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* FOREWORD

Since some time ago the need for a meeting on statistical climatology was strongly
felt both in those circles of statisticians interested in climatology as well as of
climatologists who are applying the statistical methodology in their branch.

Our feeling is that this was the time for such a session. Indeed, it is not a
pure coincidence that one of the positive contributions of the Climate Conference
in Geneva last February was to make a clear distinction between weather and climate,
that is between the dynamical and the statistical aspects of the meteorological phe-
nomenon.

More precisely, if weather may be characterized mathematically by the joint values
of the parameters defining the thermodynamical state at each point of the atmosphere,
values which are in evolution with the time! climate may be considered as being the
statistical population of all the possible joint values for these parameters at any
point of the atmosphere. Moreover, the study of climate may even be more ambitious
since it has been found that stochastic models such as autoregressive schemes or
Markov chains are able to describe the random character of the evolution of weather.

There were thus some chanfes that a meeting grouping statisticians and climatolo-
gists would lead to fruitful exchanges of ideas and we are grateful to Dr.Fred Leone,
Executive Director of the American Statistical Association, for his endeavour to
realize the basis of such a meeting, to the Organizing and Executive Committee in
Japan involving Dr.M.Hirose, Prof.S.Ikeda, Prof.E.Suzuki,Prof.Y.Suzuki and Dr.E.Uchida
who solved for the best all the practical problems and to the sponsors who covered
the material needs.

About thirty papers were presented to the fifty participants to the meeting and
if in one sense we hoped a still larger participation, we beliévé’that,_in,spite of
the duration limited to two and a half day, easy discussion remained possible which
after all remains the main purpose of such events.

Likewise, the presented papers did not cover all the wanted topics as well as we do
not think that the discussions exhausted the subject. It seems thus that henceforth
another meeting on the same subject has to be considered as useful in a near future
with the hope that this time some encouragement will come from the World Meteorolog-
ical Organization.

Again our gratitude goes to the Organizing Committee in Japan and especially to
Prof. S.Ikeda and his staff who made everything smooth and nice so that every one
could enjoy the most during his stay in Hachioji and in Tokyo.

Dr. R. Sneyers
Chairman



EDITOR'S PREFACE

The present volume is the Proceedings from the l-st International Conference on
Statistical Climatology , held at Inter-University Seminar House in Hachioji, Tokyo,
Japan, from Nov.29 through Dec.l, 1979, as a satellite meeting to the 1979 session
of the ISI. The conference, promoted by Dr. Fred C. Leone, the Executive Director
of the American Statistical Association, was sponsored by the Bernoulli Society for
Mathematical Statistics and Probability, the Japan Statistical Society and the Meteor-
ological Society of Japan.

It should be acknowledged that the conference was almost fully supported finan-
. cially by the U.S.Office of Naval Research and the Institute of Information Sciences
at Soka University.

Under the chairmanship of Dr. R. Sneyers (Institut royal météorologique de Belgi-
que) and Prof. M.M.Yoshino (Tsukuba Univ.), the conference was arranged and executed
by the Organizing Committee involving Drs. M.Hirose and E.Uchida (Met.Res.Inst.,Tokyo)
E.Suzuki (Aoyama-Gakuin Univ.), Y.Suzuki (Tokyo Univ.) and S.Ikeda (S <a Univ.),
keeping close contact with Dr.F.C.Leone and Prof. S.S.Gupta (purdue Univ.).

Topics originally planned for the scientific program of the conference were :
(1) Time series - Assessment of randomness (with corresponding fields of application
in Climatology: Homogeneity of series - climatic change), (2) Theoretical distribu-
tions - single values, extreme values, continuous or discrete variables, Markov chains
(statistical prediction, simple random climatic models), (3) Joint (multivariate)
distributions - continuous or discrete variates, estimation when one marginal is
known, factor analysis, multivariate analysis ( Statistical prediction, simple random
climatic models, statistical description), (4) Statistical gquality control ( Outliers
in series of observations, quality of predictions), (5) Stochastic models of meteoro-
logical fields (Estimation of lacking points, optimal density of networks), (6) Dis-
criminant analysis (Climatic classifications - climates, weather types,etc.), (7}
Stochastic models - autoregressive models (Climatic models, stochastic dynamic pre-
diction), and (8) Circular distributions - harmonic analysis, spectral analysis ,
cross test of significance (Climatic models).

Preparations for the publication of the present volume have been done by the
Editorial Committee with the aid of referees and a group of reviwers of English
=
usage.

Although the conference was not completely successful in some points, I believe
that it should serve as the first step-stone for developing a mutual cooperation
between the both fields of Statistics and Climatology to cope with a fastly in-
creasing necessity of statistical methods in climatological researches.

On behalf of the Organizing and Editorial Committees, I would like to express my
sincere gratitude equally to all those people who helped us in many occasions and
in various ways, including Mr.S.Iida, the General Director of the Seminar House,and
his staff; Prof. K. Takamatsu, the Chanceller of Soka Univ.; Dr. H.Hudimoto at the
Inst. Stat. Math.; Prof. M.Fukushima, one of my colleague; Mr.V.S.Rao , Miss.
K.Nishida , Mrs. R.Tkeda, Mrs.A.Takeda, Mr.Y.Nonaka and the students who helped us
at the meeting, and all other people who helped us anonymously. .

