3. Mitchell (1961) found compatible temperature rises in selected cities in the United States.

4. Fukui (1970) studied temperature rises in Japan and found that for Tokyo. Osaka. and Kvoto the
temperature trends were 0.032°C per year, 0.029°C per year, and 0. 032°C per vear respectively
between 1936 and 1965.

Hong Kong has urbanized rapidly in the past forty years. The population has doubled to almost
6 million. There has also been an enormous growth in the number of vehicles, high rise buildings. and
industry, all competing for space in the limited area of Hong Kong.

This study is undertaken to examine if temperatures in Hong Kong have trends similar to those
in other cities, and to elicit the statistical properties of temperatures in Hong Kong as was done for
cities in Greece by Giles and Flocas (1984a, 1984b).

Observations of maximum and minimun temperatures are made at the Royal Ohservatory Hong
Kong since 1885. Except for the period from 1940 to 1946, the records are uninterrupted. The site
within the Royal Observatory compound at which temperature readings are made has changed little
during the past 100 years. The Royal Observatory is itself an urhan station, situated in the heart of
the densely populated and commercial centre of Kowloon.

In this paper, analyses were carried out for the following four temperature series: annual mean
minimum temperatures 1885-1939 (55 observations), annual mean maximum temperatures 1885-1939
(55 observations); annual mean minimum temperatures 1947-1987 (41 observations). and annual mean
maximum temperatures 1947-1987 (41 observations) . :

~Analysis

Test for normality

Many statistical tests, such as that for randomness below, rest on the assumption that the data are
normally distributed. One test for normality is through Fisher’s g; and g, statistics. This test requires
the ratio of g; and g; to their respective standard errors (SE) be less than 1.96 for compliance with
normality at the 5% level of significance. Table 1 shows that except for the 1885-1939 minimmnm
temperatures, all the temperature data have g,/SEg; and g;/SEg, which satisfv this criteria. The
frequency distributions of these three series are therefore consistent (at the 5% significance level) with
the hypothesis that they are normal.
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Test for randomness

Table 2 shows the lag 1, lag 2 and lag 3 autocorrelations for the four temperature series. For the
three temperature series which are normally distributed, randomness can be tested through their lag
- 1 autocorrelations ry (Mitchell 1966). The test statistic is

(r1)e = (=1 t,v/N = 2)/(N - 1) , (1)

where N is the number of observations, and t, the value of the normal variate corresponding to the
required level of significance. Using the one-tail 5% significance level and the positive sign in equation
(1), one finds (ry); = 0.20 for the 1885-1939 series, and (r1), = 0.23 for 1947-1987 series. In all cases ry
i (r1)¢ so that one can reject at the 5% level of significance the hypothesis that the series are random.

All the lag 1 autocorrelations are positive suggesting that the data contain low frequency variation.
Only the 1885-1939 maximum temperatures and the 1947-1987 minimum temperatures have lag 1
autocorrelations which are statistically different from zero (at the 5% level of significance). As r; and
r3 for these two series do not fall off exponentially as r? and r} respectively, any persistence contained
in the data is probably not of the Markov linear type. The other two series with non-significant lag 1
autocorrelations can be regarded as free from persistence.

Trends

Fig.1 shows the time series of the temperature data. For pre-1939 maxinnun temperatures, linear re-
gression gives a rise of approximately 0.014°C per year (Table 3). The pre-1939 minimmmm temperatnures
have a comparable rate of rise. Whether these local temperature rises reflect the general temperature
rise in the first part of the century (Gribbin, 1979) is beyond the scope of the present study.

From 1947 onwards, minimum temperatures rose at a rate of approximately 0.024°(C per vear. This
is twice the rate for before 1939. Fig. 2 shows that from the 1970’s, the annual mean temperatures
at the the rural station of Waglan Island, has been almost constant. This suggests that in the recent
couple of decades there is little change in the local climate. One can surmise therefore that the rise in
the Royal Observatory’s minimum temperature is most probably caused by urbhanization. The trend of
approximately 0.024°C per year is less than that found for Tokyo from 1946 to 1963. which is 0.047°C
per year (Landsberg, 1981).

Linear regression gives no overall trend for maximun temperatures after 1944 But when looked at
from the differences hetween the maximum temperatures between The Royal Ohservatory and Waglan
Island (Fig. 3), the maximum temperatures not only have been rising over the rural values, bt in
actual fact have been falling from 1971 onwards. At the same time, the minimun temperatures had
been rising over their rural counterparts. Decrease in urban solar radiation and sunshine duration in
Hong Kong during the period (Fig. 4) could be one of the reasons. The reduction in solar radiation
in other cities has been described by Landsberg (1981).

Spectral analysis

Spectral analysis has. been used by many investigators to elicit periodicities in temperatnre data,
particularly long term ones such as those associated with the 11-year sunspot or the 22-year donble
sunspot cycle (Landsberg et al., 1959; Mason 1976). Details of the technique can he found in Mitchell
et al. (1966), Blackman and Tukey (1959), and Jenkins and Watts (1968).

Although the temperature series under consideration are too short for proper spectral analvsis. it
will never the less be interesting to use available data for an experimental analysis to obtain ‘rongh’
indications.
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IMSL’s subroutine SSWD is used for this purpose. The spectra are computed from Fourier trans-
forms of the autocovariances, and then smoothed by the Tukey-Hamming window. 15 and 10 lags are
used for the 1885-1939 and 1947-1987 temperatures respectively, so that the lag number of lags does
not exceed one third of the data length in each case. Trends are removed before analysis. As the small
lag autocorrelations do not suggest any Markov persistence (Table 2), 5% and 95% confidence limits
are computed to the average (white) spectrum. ,

Fig. 5 shows the spectra for the pre-1939 minimum and maximum temperatures. Most of the
variances are found at low frequencies, with peaks at 7.5 years for both series. Additionally there
is also a peak at 2.3 years for the minimum temperature. But none of the peaks are statistically
significant as they do not exceed the 95% confidence limit of the null (white) spectrum. For the
Post-1947 series peaks appear at years for the maximum temperature. Again, they are not statistically
significant.

Conclusions

The maximum and minimum temperatures recorded at the Royal Observatory, Hong Kong. were
analysed for trends and periodicities. It was found that while maximum temperatures hefore 1939
and minimum temperatures have rising trends, post 1947 maximum temperatures are falling with
respect to the maximum temperatures taken at a rural station. The reasons for this are as yet not
entirely clear, and need further study. Spectral analyses of these limited temperature data also did
not reveal any significant periodicities. It would he interesting to analyse the temperature series as a,
whole from 1885 to the present, with the data missing between 1940 and 1946 filled. This will be the
subject of a further study.
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Table 1: g, and g; statistics for testing normality in the four temperature series. SE stands for standard
error. TMIN and TMAX denote minimum and maximum temperatures respectively. = Value exceeds that

(1.96) consistent with the hypothesis of a normal distribution at the 5% significance level.

1885-1939 1047-1087
TMIN | TMAX | TMIN | TMAX |

P 1.93 0.46 | -0.17 0.25 |
SEg: | 0.33 0.33| 0.38 0.38 |
g1/SEg, 5.84x -1.39 --0.45 0.66 l
92 7.68 1.18 | -0.17 0.82 |
SEg: | 0.66 0.66 | 0.77 0.76 |
g2/SEgs | 11.60+ | 178 | -0.22 1.07 |

Table 2: Lag 1, lag 2 and lag 3 autocorrelation coefficients for the four temperature series. + Correlation
value statistically different from zero at 5% significance level. Value exceeds the (r;), value consistent with
the hypothesis of randomness at the 5% significance level. «(ry), test not applicable as distribution not normal

(at the 5% significance level).

L 1885-1939 "TT1047-1987 |

: "TMIN | TMAX | TMIN TMAX .
2 70.20%«  0.51+f | 0.48+f | 0.29%
r2 | 0.04  0.26 0.23 0.08
rr3 1 001 ¢ 0.13 0.11 0.02
Erg 0.13 I 0.12 0.41 0.25
lr3|-011 ;-011 [033 |0.26

Table 3: Intercepts, slopes and 95% confidence intervals of the slopes of temperature regression lines.
1885-1939 1947-1987

TMIN ‘| TMAX | TMIN | TMAX

Intercept | 19.95 24.44 20.16 25.7
Slope 0.012 ! 0.014 0.024 | 0.0
95% CI | +£0.007 | +0.007 | £0.008
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Interannual climate variability in the global tropics

C.F. Ropelewski!, M.S. Halpert!, E.M. Rasmusson?
1 Climate Analysis Center/NMC/NOAA, Washington DC,USA
? Dept. of Meteorology, University of Maryland, College Park MD, USA

Introduction ‘ >

In previous studies (Ropelewski et al,. 1988a, 1988b) we investigated interannual variability in the
principal indices of the Southern Oscillation (SO). These indices include the sea level pressure (SLP)
at Tahiti, Darwin, Hobart, and Chatham and the sea surface temperature (SST) for the central and
eastern Pacific equatorial ship tracks (Rasmusson and Carpenter, 1982) as well as the SST at Puerto
Chicama, Peru. These previous studies and work by other researchers (e.g.. Lau and Sheu, 1988,
Barnett, 1989) suggest that the SO has significant variability in the biennial range (from 18 to 32
months) and that biennial variability is particularly pronounced in the central Pacific SST. In this
paper we describe interannual SST variability in the context of biennial and longer terin variations.
The analysis is based on the examination of filtered time-longitude SST cross sections in comparison
to the un- filtered cross sections for the Pacific basin.

Filtering

An analysis of various SO indices shows that the SST variance in the biennial range is significantly
greater than that at higher frequencies and comparable to the variance at lower frequencies (Tabhle
1), where high and low frequencies are defined here with respect to the hiennial temporal scale. As
& practical matter we designed high pass and low pass time series filters to he compatihle with the
bandpass biennial filter. The high pass filter has a half power point at 18 months while the low pass
filter has a half power point at 32 months corresponding to the half-power points of the biennial
bandpass filter. In this framework, SST interannual variability can be viewed as hiennial variations
modulated by low frequency variations. The high frequency is taken to be a “noise™ component in
this discussion and is excluded from further analysis.

Table 1: Anomaly variance for selected Southern Oscillation indjces.

Index ’ Variance (percent variance)
Total Biennial Low pass High pass

Ship 1 SST 1.4 (100) .36 (26%) .61 (44%) .22 (16%)

(Eastern Pacific)

Ship 6 SST 0.5 (100) .15 (30%) .20 (40%) .07 (14%)

{Central Pacific) _ .

Darwin SLP 1.1 (100) .16 (15%) .27 (25%) .52 (47%)

200 hPa Zonal winds

Pacific Basin 16.6 (100) 4.7 (28%) 4.4 (27%) 5.7 (34%)
Atlantic Sector  15.8 (100) 1.6 (10%) 3.7 (23%) 4.3 (27%)
Indian Ocean 12.5 (100) 1.2 (10%) 5.7

(46%) 3.9 (31%)
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Figure 1: Equatorial time-longitude cross sections of sea surface temperature across the Pacific hasin: Left
hand panel - unfiltered, central panel - biennially filtered, right hand panel - low pass filtered.

Analysis

The analysis is carried out through comparisons of filtered and un-filtered time-longitude cross sections
of equatorial SST for the 1950 to 1979 period. The SSTs were derived from the Comprehensive Qcean
Atmosphere Data Set (COADS, Woodruff et al, 1987). Three equatorial time-longitude cross sections
of SST across the Pacific basin are compared (Fig. 1). The left hand panel of this figure represents
the SST cross section with no filtering applied. The dark shading corresponds to SSTs of 28 degrees
Celsius and warmer. The El Nino/Southern Oscillation (ENSQ) episodes (1951, 1953, 1957. 1965.
1972, and 1976/77) are clearly identified with eastward extension of the warm water to the cast of
150 degrees west longitude. Conversely, the "high index™ episodes of the SO (1950. 1955. 1964. 1970.
1973, 1975) are associated with the retreat of the 28 degree Celsius isotherm to near and west of the
date line. Also evident in this cross section is the well defined high amplitude annual SST cycle in the
eastern side of the basin and almost complete absence of an annual cycle in the vicinity of the date
line and westward.

The central panel of Fig. 1 shows a time-longitude cross section of the bienniaily filtered SST. We
employ a sharp cutoff, 55-weight, bandpass filter (after Landsherg et al., 1963) and thus the leading
and trailing 27 months are lost from the biennial cross sections. Like the annual cycle, biennial
variability appears to be most consistent in the eastern Pacific. Unlike the annual cycle. however, the
biennial component of the SST tends to maintain fairly large amplitude across the hulk of the Pacific
basin and extends, not significantly diminished, to the date line. This is consistent with the large
values of the coherence between the central and eastern Pacific SST at biennial temporal scales found
by Ropelewski et al., 1989. Since the amplitude of the annual cycle is relatively small in the central
Pacific, the biennial component in this part of the ocean basin is relatively more important than it is
elsewhere in the equatorial Pacific and, in fact, accounts for 30the total SST variance for Ship track 6.
which crosses the equator near 170 degrees west longitude. Both the cold and warm extremes of the
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SO appear to be associated with the relatively high amplitude excursions of the biennial component.
The biennial SST component appears to be modulated on relatively large time scales vuth relatively
small amplitude for the periods 1959 to 1962 and 1967 to 1971.