June 15,1980

Sadao Ikeda
Conf. Secretary
' and Chief Editor
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A SUMMARIZED REVIEW OF THEORETICAL DISTRIBUTIONS FITTED TO CLIMATIC FACTORS AND
MARKOV CHAIN MODELS OF WEATHER SEQUENCES, WITH SOME EXAMPLES

E. SUZUKI

Inf. Sci. Res. Center, Aoyama-Gakuin Univ., Shibuya, Tokyo (Japan)

ABSTRACT

Suzuki,E. A summarized review of theoretical distributions fitted to climatic factors
and Markov chain models of weather sequences, with some examples. Proc. l1-st
Intern. Conf. on Stat. Climat., held in Tokyo, Nov.29-Dec.l, 1979

Up to this time, various functional expressions have been proposed as theoretical
probability distribution models of climatic factors and weather states by many meteo-
rologists and statisticians to clearify statistical situations of data sets.

To estimate the parameters of these distributions, maximum likelihood method has
often been used, instead of moment method or others, in which some difficulties of
solving transcendental equations were involved, except for the cases of normal and
exponential type. Therefore, some simplified iterative procedures have occasionally
been necessary for computing the asymptotic maximum likelihood estimates.

Several authors have worked with the asymptotic distribution of climatic extreme
values, and Markov chain modelings have been applied to the sequences of two-states
under several innovative trials and extended to the sequential process of a general-
ized category sets of weather types. AIC was certified to be a powerful and reasona-
ble criterion in determining the order of Markov chain.

Reviewing these theoretical distributions, the author will give some notices.

INTRODUCTION

With the systematic accumulation of various climatic data and weather records for
long period, analytical distribution models which fit the observed distributions well
have been proposed by many climatologists and statisticians. The following theoreti-
cal distribution models have been proposed:

(a) Temperature ... Normal, Pearson I types.

{b) Precipitation ... Gamma, Log-Normal, Kappa types.

(c) Relative humidity ... Beta type.

(d) Wind speed ... Gamma, Weibull, Log-Normal types.

(¢) Wind-rose ... Circular distribution model and an empirical non-negative p.d.f.
(f) Some other climatic elements ... Poisson, Negative binomial and binomial types.
Case (b) has been studied by many researchers, but in contrast little attention has
been given to cases (e) and (f).

In earlier times the moments method of parameter estimation was used but soon
the maximum likelihood method ;eplaced it as the preferxed method for the estimation

of parameters contained in the theoretical models. Except for the normal distribution,
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the exponential and other simple distribution models, the maximum likelihood esti-
mators must be obtained by solving transcendental equations with the aid of computer,
and the asymptotic variances of these estimators are not always easily obtainable

in analytical forms for most of these theoretical models.

Furthermore, the double exponential model has been more frequently applied in the
analysis of climatic extreme value than any other model. However, this limiting dis-
tribution model (i.e., Fisher-Tippett type I or Gumbel's model) is sometimes not
suitable for the case of a finite single sample as Jenkinson (1955,1975) and the
author (1968) have pointed out. A generalized 3-parameter distribution model was
proposed by Jenkinson who also demonstrated the application of the computational
technique by giving examples.

Finally, the Markov chain model has recently been applied to weather sequences
(such as dry and wet days,etc.) in place of traditional persistence indices, and
several innovative trials have been made under the assumption of an ergodic Markov
chain as a statistical background. In such applications of the Markov chain, the
Akaike Information Criterion (AIC) and the loss function are used to determine the
order Y of the ergodic Markov chain for the two-state weather sequences. For example,
Gates and Tong (1976) have shown the effective usefulness of AIC, and Chin (1977)
has made a contour map of the chain order Y.

As a statistical test procedure of the goodness of fit, both the Kolmbgoroff—
Smirnoff statistic and the Kimball statistics are well suited for fitting the theo-

retical model to the observed frequency.

1. THEORETICAL DISTRIBUTION MODELS OF PRECIPITATION

* At present, the Gamma distribution has a long history as a suitable theoretical
model for frequency distributions precipitation.
The ordinary Gamma distribution can be written by either one of the following

two expressions for the p.d.f.:

v
g -8x _v-1
£(x;v,8) = {T(wm ¢ * + X220, (1.1)
0 r x <0,
(x/a)PTe 2/ arp) , x>0

(1.2)

f(x;p,a
(x;p,a) 0 , x<o,
-1 A L
where both v=p and B = a are positive parameters defining the shape and scale,
respectively.
Let Xl, X2,..., Xn be a random sample of size n, then we have the moments method
of estimating the parameters:

v =p= A2

/s, B=at-nays? (1.3)



where
n 2 n 2
A= I Xi /n, s = I (X.-A)"/n .
. i
i=1 i=1

Moreover, ML, estimates would be obtained by solving the following equations:
p-¥({E) = Ln(a/G) , p-a=~a (1.4)
where

Yp) = [dmr(x)/ax1__~ , G=( TIX) .
xX=p

In order to have approximate solutions of p and a , Thom (1958) proposed the
following Formulas:

ATIToISTs
pr oLt 1+4 £n(n/G)/3 , a* = a/p*x . (1.5)

4 Ln{a/G)

Greenwood and Durand (1960) derived the numerical computation formulas as follows:

2
~ . + . - .
5 _ _0.5000876 + 0.1648852y - 0.0544276y2 (. o 577,
[o} y — -
. 8.898919 + 9.059950y + 0.9775373y2
= , 0. <y <7, .6
Pe v(17.79728 + 11.968477y +y2) 0.5772 <y <7 (1.6)
a_ = A/pc

where y = £Zn(a/G).

For correcting a bias of the ML estimators, Bowman and Shenton (1970) proposed
a simple correction factor ( 1 - 3n_1) for the computed § ,i.e., (1 - 3n_l)§ isg
almost unbiased as is seen in Table 1 . Moreover, in 1973 they derived nearly un-
biased estimators
2 4

P= % ec.m)y- , a=a Ib (my (1.7
. 1 . 1
i=-1 i=1

where ci(n) and bi(n) are coefficients depending on the sample size n.

TABLE 1.

Examples for the application of the correction factor for the MLE of p. (Bowman and
Shenton, 1970)

n 3 E(p) (1-3n"1)E (p)

6 1.0 1.813 1 © 0.906

6 2.0 3.795 1.898

10 0.5 0.651 0.456

20 3.0 3.492 2.968

30 0.5 . 0.540 0.486

30 1.0 1.091 0.983

30 2.0 2.200 1.979
| 50 0.2 0.208 0.196




on the other hand, Suzuki (1964) proposed a 3-parameter hypergamma distribution
model ( a provisional name) as a generalized model of the Gamma distribution which

is suitable for precipitation data of various time intervals as follows:

o 8% (v/a)] exp(- Bx*) x°F , x>0,

£(x;0,8,v) = | o , x<O0. 18

This general model has the following properties:

(i) If o = 1, then it is the ordinary Gamma type.

(ii) If o = v, then it is the Weibull type.

(iii) If o = 2 and v = 1, then it is the ordinary quasi-normal type.

(iv) If oo = 2/3 and v = 1/3 , then it is the cube-root quasi-normal type.

(v) If o« = -1 , then it is the Pearson V type.

The momoent generating function (m.g.f.) and the k-th moment of this general mo-

del are given by

05T ((v+k) /o)

_ 1
0 = 7,70

- k/o
k=0 k! B (1.9)
X X T ((v+k) /o)
o= [0 $(8) /3671, = ———— , k=0,1,2,...
k 8=0 F(v/u)Bk/a

Hence, one can obtain the estimators of the parameters by the moments method. The

ML estimators can be obtained by solving the set of transcendental equations:

a log G - Y(v/a) + log B = 0 ,

n

13 iglxi -nv = 0 , (1.10)
n

af iélxilogxi -n-nvlogG = 0 .

An alternative method of computing the ML, estimators and their asymtotic variances
was given by Suzuki (1964) with the aid of nomographs.

Both the di-gamma and tri-gamma functions must be computed in order to calculate
the ML estimators and their asymptotic variances, respectively. Mielke(1975,1976)

verified the following series expansions:

o

d far . -1
T i SN CE PN SICIE S R
S
P(zis) = - - S (54z-1)1 L s+z2-1/2
Y(z;is) Y + (z-1) j§1f3(3+z 1)1 + £n( S+1/2 )

(1.11)

£y

. - Wz R
Y (z) az = 5L (G+z-1)

S
V@is) = L Gl (svzel/2)



where y = 0.577215665 and s 1is a certain large value.

The log-normal distribution model is often fitted to the amount of precipitation
for short time intervals caused by such factors as cumulus clouds or weather modifi-
cation experiments. (Johnson and Mielke (1973),Biondini (1975), Crow (1977), etc.).
The p.d.f. of the log-normal distribution and the k-th moment about the origin are

written as

f(x;u.o2) = L exp[-(lnx-p)2/202] , x>0,
2m0x
2 2 {1.12)
ué(X) = exp(ky + k¢ /2) , kx=0,1,2,... ,

from which E(X) and V(X) can be easily obtained. ML estimators of the parameters
and their expectation and asymptotic variances can also be readily obtained.
Biondini (1975) studied the log-normal model and pointed out the following two
characteristics: (a) the reproductive property of the original variables, and (b)
the relation to the central limit theorem of Lindeberg and Levy.
Recently, a positively skewed 2-parameter distribution model was proposed by

Mielke (1973) to explain the long-tailed property of rainfall amount distributions:

o
Faa,®) = [ B VS L xx0,
(1.13)
Exia,B) = (a/8) [0 + G/e)®1 /% s o,

where a(> 0) and B8( >0) denote the shape and scale parameters respectively. In

this case, the moments estimators are obtainable from (Mielke (1973)):

- 2 o-l 3 e=2,2_ &, 52
gla) = a B( -, = ) / B( T T ) ) / uyt o
(1.14)
- Glel)/a 2 ol - =
hi{a) = a / B( s’ g ) = B8/ wo

where ﬁi and ﬁé are the sample mean and the squared sample mean, respectively;
g(o) and h(a) are approximated with the aid of the Beta-function B(p,q).
Ml estimators are computable through an iterative procedure with Newton-Raphson's

method:

= o] - A(e;,B,)/Clo;,B,), By, = B; - D(a;,B,)/Ca;,B:) , i=0,1,...(1.15)

%1
where A(ai,si) ’ C(ai,si) and D(ai,Si) are given explicitly by 3MnL(a,B)/3a etc.,
L{a,R) being the likelihood function:

n

- (o1 .

L(a,®) = (/8" T [aree,/m% @™/%  mine,..ox) > 0.

. i 1 n

i=1 .

Mielke (1973) indicated that this model is better suited than the Gamma type for

fitting the long drawn-out tailend of the precipitation amount distribution, by

showing the skewness characteristic:



v o=y - gy + 2ug3) / - wg? 032

> e, (@ —> 0).