The right-hand panel of Fig. 1 shows the time-longitude cross section of the low pass filtered SST
data. Just as in the the biennial bandpass cross section analysis the leading and trailing 27 months
of these cross sections are missing because of the filter employed (55 weights). In general, each of the
six major positive excursions of the low amplitude SST component illustrated in these cross sections
is associated with a warm episode in the 1952 to 1977 period. Thus, ENSO episodes are associated
with the positive phases of both the biennial and low frequency components of the SST. The weak
1963 warm episode was associated with a strong positive phase in the biennial component but was not
supported by similar warming in the low frequency component of SST variation. The strong positive
SSTs in the biennial component from mid-1974 to 1975 did not result in a warm episode. perhaps.
because for these years the biennial pulse appears to be riding on a relatively cold low frequency
component.

Discussions

A strong biennial component to the SO is illustrated in the cross sections of Pacific SSTs presented
above. This biennial tendency is further reflected in the relatively high percentage of biennial scale -
variance in other SO related indices in the Pacific basin (Table 1). High amplitude biennial variability,
however, does not seem to be a sufficient condition for the occurrence of either warm or cold episodes.
" These episodes appear to occur only when both the biennial and low frequency components are in
phase This strongly suggests that if these temporal components are out of phase no warmings may
occur ,as in 1974, or at best only weak warmings may occur, as in 1963. In 1973 and 1975, however. the
high amplitude negative excursions of SST anomaly, associated with the hiennial component, appear
to have acted in concert with the low frequency cool phase to produce “high index™ or cold episodes
in each of these years.

While the biennial variability may have its origins in temporal scales inherent in large scale ocean-
atmosphere dynamics, as is suggested by some numerical models, the origins of the low frequency
variability are not as evident. The sources of the low frequency component of variability are. however.
most likely tied to large scale ocean processes. In the context of the analysis presented here we might
view the ocean/atmosphere/climate system as having three temporal components, an annnal cvcle
- dominated by the atmosphere, biennial variability - dominated by ocean/atmosphere interactions,
and low frequency variability - dominated by large scale ocean dynamics.
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Climatology of low frequency tropical convective disturbances

Bin Wang
Dept of Meteorology, University of Hawaii, Honolulu HA, USA

Abstract

Mean behavior of planetary scale tropical convective disturbances with
time scale of a month is investigated using ten-year pentad mean OLR data.

Preliminary results are summarized as:

. (1) Disturbances are usually originated in tropical convergence zone
over Africa or western Indian Ocean and strongly intensified over the central
and eastern Indian Ocean, moving dominantly eastward into central Pacific
where they are dissipated. There are indications of weakening over maritime
continent due to poleward spiitting and reenhancement over western Pacific.
The entire life-cycle suggests that rapid development is related to diabatic
instability process and Indian and western Pacific Oceans are preferred geo-

graphic locations for the development.

(2) Convective disturbances exhibit clear annual variation: strong
eastward propagating equatorial disturbances occur most frequently during
December to Mav, while weak activitv is observed during June through September.
This annual variation tends to be positively related to the variation of SST

in equatorial regions.

(3) Dominant poleward propagation of low frequency tropical convective
disturbances is mainly observed over two sectors: 70°-90°E, 0°-25°N and 130~
150°E, 0°-30°N. They are closely related to summer monsoon activities over
these regions. Northward propagation is not always associated with zonal
propagation, suggesting that the mechanism responsible for meridional propa-

gation may differ from that for eastward propagation.
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Evaluating a composite climatology of mesoscale rainfall

E. Tollerud Xijao-Ping Zhong B. G. Brown
CIRES, Univ.Colorado, USA . RIPM, Chengdu, PRC NCAR, Boulder, USA
Introduction

After more than a decade of satellite observations, it is clear that a significant fraction of convective
precipitation over the globe falls in weather systems organized on the mid- to large mesoscales (100-500
kin in extent, 6-18 hours in duration). This realization is important both from a dynaniical viewpoint,
because of requirements to understand precipation processes and to parametcrize them in climate
models, and from a practical climatological viewpoint, since the estimation of global precipitation
demands the ability to identify mesoscale structures and follow their evolution in satellite data. In
particular, mesoscale organization of convection seriously challenges notions of rainfall as a random
process involving independent cumulonimbus-scale cells.

Although much vital information about mesoscale convective sytems can be gained from studies
of individual cases, large inter-system variability of the extent and spatial distribution of precipitation
reconunends a composite approach whereby common features can be isolated and investigated. With
this, we present results from a climnatological study of a class of large sununertime mesoscale systems
(mesoscale convective complexes, or MCCs; see Maddox, 1980) that produce substantial precipitation
over the central United States. Compositing techniques play an important role in this study. As
Kane et al. (1987) and others have shown, composite methods can be applied very usefully to study
the precipitation in mesoscale systems such as MCCs. A short description of methodolagy and the
principal results are included in Section 2.

Two questions of a statistical nature arise from this study, namely, the suitability of the network of
hourly rainfall observations, and the representativeness of the compositing methodology. In Sections
3 and 4, respectively, we address these questions. Their implications for composite studies of the type
employed here are discussed in a concluding section.

Methodology and composite results

Hourly precipitation data from the network of observing sites over the central U.S. are our primary
source of observed precipitation. Locations of stations used in this study are shown on Fig. 1.

Figure 1: Locations of precipitation-observing stations in December, 1985, for the states included in this study.

Rectangular regions identified by Roman numerals are tested seperately for uniformity (see text for explanation)
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Using times and locations of MCCs reported between 1978 and 1985, we divide the life cycle of each
MCC into three stages: initiating, between first storms and the time of initiation; developing, hetween
initiation and the time of maximum stormn size; and mature, between maximum size and termination
(see Maddox, 1980, and Rodgers et al., 1983, for definitions and criteria for MCCs). By approximating
the anvil size and location during each stage of the MCCs, we identify precipitation assumed to he
associated with each MCC and composite that precipitation relative to the system center. In all, 240
MCCs with suitable rainfall observations were identified from available yearly MCC summaries and
included in the analysis. A description of the locations, times, and other general characteristics of
these MCCs is presented in Tollerud et al. (1987).

The temporal distribution of precipitation during the life cycle of the composite MCC is shown in
Fig. 2.
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Figure 2: Precipitation in percent of maximum for subperiods of the composite MCC. Each subpériml repre-

sents approximately one-half hour

The peak of precipitation intensity occurs late in the developing stage, just before the maximun
size is attained. Although the amount of precipitation during the developing and mature stages
is approximately equal, other results (not shown) reveal that rainfall during the mature stage is
typically less intense but more widespread. This corroborates previous findings and speculation that
the character of precipitation evolves from individual cunulonimbus clouds (more intense but widelv
scattered) in the earlier stages to more widespread but lighter precipitation falling presmumnably from
the extensive anvil of the MCC during the mature stage.

Figure 3: Total rainfall in the composite MCC, in mm. Marks along the axes indicate 25 ki incremenis in’
distance from the MCC center

.

Figure 3 shows the horizontal pattern of precipitation during the life cycle of the composite NICC.
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plotted relative to the center of the MCC anvils and contoured. Heaviest rainfall is found in the righ_t-
rear quadrant (relative to the direction of motion, which is typically from west to east). Some of the
displacement from the MCC center is due to the wind shear between the mid- and upper troposphere,
with increasing westerlies at upper levels; this shearing effect means that the tops of the anvils viewed
by satellite photos will tend to be somewhat downstream from the convective centers at lower levels.
In addition, the preponderance of rainfall in the lower (typically, southern) quadrants is likely related
to the low-level transport of moisture into.the MCC from the Gulf of Mexico to the south.

Evaluating the composite fields: Distribution of rainfall observa-
tions

For compositing technigues where observations from many different geographic locations arc overlaid,
the most critical attribute of the precipitation ohservations (besides, of course, their accuracy) is their
uniformity. If observations from some MCCs are made in regions where the observing stations are
much more dense than those from other MCCs, then the foriner set will be more heavily represented
in the final composite results. Ideally, a completely uniform distribution of observations would he
desired. In practice, this will alinost never he the case; as Fig. 1 suggests, eastern states have denser
networks, on average, than their western counterparts.

We would like to assess the sensitivity of our composite results to inhomogeneities in station
distribution. To do so, we divide the central U.S. into three rectangular regions as shown on Fig.
1, and apply a chi-squared test to the station densities ohserved in one-degree squares in each of
the regions (see Davis, 1973). Results show that the stations in each region arc nniforin at a 95%
confidence level. Potential problems introduced by MCCs that move hetween regions or are primarily
sampled in different regions are minor, since the great majority of MCC rainfall is found in region II

(see Fig. 4).

Figure 4: Total number of MCC rainfall observations, in hundreds, from 1978 to [9R5

When we investigate the station distribution in more detail, however, significant intra-state non-
uniformities appear. To demonstrate this, we compute the set of nearest-neighbor distances separately
for the observing stations in Colorado and Missouri. Edge effects at the state houndaries are mitigated
by use of the procedure suggested by Dacey (1963).

As Fig. 5 shows, Missouri exhibits a normal-looking distribution around a nearest-neighbor dis-
tance that is roughly what would be expected from a uniformly-distributed set of stations in a state
the size of Missouri. In Colorado, however, a bimmodal distribution is indicated, with one frequency
maximum at smaller distances representative of the cluster of stations around Denver, and another fre-
quency maximum representative of the larger distances between the stations in the rest of Colorado.
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Figure 5: Frequency distributions of nearest neighbor distances for Colorado (dashed line) and Missouri (solid

line) 3

Coincidentally, the average nearest-neighbor distances in Colorado is approximately that expected
for a uniform distribution of stations, demonstrating the importance of examining the variance of
nearest-neighbor distance in addition to their average values. This set of results suggests that com-
posite studies in which Colorado observations play a major role (unlike the present one) should he
interpreted with care. '

Evaluating the composite fields: Sampling characteristics

Another set of questions concerns the compositing procedure itself, in particular its sampling char-
acteristics. For instance, what assurance have we that the number of MCCs sampled is enongh to
provide a stable composite field? More seriously, is it possible that the procedure cannot prodice
a stable result at all? It is difficult, given the inexact nature of the compositing methodologyv. to
provide an answer to this question analytically. With a large sample set available, however, we do
have statistical tools that may be applied.

To answer the first question, we randomly order the MCCs in the total sample set and successively
add groups of ten to the composite. At each step we compute the pattern correlation coeflicient
between the partial composite and the composite that includes all MCCs.
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Figure 6: Pattern correlation coefficients between subsets and the full set of MCCs for subset sizes hetween 10
and 60. Solid, short-and-long dashed, and dashed lines denote results for, respectively, the initiating, developing.

and mature stages

Fig. 6 shows that after a sample size of approximately 40 is reached, the composites for each
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stage (except perhaps for the initiating stage, when relatively little precipitation falls) have attained
essentially the same spatial pattern as the full composite (an example of the latter is the field shown
in Fig. 3).

On the strength of this result, we compute composites consisting of 60 randomly-selected MCCs
and compare them by again using pattern correlation coefficients. To assess their similarity (or non-
similarity), we also compute pattern correlation coefficients between the different stages of the subset
composites, where we expect to find discernible differences. The distributions of coefficients between
the various possible pairs are shown in Fig.
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Figure 7: Frequency distributions of pattern correlation coefficients between the rainfall patterns of pairs of
successive stages of the MCC composite subsets (solid line: initiating and developing stages; short-and-long

dashed line: developing and mature stages) and between mature-stage rainfall patterns of pairs of compo<11r

subsets (dashed line)

Those between the same stage of different subsets are consistently between 0.9 and 1.0, while those
bhetween successive stages are significantly smaller. Intra- subset differences (which can he attributed
to sampling variations) are thus almost unanimously smaller than inter-stage differences (which we
interpret to be due to physical evolution of the MCCs).

Conclusions

We have investigated the validity of system-relative composite representations of the precipitation in
MCCs from two viewpoints: the adequacy of the station distribution, and the consistency of composites
of different samples of MCCs. Concerning the first, we conclude that the uniformity of stations in the
region in which most of the precipitation occurs indicates that no significant effect on the composite
results should be expected. Although we cannot prove, relative to the guestion of sampling. that the
composites produced are physically realistic descriptions of a “real” MCC, that possibility is strongly
supported by the coherent and stable patterns produced by randomly- selected subsets as well as Dy
the rational evolution of the fields during the course of MCC development.
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A comparison between multiple regression and factor analysis for
climatological predictions

Oskar Essenwanger
Environmental Science, University of Alabama, Huntsville, Alabama, USA

Introduction

Most scientists use multiple linear regression models for the prediction of parameters based on statis-
tical data collections, e.g. climatological records. Most of them consider factor analysis as a diagnostic
tool. Both methods base their calculations on the same (linear) correlation matrix as data input (the
elements, i.e. predictors, are not limited to their first order exponent.)

In this article factor analysis as a prediction tool will be discussed. Klein (1983, 1985) found that
empirical polynomials ( and as such factor analysis) were inferior to linear regression models. It will
be illustrated that factor models may have some place in ( climatological) predictions, e.g. where the
predictand changes for extremes with reference to the mean within the prediction interval. or where
correlations between predictands and predictors are low but a contemporary predictor may have a
higher correlation.

The factor model

The widespread employment of multiple linear models may have three major reasons. Most scientists
are familiar with the technique, and the coefficients are easily calculated. “Canned” programs for
electronic data processing are readily available. Finally, the number of elements to be inclnded in the
model is virtually unlimited, restricted only be the storage capacity of the electronic data processing
system and the choice by the scientist.

Factor analysis is based on the calculation of eigenvalues and eigenvectors of a corielation matrix
(Cattell, 1952; Essenwanger, 1976). This is equivalent to the calculation of empirical polynomials
(Lorenz, 1956). Since the factors are orthogonal a smaller number of factors than elements in a
regression model leads virtually to the same magnitude of the residual variance (Essenwanger. 1986a.
b). This alone may not be an attractive feature for using a factor model because electronic data
processing for multiple regression models is fast and the savings in time for fewer components may
not be essential. i .

It is well known that regression models tend to underpredict extreme values. This is especially
the case when the predictand switches sides for extremes with reference to the mean value within the
prediction interval, e.g. from clear to overcast sky. If these cases comprise a considerable fraction
of the data, the factor analysis model may fare better. In these cases the factors are considerably
different from the others, and a frequency distribution of the factors will readily disclose the number
of switches (Table 1; Essenwanger, 1988).

Since prediction is based on factor, contemporary predictors with the predictand can be included
into the model. This is not customary for the multiple linear regression.

It may seem an advantage that the coefficients for the prediction of several elements (predictands)
can be obtained from one single “factor load matrix” (Essenwanger, 1986a,b, 1987h, 1988) hecanse
contemporary predictors can be included. Factors can be added or deleted without going throngh
new calculation of coefficients such as would be necessary for the regression scheme. Although the
rotation may increase the weight of the first factor, rotation of factors does not further reduce the
residual variance, i.e. the system has an optimmum reduction which cannot be changed by rotation
(Essenwanger, 1987a; Kaiser, 1958).
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One other feature of the factor model may be important. The coefficients in the “factor load
matrix” permit us to estimate the residual variance without calculation of the predicted value such as
it is required in multiple regression schemes. The estimates of the residual variance is precise for the
unrotated factors. This enables us to evaluate readily the potential of a particular factor model. Tt
can aid in the decision to add or delete elements or factors.

It is usually advantageous for predictions to perform a “principal components™ analysis. If this
statistical estimation method is unsatisfactory, several other estimation methods for the communalities
based on statistical principles are available (Joreskog, 1967; Essenwanger 1987a; Guttinan, 1956).

Exampleé

Ceiling prediction

Predictions of cloud amount, cloud ceiling and visibility by employing factor analysis have heen pre-
viously discussed by the author (1986a, b, 1987b, 1988). For predicting changes in cloud ceiling the
frequency distribution of the numerical value of the first factors is given in Table 1 for the ceiling
group 999.

Table 1: First factor for January data, Stuttgart (1956-1963) when ceiling is 999 at 08LST. A refers to when
“Factor <-4 -4 > -4

A 0o 2 6

B 25 1 0

Table 1 illustrates that a distinct separation boundary exists (in this case -4). Counting -4 into
class A would make only one wrong prediction in 34 cases. Thus the frequency distribution of factors
can aid in the development of a model and a decision tree. More details have been discnssed by
Essenwanger (1987h, 1988).

Prediction of snow days

In the previously mentioned articles by the author (1987h, 1988) factor analysis disclosed some advan-
tages over a regression model where extreme values switched sides with reference to the mean valne.
Now an example is illustrated where factor analysis leads to a lower residual variance than a regression
model without the switch of sides of extremes. It is a case where the predictand has a high correlation
with a contemporary element while association with past records is weak.

Table 2 displays the factor load matrix which is based on the same correlation matrix as the
regression model. The last column exhibits the linear correlation coefficients, which are most weak.

Table 3 displays the residual variance (fractions of total variance) for predicting NS(Mar). The
first column represents the prediction by persistence from NS(Feb). Since persistence is very weak (r
= 0.38 in Table 2), and the sample size is relatively small, a simple assumption NS(Mar) = NS(Feb)
would cause an increase of the variance to 3.94 times the predictand’s variance. Hence a one term
linear regression model was chosen for persistence, ultilizing NS(Feb), rendering 0.85.

Table 3 provides the results for the residual variance for the factor and the regression model in the
first line (A). The difference between the regression model (.41) and the factor model (.16) is cansed
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by inclusion of NS(Mar) in the calculation of factors. The number .16 provides also for the optinnum
reduction of the variance with four factors. Since NS cannot assume negative values, this fact was
included into the prediction scheme which renders the second line values (B). This fact benefited the
regression model more than the factor model. _

Line C and D are based on estimation of factors. It is apparent that estimation will lead to
a somewhat higher residual variance than with the correct factors. However, in this estimation a
predicted temperature T(Mar) was included for factor estimation. The correlation (r) hetween T(Mar)
and NS(Mar) is -0.76.

It was attempted to include this same estimate of T(Mar) into a regression model, calculating a
new set of coefficients and eliminating T(Jan). Since a predicted value of the temperature was nse
instead of the correct value, the regression model reduced the variance only to 0.53. Hence this valne
was not used in the comparison. Apparently the deviations from the true March temperature plaved
a lesser role in the factor model. .

The last line of Table 3 displays the ratio of the residual variances: regression/factor. The ratio
1.74 for two factors is statistically significant at the 95% level for 35 years of data (F-test). In our
case two factors may be sufficient for a good prediction.

It is unfortunate that the model could not he tested on independent data since the data sample is
too small for separation. It may serve however, to demonstrate that factor analysis has some potential
even in the specific cases where no switches of the extreme occur. Furthermore, the chosen example
is not the best case to show the advantages of a factor model but was readily availahle.

Conclusion

The potential for employing factor analysis for prediction in particular cases was discussed. As pre-
viously pointed out by the author (1987h, 1988) if the predictand has extreme values which switch
sides with reference to the mean during the prediction interval, it may be worthwhile to look into a
factor model. The author previously discussed these cases, such as changes from an unlimited ceiling
to a low ceiling, or clear to overcast sky (1987h, 1988).

Another case was illustrated here where the correlation with the available past elements (preic-
tors) is weak but a contemporary correlation (such as the temperature in March) was much stronger.
In this case the factor model was less sensitive to a prediction of a contemporar) element which was
included into factor estimation. >

Several authors have found that emnpirical polynomials. may not be of value for predictions. every
individual case needs examination. We may not be able to determine a priori the advantages of factor
analysis for a particular case.
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matrix and corrglation, Stuttgart (1953-1988)

_ Table 2: Factor load

Element F(1) F(2) F(3) F(4) r(NS)
T(Nov)  -.67 -.26 -.54 .07 57
S(Nov) -43 -52 -.11 -.28 .08
T?(Dec) -.36 .23 -.53 -45 .27
T(Jan) .26 .18 -.23 .76 -.01
S?(Jan) .34 .68 .09 -.16 .13
T2(Feb) .31 .25 .35 -.38 -.17 T = temperature; T? = temperature squared; S =
R(Feb) -.52  -.11 .31 43 .25
NS(Feb) -.30 44 .62 -.01 .38
S(Feb) .63 .22 -.56 .06 -.29

NS(Mar) -.71 .55 -.05 .09 1.00
Variance 2.31 1.51 1.58 1.24

sﬁnshine hours; $? = sunshine hours squared; R = precipitation; NS = number of snow days; r(NS)
= linear correlation coefficient with NS(Mar).

Table 3: Fraction of the residual variance for three prediction models prediction the number of snow days in

March at Stuttgart, FRG.
Pers. F(1) F(2) F(3) F(4) ZRegr.

A .85 .48 .18 17 .16 .41

B .85 .48 .17 .17 .16 .41 . .

c 85 56 24 54 21 41 A: Factor model; B: Setting negative NS to zero:
D .85 .55 .21 .21 .19 37

Ratio - - 1.74 1.78 192 -

C: Estimation of factors; D: Estimation of factors and setting negative NS to zero.
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Time series modelling based on mean generation function and its
application to long term climate prediction

Hongxing Cao and. Fengying Wei
State Meteorological Academy, Beijing, China

Introduction

The two major purposes of time series analyses are to abstract periods existing implicitly in the series
and to build a mathematical model for forecasting. The periodogram hased on harmonic analysis
and analyses of both the power spectrum and the maximum entropy spectrum are very useful to
detect the periods. But they cannot be used for making a forecast. The autoregressive (AR) model
and the autoregressive moving average (ARMA) model are able to be used to predict but only a few
steps for the series. A so-called periodic extrapolation using variance analysis was suggested by both
meteorologists and mathematicians and employed widely in long range weather forecast practice in
China. A series of works on the periodic extrapolation has been done fruitfully (Cao and Ln. 1983:
Tian, 1981; Wei et al. 1983).

In this paper, a mean generation function (MGF) of a time series #(?) is defined and a normalization
calculation for MGF is made with the Gram-Schmidt procedure. For the normalized variables, we
relate them with z(t) in a linear model and the variables of the model are selected by using a sn-called
couple(d) score criterion (Cao et al. 1988). This model not only can he used to detect perinds existing
in z(t) but also is suitable for multiple-step forecasts.

Mean Generation Function

Consider a time series
. z(t) : z(1), 2(2),2(3),...,2(N) (1)
where N is the sample size. Constitute a MGF
o 1 L
z:(z)=;l—12:r(z+:l) (2)

where i= 1, ...,1 and 1= N/2. n, is the largest integer required by n; < N/I, L = max! if N is even.
L=N/2if Nisodd, L = (N - 1)/2.

When 1 = 1 ,
F(1)= 7= iz]\:z(i)
- Ni:l
When 1 = 2
1 ny—1
F,(1) = - S 2(1+25)
=0
= %{:(1)+z(3)+...+z(1+2k)+...+z(1+2(n2-1))]
1 ny -1
£2(2) = -3 =(2+2))
1=

= }_11;[3(2)+z(4)+...+:r(2+ 2k) + .. 4 2(2+ 2(n2 — 1))
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#,(i) is called a MGF with the length 2. Similarly Z3(t), £4(i), ..., Zi(i) are obtained.

Define the MGF matrix with order L

(1)
Z2(1) z,(2)

H = .
£L(1) £1(2) ... #r(L)
and an extended MGF matrix
.13' = (f.'j)DmN:L
fi; = fi(t)
where fi(t) = #/(i),t = imod(!) and t = 1,2,...,N.
Thus E _ _ _ _ B
T T T T PO oo ‘1'
F2(1) F2(2) F2(1) F2(2) ... ... Za(ia)
BT F3(1) #3(2) #3(3) Z3(1) ... ... T3(iz)
eL(1) #L(2) G #f(L) #4(1) ... Frliz)

(3)

(4)

where #,(i;) shows one of #;(1) and #3(2); #3(i3) shows one of F3(1), #3(2), and 73(3). The others

are similar.

Whole modelling of time series x(t) proceeds on F and every column of which is looked npon as

one independent variable.

Modelling procedur’e.
In order to build a model based on the MGF, the following procedure is suggested.
1. Normalize the original series z(t) with 7
z'(t) = (z(t) - 7)/s

where Z and s are the average and standard deviation of r(t) respectively.

2. Construct the MGF of z'(t) with (2) and the extended MGF matrix F with (4).

3. Regarding f as a primary vector of the Gram-Schmidt procedure. we obtain a normalized MGF.

which is denoted as f3, f3,..., fr.
4. Assume a linear model between the variables f;;1 = 2,...,L and z(t) given by
L
z(t)= > bifi(t) +¢
=2

The matrix form is XpimNz1 = 'FDimNz(L—l)BDim(L—l)zl

5. Using the least square estimation technique, the coefficient vector B is obtained by

B = (FTF)'FTX
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Since vector f is normalized, the covariance matrix is a symimnetric triangular matrix

f22 0
. fas
0 fir
where fi; =|| f: ||?, and the inverse matrix G = (FTF)~! is also a symmetric triangular matrix.
Its elements are g;; = f;!. It is clear that the inverse operation is very easy to be done by this

method.