Mielke also proposed a generalized model, the 3-parameter Kappa distribution:

i

Lo/ /(e + /ey 1YY,

. F(x;o,B,0) x>0,

(1.16)

-(0+1) /o

£(x1a,8,0) = (a8/8) (x/8) O o + (x/8)} , x>0,

n

where ¢ , B and 8 > 0. (See also Essenwanger (1976)).
Among other several papers the following two studies also deal with fitting the
heavy tails of precipitation amounts:

(a) Bryson (1973) proposed a conditional mean exceedance defined by

CME Ly = Bl x-x] x>x1

which is a measure of heavy tailedness of the precipitation distribution. According

to Bryson if CME is an increasing function of x for sufficiently large x ,

(x)
then such a distribution model .is considered to be heavy tailed. He calculated the

actual rate of increase of CME (ICME ) for several theoretical distribution

models (i.e., Pareto, Kappa, eiglnentiéii Gamma, and one-sided normal, etc.) and
concluded that the Kappa type is the one producing the longest drawn-out tailend.
(b) Phonsombat and Leduc (1977) tried to fit three theoretical distribution models
(i.e., Gamma, 2-parameter and 3-parameter Kappa types) to the actual frequency dis-
tribution of weekly precipitation amounts obtained for the period 1954-1973 at 140

observation points in Thailand, and computed the numerical values of the test statis-

tic T' which was proposed by Bryson (1973):

R 132

TH = XX,/ e X (1.17)
. . . T n

where { X(l)' X(2)""' X(n)} is a sample of increasing order, X = Zi=1X(i)/n ’

- n 1/n _

A [ Hi=l(¥(i)+ a)] apd A= X(n)/(n—l) .

After testing the heavy-tailed distributions by this statistic T', he classified
the cases by best fit; The number of stations in each category is seen in Table 2.
TABLE 2.

Number of cases in each category for the best fitting model of weekly rainfall fre-

quency (Phonsombat and Leduc (1977))

Distribution Number of best fit criteria
Kappa (3) . 82
Gamma 37
Kappa (2) 21
Total 140
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_Fig. 1. A tentative model of rainfall process to explain the distributions of inter-
vals of rain and their precipitation amounts.

T would like to propose the following tentative modeling of rainfall distribution
(see Suzuki (1967)): Let us consider a simple model to the queueing process as shown
in Fig. 1, in which the sets { tg, t,, t,, tg, tB,...} and { €, ty, tgs tor...}
designate the time of the beginning and ending of rain, and '1‘R and TN the time-
interval of rain and no-rain, respectively.

The following two assumptions can be deduced from the statistical background.

(a) The time points tv (v =0,1,2,...) are mutually independent random points, and
therefore the frequency model of their occurences within a unit interval is of the
Poisson type.

(b) An empirical (experimental) relation between the rainfall amount R and the
interval of rain TR can be written as R = aTg + ¢ , where a and b are para-
meters depending mainly on the rainfall characteristics and € is a random erroxr
having the normal distribution with zero mean and a finite variance.

Under the above assumptions, the following results are straightforward.

(c) Both TR and TN are distributed as the exponential distribution, whose para-
meters being readily determined from the assumption (a).

(d) The distribution of R can be formulated by making convolution of the two dis-
tributions of Tg and € , and this convolution is fundamentally equivalent to the

hyper-gamma distribution previously proposed.

2. THEORETICAL DISTRIBUTIONS OF THE OTHER CLIMATIC ELEMENTS.

(a) Theoretical models of wind speed.

Several models have been proposed for the distribution of wind speed. For example,
the Pearson III type (i.e., Gamma type) has been proposed by Sherlock (1951) . The
Rayleigh type ( a special case of the Gamma model) which is equivalent to the
type of 2 degrees of freedom has been tried by several authors. The 3-parametexr
Planck distribution has been taken by Wentink (1974), and the Weibull distribution
model has been proposed by Justus, Hargraves and Yaclin (1976), Stewart and Essen-
wanger (1978), and others.

Hennessey (1977) studied the theoretical distribution model of wind power density
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p = pVv3/2 under the assumption that the wind speed V follows the Weibluu distri-
bution where p is a constant representing the air density.

The p.d.f. of the 2-parameter Weibull distribution can be written as

£(x;a,c) = acx" Yexp(-ax®) , x>0 (2.1)

where c( > 0) is the shape parameter and a_l/c( > 0) 1is the scale parameter.

The Rayleigh distribution
2
f(x;a,2) = 2axexp(-ax’) , x>0 , a>0o0 (2.2)

is apparently a special case of the Weibull distribution.

Moments estimators of a and ¢ can be obtained from the relations

Ve vy + 1709
' : (2.3)

u = E(X) = (L/a)

0% = v(x) = (1/51)2/C {r(x + 2/c) - r’a o+ el .

It has been pointed out by Johnson and Kotz (1970) that Kotel'nikov's nomogram is

very useful for finding moments estimator ¢ from the sample mean # and the vari-

ance of the sample s2. Then the moments estimator & is easily computed from

s={ra+ahmie.

As a distribution model of the wind power p = pv3/2 we may consider the distri-

bution of V3 . If X ( =V ) follows the above Weibull distribution, then the

c.d.f., p.d.f., mean and variance of Y = X3 are given by

/3

Fly;a,c) = 1 - exp(-ay~’")

/3 /3

fly;a,c) = a(c/3) ¥© -1eXP(-ayC Yo

_ a—3/c (2.4)

E(Y) T(1+3/c) = u{T@ + 1/:;)}'3 T(L + 3/¢c) ,

a-6/c

v(Y) = (T + 6/c) - T2(1 + 3/0)}

el T+ 1/ 8 (raa + 6/0) - T2+ 3700}

where u3 and u6 are the 3rd and 6th moments of X , respectively.
Hennessey (1977) studied the application of this distribution model in practical

work.

(b) Theoretical models of the surface relative humidity.

Yao (1969) tried to fit the Beta-distribution model to the so-called R index
defined by

evapotranspiration E¢
potential evapotranspiration Ep

R index =

He also considered the fitting of a similar Beta godel to the relative humidity



(see Yao- (1974)).

In general, the p.d.f. of the Beta-distribution is given by

- -1 -
fx;a,8) = (B, ta-0ft , oex<1, (2.5)
where o and B are positive parameters, and B(a,B) is the Beta-function. It is
wellknown that the moments estimators of o and B are given by

fy () - f)) (1- fy) (i - #15)
~ 1 1 2 % 1 2
i = —— , B = —_—t 2 (2.8)
Ny o m12
Yy ¥y
where ﬂi and ﬁé are the sample moments of the lst and 2nd order, respectively.

Furthermore, the values of the incomplete Beta-function

1 GB = @RS T - 0 e

are available by a numerical method, though the computing precedure is ommited here.
Yao (1974) gave many examples of computing distributions for the daily, 5-day, 15-day
and monthly mean data of the relative humidity.

Mielke (1975) has shown an iterative procedure of computing the ML estimators
& and B of the parameters o and B : Reparametrizing vy = a+B , p/(1-p) = o/B

or equivalently a = py ,B8 = (l-p)y , the p.d.f. (2.5) can be rewritten as

£Gpy) = Blpy, (L-py) T T - g ARV o<x<l, (2.7

where o< p<1andy > 0, from which, by using the series expansion (1.11), the

following iteration formulas are finally obtained.

: sty g *By 712 s By 349y )
G+ —— 5+ I 0%, D G+, +h D)
A Stoe-1 j=1 T TH O TR
Otk s N
By * jzll 3 G40y -1 G4y g +By -1
(2.8)
C s s+ak+8k_l-1/2 s ay (3+8, ;)
s+B, _,-1/2 =1 JG+B_-1) ey +By 1)
Bk =
S 5 -1
oy L0 30+B_-D (4G 48, -1)]
J=1
with initial values &o = o and éo = B (moments estimators) , where
n n
G = iglﬂn X, /n, H-= iglln (1 - xi) /n, s=25.

Mielke (1975) referred to various versions of the likelihood ratio tests for test-

ing several statistical hypotheses.

(c) Theoretical models of other climatic elements.
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A circular distribution model has been considered as suitable for the wind di-
rection frequency ( also called the wind-rose in climatology). An empirical distri-

bution of m segments of the wind direction & can be written as
m

P, = 1 / I n . k=1,2,...,m ;m=8 or 16 , (2.9),
k=1

where ny is the sample frequency of the k-th segmented directional intervals ,
(ek—l’ek)'
As a model to be fitted to the above empirical expression, Jones (1976) first

proposed the truncated Fourier series model:

(m-2)/2

1 2
f(e) = 350 {1+ vil {avcos

cos —— 1 (2.10)

where 6 is the wind direction (in units of degrees). The following three relations

are straightfirward:

360 . 2mv8
de , bv = IO £(0)sin 6o as

v=1,2,...,(m=2)/2 .

21TV
360

2% a0 =1, a = 2% (8)cos
In order to avoid negative values of the probability density, Jones (1976) studied

an area matching method and a weighting function method; He found that the latter

is more suitable than the former, and the following weighting functions were chosen
as the weights wv of the Fourier coefficients av and bv : The simplest weight
function is Bartlett's Window W, o= 1 - v/m , and another one is Parzen's Window
defined by w, = 1 - 6(v/m)2(1 - v/m) for v« m/2 , = 2(1 - \)/m)3 for m/2 <v < m.
These two window functions are verified to produce probability densities with non-
negative wvalues.

In this meeting on statistical climatology, R. Sneyers presented a quite ingene-
ous methodology of utilizing the circular distribution by generalizing the von Mises
circular normal distribution, and a testing of the suitability by an example ( see
the article in this volume ).

Falls (1971) fitted the negative binomial distribution model to monthly thunder-
storm events at Cape Kennedy, Florida, for the period 1957-1967, and reported reason-
able results for the goodness-of-fit. In general, the negative binomial model is
expressed as

(r+k—1J pr qk

P{x=%k } = X

» k=0,1,...,r+k-1, (2.11)

where r and p are parameters. It is wellknown that this model is a generalization
of the geometric distribution P(X = k) = qu + k=0,1,... . The moments estimators

of r and p and their efficiencies habe been studied already by Fisher (1950).

3. THEORETICAL DISTRIBUTION MODELS OF CLIMATIC EXTREMES
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It is wellknown that three types of limiting distribution of the extreme value
(sample maximum) statistic have been derived by Fisher and Tippett (l928)l The double
exponential distribution model or Gumbel's distribution, which is one of the above
three types, is often applied to the estimation of return periods in Japan.