. Selecting variables.
According to (8), coefficients of the linear model are represented by

: N
@i = gii 3 fi(t)z(t) . (9)
t=1

where i = 2, 3, ..., L. The variables f; are put into the equation one by one according to their
ahsolute value of ¢ from large to small. We employ the couple(d ed?) score criterion

_ S AN
CSCr = 53+F"
N
SE o= Dlz(t) - #(t)?
t=1
N . .
52 = Y [=(t) -z (10)
t=1

to select the variable number admitted to input into the equation. When k is the number of
* variables in the model, IV is the trend score of a forecast, A is an adjustment coefficient ranging
from about 1.0 to 1.5, through which the second term in (10) will play an appropriate role in
the CSCy. Denoting the number of trend category as I, we make the transformation

wlz(t+1) = 2(t) = Ci(1)
o eE+1) - 2(1) = CGiY) (11)
The trend score is defined as
N
N =3 [1-1Ci(t) = Ci(1)|/(I - 1)]
t=2

If only three categories of trend are taken into account for a forecast, namely, the rise. the

stable, and-the fall, C;(t) in (11) is taken as

1 Al‘t > LT
Cu(Azy) = 0 |[Az<U U>0 (12)
-1 AT( < -U

where Azy = z(t+ 1)~ z(t), U is calculated simply by U = g5 Ef‘;‘,l Az, or is deterinined ac-
cording to the requirements for prediction. The trend scores become N; = Sf\zz 1-3IC.(Ar) -
C.(Az,)|} where A#, = #(t + 1) — z(t). Obviously, when a minimum CSC; and a maximnm
N, appear, the number of variables in the model are finally determined.
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Figure 1: 1949-1983 SST curves of fitting (dashed line) and observation (solid line).

7. Making a forecast :
As soon as the coefficients are calculated with normalized variables f;, we should calculate the
coeflicients with the original variables f;. Letting ko, as the number of variables selected by the
above procedure, we relate f; with z(t) in a linear model
ko N
z(t) = go + > #ifilt) (13)
i=1
where o; are called original coeflicients.

If making the g-step period extension for f.,' with

A(t) = #(3) ' (14)
where t = imod(l),t = 1,2, SN, N 4+1,N + 2,..., we will be able a g-step forecast with
(N +q) = g0+ 52 1tP.fx(N+ 7),q4=1,2,...

Computational example

As everyone knows, monitoring and forecasting the change of the sea surface temperature (SST) in
the equatorial Eastern Pacific area (0-10°S, 180-90 °W) is of great importance for climatic prediction
over the most parts of the world. The above procedure is applied in the analysis of the SST series
{1949-1983) during the austral spring time (March to May), with N=35, and L=17. For this case, six
period variables are used in the equation. The prediction equation is given helow

£(t) = 0.00005448 + f7(t) + 0.9948 f4(t) — 0.2349F,(t) + 0.9565f5(t) + 0.9085Fs(t) + 0.1032 fa(t) (15)

Here f-;(t) denotes a MGF of the SST series with the length 7, the others have the samme meaning.

The root mean square error of fitting for the series calculated with (15) is 0.27°C. From Fig.1, it is
shown that the predicted temperatures (dashed line) are very consistent with ohserved temperatures
(solid line).

Extending five-step MGF’s with (14) and putting MGF's into (15), a five-step forecast for 1984-
1988 has been made; the results are shown in Table 1. From Table 1, it is easily found that hoth
the quantitative and the qualitative score of forecast are quite high.( i.e. observed and predicted
temperatures are similar. ed?) :
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Table 1: Forecasts and observed SST values in spring during 1984-1988
Year 1984 1985 1986 1987 1988
Forecast 27.3 27.2 270 28.0 275
Observed 27.4 27.2 27.4 284 27.7
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The analysis of pentad precipitation vibration and the features of
the space distribution of summer precipitation in Eastern China

Yafang Liu
Institute of Meteorology, Nanjing, Peoples Republic of China

Introduction

Harmonic analysis of pentad precipitation is applied to data from 51 stations in Eastern China during
the period 1961-1979 and the annual precipitation vibrations are established. Then we studyv features
of the spatial distribution of Summer(4-8 month) precipitation with the principal component analysis
method during the period 1970-1979. This shows that the annual precipitation vibrations of Eastern
China are divided into 12 types and the summer(4-8 month) precipitation anomaly field is divided
into five main types. '

Analysis of yearly change of precipitation in China

The area of China is large with the complex and different climates. Because of the vear-to-vear changes
of circulation over large areas, the precipitation in every area changes greatly and dronghts and flonds
frequently occur. Hence the study of yearly vibration features and time and space distribution of
precipitation has significant meaning for agriculture and the national economy.. Precipitation is a
climatic element with large stochastic vibration, it’s essential nature of yearly oscillation is different.
and it’s yearly change law is also different. Based on several laws of yearly change for precipitation. this
paper uses objective analysis of the harmonic components, with an aim to provide hetter precipitation
forecasting and serve the national economy. We selected the accumulation pentad precipitation data of
51 stations with recompular( regular?) distribution during the period of 1961-1979 in Eastern China.

Harmonic analysis of the mean pentad precipitation series

The time series of meteorological elements is known as the complex period phenomena. it consists of
many different periods. If the mean pentad precipitation series is yo.yi....... yr; then by formmla of
Fuliye (refce?) we get

Yt = ap + a1 coswt + by sinwt + az coswt + by sin 2wt........ + an cosnwt + b, sin nwt (1)

where ag is the arithmetical mean of series yo, ¥1, ....yﬁ and a, by, az, bs..... are the coefficients of the
harmonic wave, _

Because the yearly period, half-year period and dry/wet period of precipitation can hest show the
law of yearly variation, we only take the sum of the first, second and third harmonic wave terms i.e.
n=3in (1). .

ap, ay, az, as, by, by, bz are respectively given by the formula ap = (1/72) 220 v, and
a, = (1/72) 7 yicos kwt, by = (1/72) T yesinkwt, k = 1,2,3 where w = 27 /72.

The formula of the amplitude and phase for harmonic wave are amplitude Ci = /a? + b} and
phase D, = arctan(ax/bg) for k =1,2,3. .

We analyse the accumulated pentad precipitation series at 51 stations in Eastern China using the
above method, and obtain the amplitude C,, C2, C3 and phase D,, D;, D; for the first three harmonic
waves, then examine the principal pattern of precipitation oscillation using the systematic clustering
method with indicies of seven coefficients Cy, C,, C3, D1 D3, D3 and ag.
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Figure 1: Map of precipitation cluster

Essential precipitation vibration patterns

Based on the above seven indicies, first we rank the 51 stations , then compute their similarity
coefficient matrix R = (r,;). where r;; = cos ¢;; + 1/(D;; + 1) is the similarity coeflicient.
cos bij = iy TikTin/\/She1 Th Th=1 20 Dij = y/ Thea (i — 255)?/51
Selecting two generas G, and G, with the largest similarity coefficient, we construct one new
genera G, with weight-centred vector X, given by X, = (n,X, + n,X,)/n,

X Xa
= ‘\1’2 = A q2
Xp = . Xg = .
'pr" Jx—qvn

vt
The distance between two sorts is defined as Dy, = di’pi"q The distance between new sort G, and
other sorts is computed by the formula h

Xpk = Tice, Xik  Xgk = Xicg, Xik

D}, = npDi,/n. + ngD} /n, — nyng D2 /n? {2)
where n, = np+ny and ny, ng, n, are respectivly sample numbers of G, G4. G,. Based on the principal
of the systematic clustering, we may select two sorts with the higgest similarity coefficient and make
them one new sort, compute the distances between new sort and the other sorts, this process did not
finish until all sorts make one sort. The pentad precipitation yearly vibration is divided to 13 types
on given distance criterion. ’

Since the precipitation yearly variation curve and the pentad precipitation cent ratin hetween
Nicha,Gueya are siinilar, their precipitation yearly vibration has to belong to a siinilar sort.

'

Table 1: The ratio of season to year in precipitation.
Spring | Summer | Autumn | Winter
Nicha 25.6 45.5 22.6 6.3

Gueya | 28.6 44.2 221 | 51

Therefore, the precipitation yearly vibration can be comnbined into 12 types. If we can make the
right analysis of representativeness of station precipitation into 12 types, the the essential situation of
the precipitation vibration can be decided over whole country.
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Figure 2: Principal fields of summer(4-8month) precipitation, a. first, b. second.

The space distribution features of summer precipitation

The summer precipitation field series (4-8month) selected above 51 stations of geographic nniforin
distribution is computed along with the EOF decomposi tion of the field series, ordering

X Xz -0 Xia
E,' _ .‘YZI :’x22 . "XZVI
an 4Yn2 RN -'Ynn
X;; is precipitation anomaly of rain spell at station j in year i.

Fig.2 shows five principal fields of (4-8month) precipitation field, Each principal field respectively
expresses different precipitation distribution, the variance is 75.8%. For example the precipitation
distribution with the first principal field is plus anomaly on Hua Bki, Hua Nan, the precipitation is
more,the area in Jiang Huai, Han Zhong basin is negative anomaly, the precipitation is less. The
second principal field is opposite anomaly in North and South area(Yellow river is hound line), North
is plus anomaly, South is negative anomaly.

Table(2) shows the foriner five principal fields coefficients Ty, T, T5, Ty, Ts for sunmumer (4-8month)
precipitation field using EOF decompsition. Because the principal field coefficient shows variance, of
the principal field to real anomaly field, the sununer (4-8month) precipitation field is divided several
types based on the principal field coefficient value in Table 2.
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Table 2: The coefficients of summer (4-8month) precipitation field with EOF decomposition and anomoly type
(absolute extreme).

Year T | T, T, Ty Ts | Type
1970 0.559 | -0.020 | -0.007 | 0.712 ; -1.837 5-
1971 | -0.100 | -0.117 0.060 0.772 0.403 4+
1972 1.856 | -1.365 | -0.270 | 0.287 0.208 1+
1973 | -1.977 | -1.054 | -0.633 1.234 | 0.312 1-
1974 | 0.193 | -0.847 | -1.132 | -0.510 1.227 54
1975 | 1.296 | -0.475 | 0.205 | -0.236 | -1.885 5-
1976 | -0.759 1.374 0.840 0.625 | -0.239 2+
1977 | -0.348 | -1.585 | -0.050 | -2.160 | -0.604 4-
1978 | -0.350 | 0.620 1.714 | 0.772 1.843 54
1979 | -0.372 | 2.459 | -0.720 | -1.304 | 0.572 _2_+

The types of yearly anomaly field are shown in Table 2. We see that onlv seven types appear: in
10 years type 3 did not appear .

Conclusions

The annual precipitation vibrations are divided into 12 types using the harmonic analysis method for
the accumulation pentad precipitation series at 51 stations in Eastern China. The Summer(4-8month)
precipitation anomaly field can be divided into five main types, each type relating to certain weather.
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On the modes of growing-season precipitation over central North
America

P.J. Lamb and M.B. Richman
Climate and Meteorology Section, State Water Survey, Champaign IL. USA

Abstract

This presentation will summarize the results of principal component and
correlation analyses of growing season precipitation over central North
L4
America for time scales of 3- through 61-days (Richman and Lamb, 1988,

Proceedings of the Eleventh Annual Climate Diagnostics Workshop). Analyses

were performed on a recently developed and quality-controlled set of 557
stations which form a nearly grid-like distribution extending from the Gulf
of Mexico to the northern 1limit of North American agriculture and from the

eastern edge of the Rocky Mountains to the western edge of the Appalachian

°

Mountains.
Results which will be highlighted are:

(i) Analysis of how the modes of rainfall variation change with respect to
time integration interval (i.e., 3-day totals, 7-day toctals, ...) to
provide insight into how weather integrates into climate and the
associated changes in scale.

(i1) Analyses of the intra-seasonal evolution of the regions from the early
growing season (May) through later phases (August) for 8 discrete
15-day periods within each season. The changes in the relative
importance of specific regions, as the growing season progress, will
be shown. Furthermore, the anisotrophic nature of certain patterns
will be examined as this provides insight into the mechanisms of rain
production. |

kiii) The year-to-year variability of rainfall modes will also be shown to

help determine to representativeness of the patterns.
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The statistical character of decadal climate in China

: You-tang Liu
Lin Fen Area Observatory, Shanxi Province, China

Abstract

100 vears of data. respresenting 100 stations. of drvhness and wetnezs
durations., have been statistical analvzed.

The smoothed EOF ( empirical orthogonal functions ) method. was
veed to calculate between drvhness and wetnessz distributionz and their
changes for 100 years. The distribution of duration show spatizl ard
temporal components. The spatial componemnt mainly resoresenting
differences between northern and southern .eastern and western rezsions
which are related to the time scale. :

Otherwice. for temporal componentes.by time series method.forecasting
future climatic change for 10 years in drvhess and. wetness. :

According to the rainfall. relating to temperature . forecasting
future climatic change for 10 vears in coldness and warmness.
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Rainfall as a fractal process

Tom Beer
CSIRO Division of Atmospheric Research, Mordialloc, Australia

Introduction

Total rainfall R, over a time period T is the sum of the amount of water carried by discrete drops of
varying size falling into an enclosure at varying times. Modern tipping-bucket raingauges. however,
produce a somewhat different result. These gauges have two equal sized small buckets. which typically
hold either 0.5 mm or 1 mm, on a see-saw arrangement. The higher bucket collects rainwater until it
is full whence it drops at which time the other bucket raises, and a signal is recorded to mark the time
at which the tip occurred. Thus a tipping bucket raingauge can measure the time interval between
constant amounts of rainfall.