On the other hand, Jenkinson (1955) proposed the following 3-parameter extreme

value distribution as a generalization of the above three types:

F(xik,o,x ) = expl- {1 - k(x - x_)/0 }1/k] (3.1)

where k, a and x, are parameters and F(x;k,a,X,) represents the probability that

an annual maximum value, say, is not greater than x. Putting

y = -(1/k) log {1 - k(x = xo)/a} , (3.2)
one can see a simple relationship between y and F :

y = - log log (L/F(x;k,a,xp). (3.3)

The relation between Fisher-Tippett models (F-T Type I, II, III ) and Jenkinson's
general extreme value distribution (G.E.V.) is such that F-T Type I, II and III are
the special cases of G.E.V. with k=0, k<0 and k >0, respectively. For exam-
ple, if we make a linear transformation x = e + ay of a F-T type I variable vy,

then the resulting double exponential model
F(x) = exp[ - exp {-(x - x_)/a} ] (3.4)

appears to be the case k = 0 of the G.E.V. distribution.
Jenkinson (1969) proposed an iterative method to compute the ML estimators of

a, x5, and k , and later in 1975 he showed several computational scheme and actual

examples of the above iterative procedure : A transformed sample of size n is wri-
tten as
vy = -(1/k) log {1 - k(xi - xo)/a} ’ i=1,2,...,n, (3.5)

for the original ordered sample x < %, < ... < X - Then the iterative procedure

is as follows: Let the joint correction form be

= #hx kg =k 4k, (1=0,1,2,...),

o, .='a, +Ao, X . :
i i’ oi+l *oi ‘ol i+l

i+l

then the set of simultaneous equations is obtained to compute the correction terms:

Aai / oy a(k) h(k) g(k) —U(Yi,k)
Axoi/xoi = h(k) b(k) £k} -Q(yirk) (3.6)
bk g(k) £(k) c(k) Viy; k)

where the elements of the matrix on the right-hand side are obtained from a table
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for each value of k [-0.6(0.2)0.6], and

P(y) =1 - exp(-y), R(y) =1 -y +y exp(-y),

Q(y,k) = exp(~-y + ky) - (1 - KJexp(ky), U(y,k) = {P(y) + Q(y,k)} /k , and
V(y,k) = {Uly,k) - R(y)} /k .

Started from the 2-parameter distribution model of the case k = 0 of G.E.V.,
Jenkinson noted the following four points: (i) The standard error of x ( = xo+uy)
is expressed through y and the sample size n. (ii) As k —>0 , we have -U(y,k)
-0, -0(y,k) =0, V(y,k) = S(y) = y + {y2exp(-y) - v3} /2 . (iii) starting from
a set of initial estimates, one can arrive at the optimum estimates of the two para%
meters. (iv) Quartile means (QM) are helpful to form the initial estimates for the
possible domain (-0.3,+0.3) of k. (For example, the initial estimates of the para-
meters can be chosen as k0 = 0, ag = (QM3 - QM1)/1.57 and Ao = QM2, where QM1,

OM2 and QM3 denote the lower, middle and upper quartile means of the variables Yir
respectively.)

A specific distribution model of the m~th extreme value of an ordered sample of
size n , Xl > X2 > .. > Xm > L. > Xn , was studied by Stevens (1975): The theore-
tical distribution of Xm can not always be expressed an analytical formula for
all original distribution models. Under the following two assumtions: (i) the original
distribution is of the exponential type, and (ii) the sample size n 1is sufficiently
large and m 1is rather small in comparison to n, he derived the p.d.f. and the

d.f. of X as
m

flx,o /8 = mm/Bm(m-l)! exp[- m(x-a )/B - m exp{—(x—um)/sm} 1. (3.7)
m-1 v
F(x,o ,8 ) = expl-m exp{-(x—um)/Bm} ] vEO m exp{-(x-am)/ﬁm) /7 v, (3.8)

where m 1is the rank from the top, and o and Sm stand for the location and the
shape parameters, respectively. ML estimators of o and Bm are obtéined by solving

the simultaneous equations:

n
o + Bm@n[ izl exP(Xi/Bm)/ n 1 =0, -
n n o
B ™ iElxi/n + {izlxiexp(~xi/8m)}/ {iilexp(-xi/gm)} =0 .

An . example of application of the above study to daily temperature data at Columbia,
Missouri in the period 1890-1974 has been demonstrated in detail, in which case
n =85and m= 12: Let Xm be highest daily temperature in the ranked data set,
m = 12 in each year. The ML estimates of the parameters were computed by Newton-
Raphson's method as an iteration process with a relative estimation error < 0.0005.

One example reported shows that @&y = 94.5 and élZ = 10.74. A graphical comparison



13

has been shown between the empirical distribution function and the 12th highest
extreme value distribution with the estimated parameters by ML method. Similar ite-
rative computations were performed for other 10 station locations,with the values
of the Kolmogoroff-Smirnov D-statistic. The following results were obtained: N =
53~56, & = 93~96 , é = 10~13 and D = 0.10~0.17. ]

High skewnwss is a general nature of extreme value data. Simson, Rosenzweig and
Biondini (1975) studied the skewness of probability distributions by computing condi-
tional probabilities for the case of log-normal, Weibull and Gamma types as the post-
ulated distribution to be fitted for the various precipitation data of weather modi-
fication experiments. A

Chin and Miller (1977) indicated that the stochastic limiting te Fisher-Tippett
type I distribution is very slow, though the limiting distribution has often been
utilized.

The G.E.V. model proposed by Jenkinson is certainly useful, but the variance of
the ML estimators and thg reliability of the extreme value extrapolation will still
be principal problems in the application of the model to practical data.

In addition to the recent contributions mentioned above, one of the Japanese
innovative studies should be refered to, whose applications are very common in cli-
matological and hydrological fields in Japan.

Ogawara et al. (1954) proposed the following four steps to derive the stochastic
limits for the maximum possible amounts of precipitation in Japan: (a) Estimation
of a normalizing transformation curve for logarithms of the observed variate, (b)
Extrapolation of this tranformation curve by utilizing the Fisher-Tippett type limit-
ing distribution, (c) Computation of the stochastic limits for the transformed vari-
ates by making use of the two-sample theory, (d) Transformation of the above stochas-
tic limits inversely. These four steps have already been verified to be useful for
several locations in Japan under the assumption of a stationary time series. The
same authors have also studied the stationarity and the case of a dependent series.

Moreover, Kikuchihara verified the various plotting rules proposed by various
authors for the purpose of computing return periods appearing in wind speed or gust.
The theoretical assumptions and verifications of the plotting rules in practical
work have been summarized in his excellent Technical Note No.98 (WMO 1972), and
further details will be omitted here because these are out of the scope of the present

discussion.

4. THE MARKOV CHAIN MODEL FOR A TIME SEQUENCE OF WEATHER OBSERVATIONS.

Gabriel and Neuman (1962) studied an application of a Markov chain model to the
time sequence of weather situations which may be classified into either one of two
categories, i.e,. wet and dry days , etc.

Feyerherm and Bark (1965,1967) proposed a first order Markov chain model to be
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applied to weather changes.
Bayne and Weber (1973) tried the following formulation:

P(DyreeerDpy) = (D, DB ,lDp ) +o O LN
.1
12 12 (4.1)
= i b +
Pt U+ hglAhsln(ZNht/365) + hnghcos(Zﬂht/365) e,
where D, represents "dry" for the t-th day within a one year period, P, the initial
or transition probability, and e denotes a small random error following a normal

distribution. They applied this model to North Carolina precipitation data observed
during the period 1952-79 at 48 observation points.

Katz (1974) derived a model related to the recurrence

W (k;N) C Poo Pop| {WolkiN-1)

= (4.2)

Wl(k;N) Wl(k-l;N—l)

P1o P11
to be applied to a stationary weather time sequence, where Xn =1 or O according
as the n-th day is wet or dry; Pij = P(Xn=j|Xn=i) (i,j = 0,1) are assumed to be in-
dependent of n ; SN = anl Xn is the number of wet days within N consecutive days;

Wy (kiN) = P(SN=k|XO=1) and W) (k;N) = P(SN=k]XO=0).

Two interesting models have been proposed: A chain-dependent process by Katz(1975)
to describe the consequtive sequence of precipitation days, and a Markov chain expo-
nential model by Woolhier (1975) to present the n~day precipitation amounts analytic-
ally. Details of these two models will be omitted here because of space limitation.

Gates and Tong (1976) studied an effective use of Akaike's Information Criterion
(AIC) for the optimum determination of the chain order y . Several studies have been
offered to hypothesis testing, after a sequential procedure was proposed by Bartlett
(1951) and Hoel (1954) to test the null hypothesis Hy_l(chain is y-ldependent) against
the alternative HY ( chain is y dependent).

Akaike (1972) proposed the AIC as a powerful test criterion to select the optimum

order in a multi-variate regression model:

AIC = (-2)&n(max.likelifood) + 2(no.of independent parameters). (4.3)

Gates and Tong (1976) postulated the following theorem as a recommendation for an

optimum procedure in determining the order y of the chain

Theorem
For the testing problem (HY_l;H ), the logarithmic likelihood ratio test statis-

tic is given by

ST A o ..kl
n

-2Lni_ = 2 n,. 2 (en Yy (4.4)
Y1, i,...,1 402 ij.. . Mk

which follows the x2-distribution with v2sY*l

degrees of freedom under Hy-l .
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where
Hy-l H Pij...kZ = Pj---kl , 1i=1,2,...,8,
ey 1— -y —
nij Xl designates the number of tra sitions from i —=j —>... —>k —7 in the

+ - -1
observed sequence (y-step), and VZSY+l = VSY+1— ys¥= s¥ L 257+ ¥ - (s-1)2s77";

The basic model N fas a sequence {xl,...,xn} with a basic space S = {1,...,s}.

Tong (1975) defined the following loss function R(k) basing upon the AIC approach:

+
R(K) = o, - 2(vs"™ o vsh (4.4)
where

M-1 .
an =2 m-z-kln }\m,m+1 , k<M, k=0,1,... s M=1,2,...

The min.R(k) is a reasonable criterion to determine the order of the chain, and
he computed the loss function for a set of rain sequence data at Manchester and

Liverpool over the period Nov.1973 - Feb.1974. An example is given below:

k 1 © 1 2 3
R(k) l 7.56 -8.32 -4.17 0

from which he was able to conclude that the data are fitted best by a chain of order
1. He gave many other examples of AIC values (egn. 4.3) for .the case k =0~ 3 .

Ozaki and Tong (1975) proposed the pooled AIC defined by mink R(k)M +mink|R(k')N
in the determination of non-stationarity, where M and N represent the former time
interval and the present time interval uﬂder consideration, respectively. Numerical
examples are omitted here. _

Chin (1977) tried a Markov chain modeling of daily precipitation occurrences by
determining the chain order y for about 100 observing locations in the U.S. during
the period 1948-1973, and plotted maps of the order of the chains. An example of a
map pattern id displayed in Fig.2. The numbers 1, 2 and 3 show the first, second
and’the third order dependencies, respectively.

Recently, Katz (1979) has compared two procedures in chain modeling of daily
rainfall occurrence, in which he treated the AIC and the SBC (Schwarz Bayesian Cri-
terion) from both the theoretical and practical point of view: The likelihood ratio
test statistic for a hypotheses testing problem (null Ho:k—th order, alt. Hl:m—th

order) can be easily written down by = -2 log Ak  using Katz's notation,
r

n
k,m
which is fundamentally equivalent to the first member on the right hand side of (4.4).