Lovejoy and Mandelbrot (1985), Lovejoy and Schertzer (1985) and Skoda (1987) used radar data
from a variety of locations to estimate the probability of changes in rainflux (i.e. rainfall in m?/s) and
have shown this to be consistent with a fractal model of rainfall. By contrast, theoretical argnments
(Kedem and Chiu, 1987) supported by tipping-bucket rain gauge data (Zawadski. 1987) have bheen
used to show that rain rate processes are not self-similar and do not scale. This paper argues in favour
of rainfall having a fractal structure somewhat different to that postulated earlier and it is shown that
this structure is consistent with tipping-bucket rain gauge observations.

Lovejoy-Mandelbrot fractal model

Identification of rainfall as a fractal process relies on the concept of scaling in which a random flnctu-
ation X (t) is scaling if the statistical distribution of X (At) is the same as the statistical distribution
of A\H X (t) where H is a scaling exponent. The graphs of scaling functions represent fractal sets char-
acterised by a fractional dimension that is a non-integer quantity related to H. The existence of a
hyperbolically distributed random variable guarantees scaling, and thus serves to identify the fractal
nature of the quantity.

Lovejoy and Mandelbrot (1985) used their radar derived rainflux results to confirn that the proh-
ability distribution of rainflux asymptotes to a hyperbolic distribution and is therefore scaling. They
found that

P(Rs > rg) x (rg/r3)"" (1)

where the random rainflux variable is denoted by R; and its measured value hy ry. The guantity r}
converts the right hand side to non-dimensional form and represents the width, or amplitude. of Ry.
Lovejoy and Mandelbrot derived a value of @ = 1.660 + 0.05. They also used their rainflux results to
argue that the rainfield is scaling in time so that the amplitude of Ry is measured by

T} o tHr ) (2)

where they obtained H; = 0.64 + 0.05. The subscript L emphasises that their method produced a
‘Lagrangian’ scaling in which rainfall luctuations were tracked within the overall flow. In this report
the scaling in time of rainfall is directly tested by using tipping-bucket raingauge data. in which ¢
represents the time between tips and r the rainfall rate. In this case, because the rain gauges are fixed
in location the resulting scaling parameter produces an ‘Eulerian’ scaling.
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Figure 1: Cumulative probability distribution that rainfall rates measured by a tipping bucket raingange

exceed the value on the upper abscissa

Rainfall data

The rainfall data used in this study were obtained from a high rainfall area in Indonesia. A Mace/Rimeco
tipping bucket pluviometer with 0.5nun buckets was used. It recorded its information on an Eprom
chip that was returned to Australia and deciphered in the laboratory. The pluviometer was installe
at 2000 on 10 June 1984 and ran for 40 days. The chip was then replaced and the instrument recorded
for a further 16 days.

Figure 1 follows Lovejoy and Mandelbrot (1985) in plotting the cumulative probability that the
rainfall rate exceeds the value given on the upper abscissa. This probability is denoted P(R . r)
and is plotted on double logarithmic paper. When their results were plotted on double logarithniic
paper, Lovejoy and Mandelbrot found a straight line portion over a factor of 10 in their rain finx.
The pluviometer data do not exhibit the same:behaviour when P(R > r) is plotted. This has alsn
been independently noted by Zawadzki (1987) who argued against the existence of scaling of rain rate
increments in time (and hence against a fractal structure for rain) on the basis of his result. However
it appears that rain rates do exhibit scaling in time because, as illustrated in Figures 2 and 3, when
P(R <r)=1-P(R > r)is plotted then both the 40 day data set (Figure 2) and the 16 day data sect
(Figure 3) exhibit straight lines over four decades of rain rate.

Estimating scaling parameters'

Figures 2 and 3 provide evidence for hyperbolic distributions in that the tail probability
PR<r)oxt™? _ (3)

Estimation of the numeric value of B is subjective to the extent that one only wishes to fit a
straight line to the tail section of the curves of Figures 2 and 3. If this is done by eye then /3 = 0.44
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Figure 2: Cumulative probability distribution that rainfall rates measured by a tipping bucket raingange are

less than the value on the upper abscissa. Results based on a 40-day raingauge deployment in Indonesia

in Figure 2 and 3 = 0.59 in Figure 3. . )

Fitting data by eye is a subjective procedure. The wost obvious objective procedure that utilises
all the available data, namely a linear regression of log [P(R < r)] on logt, though adequate will
produce an estimate for 3 that is too high because of the influence of the data points that depart from
the hyperbolic distribution at large values of t. In devising a procedure that does not suffer from
these problems it was noted that the fourth and fortieth percentiles of hoth graphs produce results
that were close to the curves fitted by eye, and it is thus suggested that

_ log 10
" log(t4/tso)

where t4 and t40 are the fourth and fortieth percentile values fesl)ectix’el}'. This produces 3 values of
0.44 and 0.64 respectively for the data of Figures 2 and 3.

B (4)

Discussion

The results presented here, which confirm the fractal description of rainfall at a single raingauge, raise
a number of serious issues in practical ineteorology in relation to the traditional description of rainfall
as a point process. At first sight it would appear that common usage has interchanged dependent
and independent variables and rather than making a statement such as ‘the mean annual rainfall of
Sydney is 1190nun’ one should phrase it as ‘the mean time for 1190mm of rain to fall in Sydney is one
year’. In fact, the fractal description indicates that neither statemnent is likely to be valid because the
mean is not a well defined quantity for our hyperbolic distribution. Neither is the variance.
Mandelbrot (1977, p.320) jokes that life without variance is hard, hut life without expectation
demands psychological adjustment. This is especially so as other measures of central tendency also
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Figure 3: As for Figurc 2 based on a 16-day raingauge deployment at the same location

fail to produce values that coincide with standard meteorological conventions. The median is zero an
there is no mode.

Notwithstanding the theoretical arguments given above, the practicing meteorologist or hydrologist
is able to extract means and medians from the data of Figures 2 and 3. In the case of Figure 2, the data
has a median time interval of 1.60 minutes between 0.51un of rain and a mean time interval of 71.6
minutes between 0.5mm of rain. The corresponding figures for Figure 3 are 0.71 mfnutes and 41.24
minutes. These values can be calculated because of the existence of finite cutoffs at both low and high
time intervals. Denoting these by 7 and p respectively one finds that the median is close to (214)n
providing p is sufficiently large. The mean, however, depends on both cutoffs and approximates

B piAY ‘ .
t>= { —— —_— '
<t> (1—13)(1;*3 (
in the divergent case of 8 < 1.

The quantity p is the longest time interval hetween rainfall ®vents (i.e. the dronght perind) whose
practical value will, in turn, be dependent on the length of time for which the raingauge was deployved.
The quantity 7 is a measure of the maximum rainfall rate (0.44 minutes per nun in this case) whose
value will depend on (i) a sufficient length of deployment to ensure large rainfall events are recorded
and (ii) the mechanical attributes of the tipping bucket which will determine the minimum time
between tips. The data depicted in Figures 1 to 3 were obtained during a tropical rainy season in an
attempt to ensure that the record would incorporate large rainfall events.

[y |
—

Simulation

The statistics that the fractal model generates for daily rainfall were examined using a Monte-Carlo
simulation of forty sets of forty day rainfall simulations. The values of t, corresponding to time
intervals obeying the hyperbolic distribution, were randomly generated until the sum of the time
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intervals equals T, chosen as 40 days in this case. This interval is broken up into durations r of 24
hours and the number of draws occuring in each duration is noted, each draw is assigned a rainfall of
0.5mm, and the total rainfall is (N/2)mm.

Table 1 gives the simulation statistics. For the 40 simulations, the maximum value of the simulated
dailv rainfall was 107mm and its mean value was 62.20 mm. This is compared with the daily rainfalls
calculated from the 40 day data set used to construct Figs. 1 and 2 which had a maximum valne of

59mm. These values in Table 1 appear reasonable.

Table 1. Comparison of the statistics of daily rainfalls from 40 simulations of 40-days rainfall

Data Simulations
Rainfall class Median Mean Maximum Minimum
Maximum (mm) 59 63.5 62.20 107 4.5
Minimum (mm) 0 0 0 0 0
Mean (mm) 10.2  6.74 7.19 21.3 0.1
Median (mm) 3.0 0 0.6 11.5 0

Conclusion

The preliminary results presented above confirin an identification of rainfall as a fractal process, with
the time interval between successive rainfall amounts possessing the fractal structure. Such processes
are self-similar, in contrast to the traditional specifications of rain rate processes which do not appear
to be self-similar (Kedem and Chiu, 1987). They also asymptote to a hyperholic distribution.

The fractal model is unable to simulate the seasonality of rainfall occurrence, presumably becanse
a purely random choice of t is unable to reproduce seasonal constraints on the choice of . Given that
a single choice of a high t value represents the end of the rainy season. the likelihood of this chnice
being made should range from almost zero at the start of the rainy season to alimost one at the end
of the rainy season. :

These considerations raise doubts as to the ‘universality’ of the fractal description during dry
periods. Rainfall seems to possess a fractal structure during convective periods, but do dronght
periods also exhibit fractal structure? It is unclear whether a universal hyperbolic distribution. with a
choice of t governed by seasonal constraints produces results that are the same or different to random
choices of t made from a distribution that deviates from the hyperbolic at high values of . Given
these provisos it would appear that the fractal model is of relevance during rainy periods, but that its
performance during rainless periods remains uncertain.

References

Kedem, B. and L.S. Chiu, 1987: Are rain rate processes self-similar? Water Resources Res., 23, 1816-1818.
Lovejoy, S. and B.B. Mandelbrot, 1985: Fractal properties of rain, and a fractal model. Tellus. 374. 209-232.

Lovejoy, S. and D. Schertzer, 1986: Generalized scale invariance in the atmosphere and fractal models of rain.
Water Resources Res., 21, 1233- 1250.

Mandelbrot, B.B., 1977: Fractals: form, chance and dimension. W.H. Freeman and Company, San Francisco.
Skoda, G. 1987: Fractal dimension of rainbands over hilly terrain, Meteorol. Atmos. Phys., 36, 74-82.

Zawadzki, I. 1987:Fractal structure and exponential decorrelation in rain, J. Geophys. Res.. 92, 9586-9590.

242



Generation of daily rainfall for Jamaica using a self-adjusting
distribution function

M. Molina, C. Gray, Y. Nishimura
. National Meteorological Service, Jamaica WNMO

Abstract

Daily rainfall is a useful data for water resources planning such as in
irrigation and flood potential evaluation, particularly when transformed

into streamflow data.

A first order Markov chain model can be used to extend daily rainfall for
locations with a short record. A transition probalility matrix (TPM)

that shows the likelihood that a rainfall of a given magnitude will preceed
another one is calculated and smoothed to produce several marginal discrete
distribution functions. These functions and a given initial condition makes
possible to generate, by a Montecario method, a sequence of daily rainfall

values.

The soothing process is done using harmonic and generating function
techniques and allows for filling up of gaps the recorded data mav produce

in the TPM.

The data generation iIncludes sampling from bounded normallv-distributed
random numbers and transformation of the extended dailv rainfall from integer

to real.

A station with 110 year of record is used to generate daily rainfall at four

stations in the Kingston area.

A computer programme written in Fortran 77 for a micro-computer IBM PC/AT,

perform all the computations.

243



A precipitation climatology based on the frequency of wet days

E.S. Epstein, A.G. Barnston, D.L. Gilman
Climate Analysis Center, NMC/NWS, Camp Springs MD, USA

Abstract

We nave developed an approach to describing the,élimatology of
precipitation in terms of the frequencies of @, 1, or more days with
measurable precipitation in five day sequences. A plotting diagram has been
devised on which one can display the annual course of these frequencies at a
station. By assuming a Markov chain model for the occurrence of daily
precipitation events, this diagram allows one to infer, within the
limitations of the model and the data, the unconditional daily probabilities
of precipitation armd the conditionalAprobabilities of precipitation
following 2 wet day. Precipitation amounts are described in terms of
distributions conditional on therevbeing one, or more than one wet dayv in
five. The procedure used to derive, from daily station data, the values of
the various climatological parameters will be described. The preéipitation
climatologies, iﬁ these terms, of a diverse group of stations, and the geo-
graphical distribution across the United States of the various frequencies

and conditional amounts will also be presentad.
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Analysis of regional precipitation patterns in West Africa based on
the law of leaks '

L. Le Barbe, T. Lebel
Labatoire d’hydrologie, Montpellier, France

Introduct_ion

Regional rainfall frequency analysis is increasingly used to describe climatic patterns, and as a hasis
for water resource management studies, In contrast to point rainfall frequency analysis, the spatial
coherence required by regional analysis leads to put less emphasis on the best possible fit for a given
series and requires a distribution model valid for the whole area of study, with paraineters varying
only to account for the differences between measurement stations. While it may be relatively easy to
find such a model by any numerical optimization (e.g. a 3 parameter gamma or beta function). the
physical significance of the obtained parameters is often unclear." The problem is further complicated
if a model fitted to data for a given period of accumulation (e.g. one month), is to be extended to
other periods of accumulation (e.g. one day).

This is of special interest in Sahelian countrys where monthly data are generally reliable, which is
not the case for daily data. However in terins of climatic knowledge and agricultural needs, it is the
frequency analysis of one to fifteen day data which is the most relevant. It is thus a major concern
to be able to derive the distribution of rainfall for periods smaller than one month from monthly
distributions. .

Deeply involved in the study of West African rainfall regimés, ORSTOM scientists were thus led to
develop a distribution model allowing extrapolation both in space and in time (period of accumulation)
: this distribution is the law of leaks, named after its utilisation in the study of the distribution of gas -
leakage from gaz pipes by Morlat (cited in Babusiaux, 1969).

The law of leaks: a versatile rainfall distribution model

Presentation of the law of leaks.

The law of leaks originates from the renewal theory (e.g. Cox, 1964), the purpose of which is to stndy
the statistical distribution of the values of chronological events, the duration of the events and the
time between two consecutive events being considered as random variables (R.V). To our knowledge
it first appeared in the literature in a publication by Einstein(1937) as a special case of Compouni
Poisson Processes. . :

Let Y be an exponentially distributed R.V. : .

f(Y)=(1/s)e” ¥/ (1)

where f is the probability density function (pdf) and s the expected value of 1" (i.e. E(Y) = s and
VAR(Y) = s?%). )
Let N be the number of occurrences of }” over a given period T. N is a R.V. which is assnmed
Poisson distributed: ’
P(N)= AN /N , ' (2)
where A is the mean number of occurrences.
We are now interested in studying the distribution of Y7 . which is obtained by acenmmulating all

the realizations of ¥ over the period T. For a given number of realizations. n, the scaled variable:

U="Yr/s
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Figure 1: Probability density function of the leak distribution for various shape parameters.

is Pearson III distributed, with pdf
CfU)y= e MU [s(n - 1)1]
The marginal distribution of U, letting n vary from one to infinity is then

fo)y =3 e-*,\"/[(11!)(7l —1)unte”t)

n=1

or f(U) =e e i[z\u]"/{n!(n+ 1)!]

n=0

Let J = X532 o[ u]"/[n!(n + 1)!] then J may be written
J = Ii(2VAU)/[VAU]
where I;2+/AUis the modified first order Bessel function. The distribution of Y7 is thus given by :
FIU) = e~ A~V I,(2VAT ) /[VAT (3)

for U > 0 and F(0) = Fo = ¢~* with U = ¥1/s.
As can be seen in Fig. 1, this pdf is J-shaped for < 1, and tends towards a Gaussian pdf as it

approaches infinity.
Using the characterizing function

B(t) = Foe'® + / 't f(z)dx
: 0
Babusiaux(1969) has shown that the first three moments of the law of leaks are
K, =E(Y)=2Xs

K, = E[(Y — E(y))?] = 25
K3 = E[(Y — E(y))®] = 6)s®
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and thus the coefficient of variation (CV) and the skewness coefficient (7,) are

CV = VK3 /Ky = /2/2
= K3/K}® = 3/V2)

It is easy to see that for a given CV, the leak distribution is more symmetrical (v,/CV = 3/2) than
the Pearson III distribution (v,/CV = 2).

Several methods were developed by Babusiaux(1969) to fit the leak distribution. The maximum
likelihood method was derived later by Ribstein (1983) and proved more effective.

Application to rainfall distributions

1t is widely acknowledged that the distribution of individual events is approximately exponential (Lebel
and Guillot,1983), the difficulty being to identify what an individual rainfall event is. Denoting this
elementary rainfall event as Y, its pdf is given by equation (1). Further asswming that for a large
duration of accumulation (T'= one month for instance), the total rainfall depth results from the smmn
of N independent realizations of Y, and that N is a Poisson distributed R.V., the total rainfall has a
leak distribution, its scale parameter being the average amount of rainfall produced by an elementary
event and its shape parameter N being the average number of elementary events over the period .

It is then theoretically easy to deduce the distribution of rainfall over a period T’ from the leak
distribution fitted to the period data: the scale parameter remains constant while the shape parameter
may be computed as

Ny = N¢T'/T (4)

This may prove useful when daily data are unfit for processing due to missing observations which are
subsequently accumulated over a longer period.

. Furtherimore the fitting of a leak distribution to the time series available over a whole region gives
physical significance to the spatial variations of the parameters : an increase (or decrease) in average
total precipitation can be explained either by an increase (or decrease) in the average nmnber of events
or by an increase (or decrease) of the average rainfall depth delivered by an elementary event.

Rainfall related characteristics of the West African climate

In the early days of the science of meteorology tropical meteorology was the most advanced branch.
The first general circulation model designed by Hadley in 1735 was anchored in a description of the
trade winds regime. During the first half of our century, on the initial impetus of the Norwegian schonl.
the meteorology (and thus its associated science, climatology) of temperate regions saw remarkahle
progress, while the meteorology of tropical regions stagnated. Insufficient knowledge in these regions
has been since recognized as a major impediment to further improvement of General Circulation
Models and climatology in general (e.g. Newell and Kidson, 1979}, leading the Global Atmospheric-
Research Programme (GARP) of the WMO to instigate several experiments in tropical countries
(GATE and WAMEX among others). These experiments have provided the scientific commmnity with
a better understanding of the synoptic, mesoscale and local meteorological processes associated with
the wet season precipitations in West Africa(June to September).

It was first confirmed (e.g. Barnes and Sieckman, 1984) that the most significant phenomenon
associated withw rainfall production was the squall line. Squall lines are westward travelling distur-
bances with very active convection. They appear as large and dark cloud fronts to ground ohservers
and can remain organized for more than 3000 km and travel at an average speed of 40 to 70 kmm/h
(ASECNA, 1976). They display a discontinuous activity, the cells of maximum rainfall being sepa-
rated by zones of very low or even zero rainfall. It seems that the travelling speed of the squall lines
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must be related to the maximum rainfall intensities rather than to the total amount of rainfall. Even
though there is not yet any satisfactory description of their interaction with the general circulation,
the PREGATE-ASECNA experiment of 1973, followed by numerous studies of cloud clusters using
satellite imagery allowed Desbois et al.(1988) to give a fairly ‘objective’ definition of a squall line as
viewed by satellite as: (1) a sharp edge on the west side; (2) persistence during at least 12 hours: (3)
independence from the cloudy environment (clear area ahead of the line).

Ground measurements show that at a given station the rainfall lasts a few hours. The most
significant rainfalls over West Africa, north of the 1200 mm yearly rainfall isoline thus display a
marked intermittent character at the daily scale, and thus fall in the category of random process
described in section 2. ]

Nowhere is a good statistical modelling of rainfall distributions more needed than in Sahelian
Africa. This region is highly dependent on surface water for its agricultural development but a large
number of streams are not perennial. The crops are thus grown during the rainy season and are very
sensitive to any variation of the climate, whether in space or in time.

The Benin case study

As a first test of the applicability of the leak distribution as a model of monthly rainfall distrilmtion,
the rainfall of Benin was chosen. This country is not representative of the region. since the south is
under the influence of the ocean and a mountain range is present in the center. The variations of the
yearly rainfall are thus not as meridionally organized as they are further north (for more details see
Le Barbe and Ale, 1989).

Forty three stations are available over the period 1950-1985. The calendar months were chosen
to define twelve different populations, each represented by a sample of 36 values. The lengths of a
few series are much longer (up to 60 years for Cotonou). The study of these series showed no major
differences in the average distribution between the period 1950-1985 and the longer periods. This may
be related to the fact that the fifty’s were wetter than normal, while since 1968, the drought has heen
severe,

The leak distribution generally fits the experimental distribution well, especially in the middle of
the rainy season (July, August and September), as can be seen from Fig. 2. The parameters of the
leak distribution were therefore mapped. The maps shown in Fig. 3, display a spatial organisation
of these parameters, in agreement with prior knowledge. In particular the specific hehavior of the
stations bordering the Gulf of Guinea is striking. Over the rest of the country, the shape parameter
isolines are roughly organised along latitudes. The organisation of the scale parameter isolines reveals
two regions: (1) the south where its value decreases northward, which corresponds to the decreasing
influence of the ocean and, (2) the north where no organisation is apparent, which seems to mean
that the average magnitude of an elementary event is roughly constant. In addition. the variations
of the mean monthly rainfall from March to October are correlated with the variations of the shape
parameter (number of events), while the scale parameter remains roughly constant.

For a few stations the parameters of the five and ten day rainfall distribution were compnted from
the monthly parameters, the scale parameter remaining constant (s = $;0 = s30) and the shape
parameter being obtained using equation 4 with T'= 30 and T'= 5 or 10. The leak distributinns
so obtained were plotted along with the corresponding experimental distributions and Fig. 4 shows
that, using this procedure, one is able to compute a theoretical distribution that fits the experimental
distribution relatively well. '

248



) -1385). AUGUST. MONTHLY RAINFALL.
KANUL C1945-1985). AUCUST.  WUNTHLY RAINIALL. PARAKOU (1945

— . *1—‘
1: Leah distridbution. 1: Leak distribution.
g ol |
w
L =3
[=3
@
=1
[=3 -
R ]
£ £
= ] g
= S
" 28 1
[V -
= =]
= &=
e -
=3
b= - . SCALE PARAMEZTER: 15.048
= SeALE PARMMETER: 17720 ] SKAPE PARAMETEZR: 13.17)
SHAPE PARAMETER: 23. 4
- 3 5 H []
-1 i 3 3 7 § 1 i
1
GUNBEL VARIATE ] . GURBEL VARIATE .
.10 .56 .90 .99 .95 .999%7 10 .56 .30 .99 1933 .93%7

Figure 2: The leak distribution fitted to monthly data.

SEPTEMBER Ly AUGUST

SCALE PARAMETER
{1710 mm)

SHAPE PARAMETER

Figure 3: Maps of the scale and shape parameters over Benin.

249



CUNBEL VARIATE

CUNBEL VARINTE

S DAY LEAX DISTRISUTION PEDUCED FRON TME WONTHLY LEAK DISTRIBUTION.
'

5 " + " 4 4
+ t t + ¥ + + t

1e 38 5 7 %
ROINFRLL (1718 BD)

1

1 e 5 P8Y RALNFALL. JULY- PRRAKOU (1545-1985).
LE&X DISTRIBUTION. SCALE- 13.3; SHRPE:z 1.56

—_——

L8 Bay LEGL DISTRIBUTION DEDUCED FRON THE EOMTHLY LEQL DISTRIBUTION.

3 ; s 4 4 L
t t + + y t + t

18 is 11 " Sll
RAIMFALL C1/10 1X)

18 DAY RAINFALL. JULY- Ka¥DI (1345-1%95)
2 e LEGK MISTRIAUTION, SCALE= 10.4; SHAPE:= 6.4

Figure 4: Five day leak distribution deduced from the monthly leak distribution.

250



Conclusion

Regional rainfall frequency analysis is a cornerstone of water resource management in West Africa.
and especially in the assessment of its agricultural potentatial. The leak distribution, one parameter
of which (the scale parameter s) is the average rainfall depth of the elementary rainfall event and the
other (the shape parameter N ) is the average number of events over a given period, provides a gond
fit for the 43 experimental point monthly distributions available over the period 1950-1985 in Benin.
The physical significance of the parameters of the leak distribution allows an interpretation of their
spatial variations from a climatological point of view. The main pomts reeulnng from this analysis
are the following:

. the average number of events increases regularly from the south to the north, for all four months
of the rainy season.

o the spatial organisation of the scale parameter allows to divide the area into two regions: 1)
the south, under the influence of the Gulf of Guinea with a progressive decrease of the scale
parameter from the south to the north; 2) the north, where the scale parameter varies more or

"-less randomly, showing that the meridional rainfall gradient is primarily cansed by a variation
of the number of events rather than that of the average depth of the rainfall events.

e the end of the rainy season in the north is related to a sharp decrease of the number of rainfall

events in October, the average depth of the rainfall events remaining almost constant from
March to October.

o the leak distribution allows direct computation of the parameters of the five and ten day rainfall
distributions, using the parameters of the leak distribution fitted to monthly data. This is of
particular interest when monthly data are available and data over smaller durations are of
questionable reliability.

This work is the first step of a larger study of the regional precipitation patterns over West Africa.
The suitability of the leak distribution for such a purpose has been established for Benin and will have
to be confirmed on a broader scale. This second phase is in progress and has already produced some
interesting results.
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Some analytically derived distribution functions for rainfall totals

Van-Than-Van Nguyen®!, Huynh-Ngoc Phien?
1Dept. Civil Engineering and Applied Mechanics, McGill University, Montreal, Canada; ?Div.
Computer Science, Asian Institute of Technology, Bangkok, Thailand

Introduction

Several statistical models have been presented in the literature for describing the distribution of rainfall
accumulations over an n-day period. One common approach is to select a probability distribution
function which may appear to fit the observed frequencies of the data (see,e. g-» Dingens and Stevaert,
1971; Oztiirk, 1981). Parameters of such empirical distribution functions are properties of the sample
and, usually, have no physical interpretation. The type of distribution selected depends upon the
length n of the period considered and may vary at different locations. The alternative approach is to
derive analytically a distribution function for rainfall totals by taking into account some stochastic
properties of the underlying rainfall process. This analytical approach should be valid for whatever
the length of the period considered and applicable to all locations where the assumed model structure
is adequately obeyed. The analytical method has been used in some previous studies to describe the
distribution of n-day rainfall totals (Todorovic and Woolhiser, 1975; Stern and Coe. 1984: Nguven
and In-na, 1987).

In a previous paper (Nguyen, 1984) a general stochastic model was proposed for characterizing
the temporal distribution of rainfalls within each individual rainfall event or the temporal pattern
of each rainfall event. An event was defined as an unbroken sequence of consecutive rainfall depths.
The model was applied to daily rainfall process in which the daily rainfall depths were assumed to
be independent and identically exponentially distributed random variables while the sequences of wet
days were represented by a first-order stationary Markov chain. Hence, the model did only accomnt
for the dependence of rainy day occurences through the first-order Markov chain. The present psper.
a continuation of the previous one, suggests more general models which can take into account ¢jther
both the persistence in daily rainfall occurences and the dependence hetween successive daily rainfall
depths or the correlation between cumulative rainfall depths and rainfall durations.

The objective of this paper is to determine analytically the probabhility distribution of ciummlative
rainfall amounts in a given rainfall event. In this study, we will use an analytical methodology similar
to that proposed in the earlier cited work (Nguyen and In-na, 1987) for characterizing the distribution
of rainfall totals within a fixed calendar-time period (e.g., the first ten days in May. etc.). In such
an application, only a portion of a rainfall event or some of the events that have occurred within the
fixed period selected have heen considered. Various modifications, therefore, will be needed to nse this
analytical method in the estimation of the distribution function for the total rainfall event depths.
The use of an analytical solution seems to have several advantages over the use of empirical fitting
approaches hecause it can take explicitly into account some obhserved random properties of an actnal
daily rainfall record.

Theoretical development

In view of the objective stated above, a rainfall event in this study will be defined as an uninterrupted
sequences of consecutive daily rainfalls. Consider now an interval of time which consists of n days.
In order to consider the total depths of all complete rainfall events that have occurred, all events are
arranged to begin with the first day of the n-day period, and the length of the n-day time interval
considered must be at least equal to the longest observed rainfall event duration (or the longest
observed wet period).
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Let £, denote the daily rainfall depth in the v-th day. Let D, represent the total duration of
a rainfall event (or the total number of consecutive rainy days). The total rainfall depth or the
accumulated amount of rainfall V(n) during D,, consecutive rainy days of the n-day period can he

defined as D. .
= Z Ey (1)

Then the distribution function F,.(:r) of V(n)can be written as follows (Todorovic and Woolhiser. 1975
or Nguyen, 1984):
n
Fo(z) = P{V(n) <z} = P{Xw < z,D, =k} (2)
k=1 ’
in which P{.} denotes the probability, and X = Z:.—.-x e, for k=1,2,.

In the above theoretical development, the equation (2) was restricted to daily rainfall process.
However, it is readily seen that this restriction is not necessary. The general model, equation (2).
might be used for rainfall data of any time interval. In the following for daily rainfall process, we
consider the following particular cases:

(A) The cumulative rainfall depth X, and the rainfall duration D, are independent
In this case we can write:

Fo(z) =Y P{Xi < z}.P{D, =k} (3)
k=1 ’

Hence, to determine the distribution function F,(z), it is necessary to compute the probabilities
P{X) < z} and P{Dn = k}. In this paper, the probabilities P{Dn = k} for ¥ = 1.2..... n
is assmmed to be approximated by a first-order stationary Markov chain (Nguven. 1984), and the
distribution function P{X; < z} are analytically derived as shown in the work by Ngnven and In-na
(1987).

More specifically, if the successive daily rainfall depths ¢3,£3,...,¢, are independent and identi-
cally exponentially distributed random variables, it can be readily shown that (e.g.. Todorovic antd

Woolhiser, 1975): _
Fu(z) = (F(k)/ °“du) P{D, =k} (4)

in which T'(k) = (k- 1) for k = 1, 2, ...,n, and a is the parameter of the exponential distrihntion of
daily rainfalls. Furthermore, if there exists a significant correlation hetween successive daily rainfall
amounts, the probability F,(z) can be written as follows (Nguyen and In-na, 1987):

Fu(z)= Y { —1)k- IZ [H (— - 1)_1.(1 - e‘i’;')] } P{D, = k} (5)

k=1 =1 [j#i

where the A’s are the eigenvalues of the correlation matrix of successive daily rainfalls. and
[1;2i(Aj/Ai — 1)7! is the product of the (\;/A; — 1)™!s for i,j = 1,2,...,k and j # i. The pa-
rameters a and A’s in equations (4) and (5) will be estimated from the observed data.

(B) The cumulative depth X, and the rainfall duration D, are dependent
Under this hypothesis we can write

Fo(z) =Y P{Xi # z|Dn=k}.P{D, =k} (6)
k=1
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Figure 1: Observed and theoretical distributions of rainfall totals

Furthermore, in this paper we will assume that X; and D, are linearly dependent. That is,
- €k
Xt = (aD,, + b)— 7
k= (aDn + oo (7)
wlere a and b are constant coefficients, and € is the random transformed percent residuals. If the
distribution of e, can be adequately described by a simple exponential distribution with parameter /3.
hence equation (6) can be written as follows (Nguyen and In-na, 1987):
l 1003 .
Fo(z) = 1—ex (—---»Ai»m)].}’ D, =k
N S s IR (©
The parameters a,b and 3 will be estiinated from the observed data.

Numerical application

In the following, to test the descriptive capabilities of the theoretical distribution functions. equations
(4), (5) and (8), an illustrative application will be presented using daily rainfall data in sununer seasons
{June-September) for the 1943-1974 period at Dorval Airport in Canada. According to the definition
of a rainfall event in this study, a total of 768 events having durations of from 1 to 12 days have heen
selected from the 32-year record. v

Fignre 1 shows a comparison hetween observed and theoretical distrihutions of total rainfall event
depths. It is noted that the model with serial correlation hetween daily rainfall amounts, eq. (D).
gives a small improvement as compared to the model without serial correlation, eq. (4), probably due
to the weak correlation inherent in the observed daily rainfall record considered. However, by taking
into account the dependence between cumulative rainfall depth and duration, the model (8) provides
the best fit to the observations. This indicates that, in determining the distribution of total rainfall
in a given event, the effect of serial correlation of daily rainfalls seems to be negligible as compared ta
that due to the correlation between total rainfall depth and duration.
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Conclusion

An analytical method that can explicitly take into account some observed stochastic properties of an
actual rainfall record has been suggested in this study for determining the probability distribution of
total rainfall depths in a given wet period. It can be concluded that the proposed method is more
general and more flexible than the empirical fitting approaches that have been used in most previous
investigations. The use of an analytical solution is a convenient feature of the suggested method
because, with this method, it is not necessary to guess which theoretical distribution best fits to the
observed frequency distribution of rainfall totals. Further studies with a more extensive data hase are
planned to compare the performance of different models proposed. :
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Introduction

The statistical properties of high values of observed (e.g. meteorological) series leave traditionally

been discussed by application of classical extreme value theory, assuming that the observations are

well modelled as a sequence of statistically independent and identically distributed (i.i.d.) values. One

* finds that under such a model very high values tend to occur singly - i.e. are typically preceded and

followed by ‘moderate’ values. On the other hand when observations are serially dependent a high

value will tend to induce further high values, so that these high values occur in clusters (cf. Figure 1).
A study of the cluster structure has two important purposes:

1. To model statistically the duration of ‘episodes’ of high values of series of interest (such as wind
speed, leading to storms; rainfall, leading to floods. etc.)

2. To provide appropriate modifications to the classical theory of extreme values to deal with
dependence among the observations in discussing the largest and other high values in long time

periods. .
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Figure 1: (a) Independence - no clustering (b) Clustering under dependence

The question of precisely defining a ‘cluster’ of high values will be taken up in Section 3. For
the moment however we simply regard cluster of ‘exceedances’ as the groups of consecutive observed
values above a high level u (c<f. Fig. 1).

The statistical properties of the lengths of the clusters are of course basic to the discnssion of
cluster structure. In particular it turns out that under wide conditions, the mean cluster length (i.c.
the average cluster size above a high level in a long time period) is an important parameter. We
denote this parameter by 1/6 and refer to 6 as the ‘extremal index’ of the observed series (cf. [5]]6]).

It may be shown ([6]) that the value of 6 lies between zero and one. In the ‘classical’ case for
i.i.d. observations the high values tend to be isolated as noted so that clusters have size 1 and
carrespondingly @ = 1. This is true also under serial dependence in a number of cases (e.g. many
Gaussian models). On the other hand for highly dependent series the mean cluster size will exceed
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one and correspondingly one then has < 1. Thus in understanding the clustering phenomenon it is
important to estimate the value of & - a topic considered in Section 3 using theory of {3]. illustrated
by practical examples in Section 4.

In addition to its relevance to cluster structure, the extremal index @ has important bearing on the
extreme value theory for dependent observations. Specifically if the values observed are X,, X, .......

and
M, = maz(X1,X2,...... , Xn)

then the classical theory discusses the possible limit laws for M, of the form
P{a,(M, -b,) <z} — G(z), asn — o0 (9)

under the assumption that the terms X; are i.i.d. In particular the theory shows that G mmst
(aside from linear normalisations) then be one of the three so-called ‘extreme value types’ G(r) =
erp(—e~*),G(z) = ezp(—z~),a > 0,z > 0, or G(z) = ezp(—(—2)%),¢ .~ 0,z < 0.

If on the other hand observations X; are allowe: o be statistically dependent but keep the same
(marginal) distribution function, more recent theory (cf. [6])shows that then under wide conditions
the only change to (1) is the replacement of G by G?. It is readily shown that G? is of the same
extreme value type as G itself, so that the classical criteria for the type of limit may he used, just as
if the observations were i.i.d.

Thus knowledge of the value of the extremal index is all that is necessary in modifying the classical
limiting distribution of the maximum to deal with a wide class of (stationary) series of dependent
observations. For other ‘order statistics’ (e.g. second, third largest values etc.) the modification
depends more intimately on the detailed statistical properties of the cluster sizes hut @ still plays an
important role. _

Thus estimation of 8 is also important for extreme value theory applications. It is perhaps of
interest to note that the classical i.i.d. - based theory has been traditionally used in applications
where the data is clearly dependent. In fact this would perhaps be so for most naturally occurring
phenomena , such as meteorological series. The success of extreme value theory in such cases stems
from the fact noted above that the type of the limit law is unchanged by the introduction of dependence.
though the constants may change. -

Since the constants are estimated, the dependence in the data is not necessarily apparent from the
estimation process. Of course, an estimation of 8 is really involved implicitly in such an analysis even
if not carried out explicitly.

In Section 2 the specific theory surrounding the extremal index # briefly indicated, and Section
3 discusses estimation procedures for 6. This is illustrated in Section 4 from measurements of acid
levels in periods of rain, obtained from the acid deposition study (2], and by tide level series from the

port of Den Helder, Holland.

The extremal Index
A detailed theory regarding the clustering of high values may be found in (6] [4] and here we indicate
only some main features. ’

I X;, Xo,...... are i.i.d. random variables with commeon distribution function (d.f.) F, and 7 ; 0.
let up, = u,(7) be a family of ‘levels’ such that

n(l - Fun)) — 7 ' (10)
It is easily shown ( since the d.f. for M, is F") that (1) is entirely 'equivalent.to

P{M, <u,}—e 7 (11)
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This simple equivalence underlies much of classical extreme value theory - for example (1) may he put
in the form (3) by writing u, = z/a, + b,, G(z) = e~7. Further, use of the equivalence yvields so-called
‘domain of attraction’ criteria in terms of the tail 1 —~ F(z) to determine which type of extreme value
limit occurs in particular cases.

Typically u,(7) increases as n increases and ‘high values’ of the observations X, are interpreted
as being those which exceed the level u,(7). As n increases these ‘exceedances’ of time scale) occur at
points of timme which become like a Poisson Process. The points of this Poisson Process are of course
isolated and do not occur in clusters. v

Assume now that Xj, X3,.... can be dependent, forming a statistical stationary sequence. Then
under a mild dependence decay condition at large separations (cf. [6]) it may be shown that if (1)
holds then

P{M, < up,} — e~ o (12)

for a parameter 6, 0 < # < 1 which does not depend on 7. The parameter @ is in fact the extremal
index and it follows simply that

P{a.(M, - b,) < z} — (G(z))° (13)

For the dependent sequence, exceedances of the level u,(7) now occur in clusters (Fig. 1) which.
after time scale change, are situated at (approximately) Poisson points when the level is high. The
exceedances then approximate more and more closely a so-called ‘Compound Poisson Process' where
the Poisson positions of the clusters (occurring at the rate #r)are ‘compounded’ or ‘marked” by the
cluster sizes. As noted above the mean cluster size tends to 1/6 as the level u,, increases.

Finally in this sketch of basic concepts we note that the distribution of the rth largest valie Al
(rth ‘order statistic’) may be obtained from that for M, (= M}) in either i.i.d. or dependent contexts.
This is done by a simple consideration of the limiting Poisson (or Compound Poisson) nature of
the exceedances by noting that the event {A\" < u,} occurs precisely when there are less than r
exceedances of u, among X, X3, ...., X5,. In the i.i.d. case this leads to the limiting distribution

r—1 ’
Pla. (M) —b,) <z} — G(z) Y (—logG(z))"/s! (14)

’:0
when Af,, has limiting distribution given by (1). In the dependent case this must be modified to read

r—1lr-1
Plan (M) —b,) <2} - G (2) 3 N (~logGO(z)"/s))m. ; (15)
2=0 j=s
where 7,, j are constants - specifically being for each s, the sth convolution probabilities of the limiting
cluster size distribution. -

"A comparison of (6) and (7) highlights the fact that the introduction of dependence makes mmch
more of a difference for rth largest values (for r=2, 3,....) than for r=1 when G is siinply replaced
by G®. This is especially important to note in apphcatxons where e.g. the second (or rth for r > 2)
largest values are periodically reported, rather than the maximun itself.

Estimation of 6

In view of the interpretation of #~! as limiting size of an exceedance cluster it is natural to estimate
@ simply as the reciprocal of the average cluster size in the given observations. That is one e:t1111afe<

6 by
=2/ Zl'z
=1
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where Y; is the size of the ith cluster and Z is the total number of clusters. But the sum of cluster
sizes is simply the total number N of exceedances of the level u, so that

6=2Z/N (16)

Two practical questions arise, the first concerning the precise definition of a cluster. A natural
definition would be that any group of consecutive exceedances forms a cluster. This ‘exceedance rmn’
definition is simple but difficult to deal with theoretically and has the disadvantage that two or more
nearby but separated groups should perhaps be regarded as just one cluster. Another definition is
obtained by dividing the n observation times into smaller blocks of specified size and regarding all
exceedances (if any) in any one block as forming a cluster (cf. [4]). Of course this can split single
clusters and combine two or more into one. However it is simple to deal with theoretically, dnes
not depend critically on the block size, and is asymptotically equivalent to the first definition under
general conditions ([7]). In Section 4 we use both definitions, and vary the block sizes for the latter
‘block based’ definition.

The second practical question is philosophically more serious but provides guidance concerning the
proper procedure to be used. When the level u,, satisfies (2) there are insufficient exceedances to give
statistical ‘consistency’ for the estimate §. That is as n increases the value of # does not necessarily
converge appropriately to the value 6. It has, however, been shown ((3] for the block-based estimator
and [8] for the runs estimator) that consistency can be achieved by the use of somewhat lower levels
- replacing (2) by

1 - F(up) =90 — 0, nyp, — o (17)

F is typically unknown but <, is approximately the proportion of observations exceeding u,.
Thus (9) suggests selecting a small value for v,, and choosing u,, so that the proportion of ohservations
exceeding u, is vy, (i.e. u, is the (1 - y,) percentile of the data). If possible v, should he selected
so that nv, (approximately the number of values exceeding u,) is large. For the first application in
the next section we have (for n = 504) taken ¥, = .05 and 0.1 so that n4, = 25 and 50. Of course
‘consistency’ is concerned with increasing values of n rather than fixed sample sizes. However the
guidance provided in the choice of u,, does seem valuable.

It has also been shown in [3] under appropriate conditions, when u, is chosen by (9). that a
block-based estimator 8 is approximately normal with mean and variance

8(6°V - 1)/(nyn) | (18)
where (using the previous notation)

4
V:Zl".-’/z (19)
1

V is simply the average of squares of cluster sizes. This result applies when n is large and 0 < 8 < 1.
Similar properties for the runs estimator are considered in [8].

This result enables one to provide confidence intervals or a hypothesis test regarding 6. i.e. to
determine the extent of clustering of high values in the observed data.

Applications

Our first example comes from acid levels ([2]) in periods of rain measured in Pennsylvania, USA. In
the study one measurement of each quantity of interest was made in each of a series of 504 consecutive
‘rain events’ and these are here taken as the basic data - focusing specifically on sulphur dioxide (SO,).
An excerpt from the data is shown in Table 1 in which the observed values greater than 93 p mole/L
are reported together with the numbers (in time sequence) of the rain periods in which they occurred.
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Table 1: Rain periods and sulphate values (y mole/L) exceeding 93 4 mole/L.
Rain
Period 55 60 64 65 73 74 75 77 83 85 102 129 150 160
Sulphate 140 95 150 110 99° 130 120 110 110 120 130 98 110 95
Rain
Period 168 176 177 184 187 188 228 229 237 242 247 253 315 317
Sulphate 110 130 130 150 110 110 280 160 96 96 98 150 94 110
Rain _ :
Period 324 334 353 874 875 376 877 397 398 402 404 405 415 439
Sulphate 200 330 100 110 110 95 99 340 99 140 95 100 150 100
Rain :
Period 452 453 455 469 470 476 480 485
Sulphate 100 100 190 130 130 105 110 150

Three choices were made for the level u, (viz. 93, 99, 110 ;. mole/L) corresponding approximately
to the 90%, 92.5% and 95% percentiles of the data, the numbers of exceedance values being respectively
N=50, 34, 22. The observed distributions of cluster sizes are given in Table 2 along with the estimate
6 and its estimated standard deviation (s.d.) &. ‘

In this table runs occur where two or more rain periods with consecutive index values appear.
These are indicated by italicizing.

Confidence intervals for 6 are complicated by the dependence of the variance of @ on 8 and the fact
that @ is only approximately unbiased. However calculations show that e.g. the classical 95% interval
(é + 2&) is likely to give a reasonable approximation to the true interval (and will be conservative in
cases where the bias is small). For example for the runs estimate based on the u, = 99 level. this 95"
confidence interval for € is (.68, .90). '

Such elementary comparisons of differences between the estimated values with standard deviations
show no statistically significant differences between the different procedures hut all estimates é are
significantly less than one, so that it may be safely concluded that # < 1 i.e. clustering is present.
This is confirmed by a test of the null hypothesis that the data is i.i.d. (which implies 8 = 1) based
on the number of runs one then expects to find in the data. This avoids the bias problem referred tn
above. Specifically under the hypothesis of i.i.d. data one has ([1])

E(f) = E(Z/N) = [} +n ' N(n - N)/N

o? = varf = %(n — N)[2N(n - N) - n]/(n®N)

For the three levels considered the estimated values, means and variances are:
Estimated value Expected value under s.d. under independence

Un 6 independence E(6) o

93 .74 91 : .040
99 .79 _ .94 .040
110 .82 .98 042

Since the estimated values differ from the expected values for i.i.d. values by approximately four
standard deviations one can clearly reject the i.i.d. hypothesis - again providing strong evidence that
@ < 1, i.e. clustering is present.
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Table 2: Cluster size and estimates (8) for the extremal index (8) with estimated standard deviation (&). (+
Number in parenthesis indicates block length.)
Frequency of
Cluster cluster sizes :
Definition uum, N 1 2 3 4 Z 6 V sd g

Runs 93 50 27 8 1 1 37 .74 227  .060
Runs’ 99 38 22 8 - - 30 .79 180 .051
Runs 110 22 14 4 - - 18 .82 167  .067
Block (5)x 93 50 21 10 3 - 34 .68 259  0.52
Block (5) 99 38 15 10 1 - 26 .68 246 .050
Block (5) 110 22 12 5 - - 17 .77 188  .064
Block (10)+ 93 50 11 11 3 2 27 .54 4.22  .050
Block (10) 99 38 13 8 3 - 24 .63 3.00 .056
Block (10) 1100 22 12 5 - - 17 .77 1.88  .064

One cautionary (and instructive) note concerns the increase of the estimates 8 as the level increases
which is apparent (even if not statistically significant) in all three procedures. For dependent, hut
non-clustering data (8 = 1) one would certainly expect the clusters of size greater than one to hecome
‘thinned out’ more and more as the level increases,leading to higher values off. Hence some mondest
caution needs to be attached to our (statistically highly significant) conclusion 6 < 1. The ohserved
consistent increase in 6 with level suggests that one’s procedure in practice should be to trv higher
levels until the value of  either stabilises at some value less than one, or else tends to one, or until the
level is so high that exceedances are very few, and the estimated standard deviation & of @ thus shows
a substantial increase. That point appears to have been reached in the above table with an increase

in |sigma of between 11% and 28% from the 93 to the 110 level.
’ The final point to be made regarding this data is that the block based estimates tend to he
somewhat smaller than for runs, and the larger block size gives the smaller estimates (as would be
expected). For ‘smoothly varying’ observations the runs definition seems preferable but a choice shenild
be made from a visual inspection of the data. As noted the estimators are asymptotically equivalent
[(8)] so that their closeness to each other is another indication as to whether the level heing used is
sufficiently high for the given data set.

The second study concerns the heights of tides measured at Den Helder, Holland in winter periods
from 1932-1985. '

Four levels were selected - corresponding to the 90%, 92.5%, 95%, 97% percentiles (actnal levels
106, 114, 128, 149 cmn). The estimates of 8 and their standard deviations are given in Table 3 for
estimators based on runs and on block lengths of 4, 5, 10.

Again in this data there is clear evidence that # < 1, indeed some values of é differ from 1 by as
much as fourteen standard deviations. Again also the estimates @ are increasing with increasing level
and do not show signs of stabilising with the levels used. However the more than 60% increase in
standard deviation for 6 from low to high levels suggests that one may not wish to use vet higher levels
in view of the attrition of exceedances. In this application the shortest block size used actually gives
estimates which are larger than (and quite close to) those for runs. Again, unless the observations
tend to oscillate rapidly when above a high level, the use of the runs estimator seems preferable in

262



Table 3: Estimates (f) for the extremal index (@) with estimated standard deviation (&). (* Number in
parenthesis indicates block length.) :

Cluster

Definition u, (cm) N Y/ 6 sd &
Runs 106 947 602 .64 .028
Runs 114 722 465 .64 .032
Runs 128 470 324 .69 .036
Runs 149 233 167 .72 .046
Block (4)+ 106 947 616 .65  .025
Block (4) 114 722 483 .67  .028
Block (4) 128 470 335 .71  .033
Block (4) © 149 233 175 .75 .043
Block (5)« 106 447 572 .60  .027
Block (5) 114 722 456 .63  .030
Block (5) 128 470 317 .67  .035
Block (5) 149 233 173 .74  .044
Block (10)x 106 947 440 .46  .032
Block (10) 114 722 361 .50 .036
Block (10) 128 470 258 .55 041
Block (10) 149 233 147 .63  .055
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avoiding the ambiguity of block size choices.

In summary, the two data sets analysed both have extremal index estimates which are <1g1uﬁcanfh
less than one, demonstrating the presence of clustering of high values in each case. The differences
between the ‘runs’ and ‘block based’ estimators are not statistically significant; the former may be
preferred in practice because of its unambiguous definition, especially for ‘smoothly varying' observed
series, though the latter is theoretically more tractable. Finally we note that it is possible in principle
to estimate the limiting cluster size distribution by similar means, but this requires yet larger amonnts
of data to obtain satisfactory statistical properties for the estimates.
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CLIMPROB- A computer program to develop probabilities for
different types of agricultural weather situations

R.E. Neild and Y-H. Xu
Center for Agricultural Meteorology and Climatology
University of Nebraska, Lincoln NE, USA

Abstract

. Daily weather histories of maximum-minimum temperature and
pPrecipitation approaching 100 vyears or more have been recorded for
many locatione in the U.S.A. as well as in other nations. kReported
here is a complefely flexible program for small computers that can
generate a chronology of different types of apweather siﬁuations that
fiave happened and develon their probabilitie=s from & ranked frquencv
5( the incidence in the long term histo#y.

) . The program is flexible and allows users to open historic daiilv
Wweather {files for any time reriod considered as critical and select a
type of analvesis from a menu of 21 different items which, with user
input wvalues for thresholds, accumulations or. extréme limits for
temperature or precipitation, def ine an agroclimatic situation of
interest. Data are presented comparing CLIMPROUB results with more
sophisticated Markov Chain and incomplete gamma analysis of precipita-
tion. CLIMFRUB has beern used for analvysis of possible trends and
seasonal interrelationships between commonly discgssed weather
changes. Example applications of CLIMPROE menu items to agriculture

are alsc presented and discusgsed.
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