The AIC and the SBC are formulated as

AzC (X) - 245" (s - 1,

nk,m

SBC (k) n - 2(sm— sk)(s - 1) log n ,

k,m
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where s and n are the number of states and the sample size, respectively.

PIRAONS

Z18

Fig. 2. Map pattern of the Markov chain order of the daily precipitation occurrence
process for January - February (after Chin (1977)). :

Jan.—Fep,

In order to determine the order of a Markov chain, minkAIC(k) and minkSBC(k) are

to be computed. It is evident that the difference between AIC and the SBC, AIC(k)

- SBC(k) = 2(2m— 2k)(log n - 1), is positive in the case of 2-state (s = 2) and

k < min a finite sample n > 10; Katz (1979) stressed that the SBC procedure gives

a consistent estimator of the Markov chain order in comparison with the overestimated
inconsistency derived by the AIC procedure. An optimum order of the Tel Aviv data

is 1, contrary to the reexamined results obtained previously by Gates and Tong(1976).

The AIC procedure has originally been considered as a certain fundamental measure
of statistical model building, and therefore several devices would' sometimes be de-
sirable for application in practical work of a specific modeling. In this sense,
the work by Katz (1979) would really be of precedence in Markov chain modeling of
weather sequences in the present and in future.

At the present, the author proposes the following four selection statistics as
best suited for model building: AIC (Akaike,1972,1973), Cp (Mallows,1973), 83
(Bhansali and Downham,1977) and BIC (Schwarz,1978 and Akaike,1978).(see Shibata,1979)

In the author's opinion, the following three points are left open: (1) Ergodic
and stationary properties should be better verified in connection with the seasonal

variation of the weather, because a sigular change of the climate often occurres
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actually. (2) The generalization of theoretical background and the verification

of an expansion of the Markov chain model would be necessary for the case of the
state sequences (S > 3), i.e., a transition into finite possible categories as in
real climatic situations. (3) A stability test of the transition probability matrix
P = iy} would be desirable, because a sample estimator P of P is a set of

stochastic variables.

5. CONCLUDING REMARKS.

Numerous studies of theoretical distribution models and the Markov chain modeling
have been summarized in convenient form from the author's rather subjective point of
view; Some important and interesting papers and valuable reports have been omitted
or have not been precisely presented because of space limitations. Some examples
have been simplified in each section.

In concluding this article, the author would like to stress the following points
in a synthetic form:

{1) The main purpose of utilizing theoretical distribution models is to describe

the observed statistical or stochastic properties by the most suitable and resaonable
function for each climatic element. The different characteristics caused by different
locations and/or different periods may be explained by discrepancies of estimated
parameters under the same distribution model. Hence, many trial and error proposals
of applying different types of distribution models to a specific climatic element
will not always be appropriate in comparing or interpreting the climatological data,
even if the goodness of fit test shows the acceptance of the hypothesis in every
model.

(2} In estimation of the parameters of applied distribution model, the maximum like-
lihood method should be more emphasized than the others, but the ML estimators are
biased very often and the asymptotic sample variances of the ML estimators are not
always sufficiently clear in statistical climatology field.

The author believes that in building a theoretical distribution model fitted to
a climatic element the actual value of a goodness of fit test statistic is rather
important. Accordingly, other methods of parameter estimation, say, the least square
method or mini-max procedure, would be necessary to be taken into consideration in
connection with the use of a suitable test statistic.

(3) In Markov chain and Markov process modeling, the main problem is to detexmine

the order y under the assumption of atationarity in climatic time series. Statistical
treatment of annual trend and seasonal variation should be taken into consideration
pefore the modeling.Thus, the three statistical tests, significance test of trend,
test of harmonic coefficients and test of ergodic Markov model, are necessary for

an exact modeling of the climatic fluctuations or sequences.
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A GENERALIZED CIRCULAR DISTRIBUTION

R. SNEYERS and J. Van ISACKER

Institut royal météorologique de Belgique, Bruxelles (Belgique)

ABSTRACT

Sneyers,R. and Van Isacker,J., A generalized circular distribution. Proc. l-st
Intern. Conf. on Stat. Climat., held in Tokyo, Nov.29-Dec.l,1979

Mises' circular normal distribution is generalized by replacing the cosine func-
tion by a finite development in Fourier series, making it possible to adjust any
circular frequency distribution. The adjustment is realized by applying the method
of the steepest descent to the likelihood function and such a distribution is ad-
justed to the mean frequencies of the wind directions for Januaru in Uccle(Brussels).
Pearson's test of goodness of fit leads to the rejection of the distribution with
the first harmonic component, but to the acceptance of the distribution with the
first and the second harmonic componént. The standard errors of estimation.of the
adjusted frequencies are computed.

1. INTRODUCTION

Gumbel et al. (1953) have given the theory of the circular normal distribution

derived by Mises (1918) and defined by the density function

£(x) = C " exp $(x), w
with
¢(x) = r cos(x-xq), (2)

the constant C being fixed by the condition

PTex ax = 1. 3
(o]

Moreover they computed the tables enabling to adjust such a distribution to a
series of observations.
The broadest generalization consists in considering in (1) a continuous function

¢ (x) such that

p(2m) = ¢(0). (4)
We consider here the function defined by a finite development in Fourier' series
N
¢(x) = I (ajsinjx + bjcoij) . (5)

j=1

—rm——
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2, SUFFICIENCY

From 1.(1) and 1l.(5) follows that the distribution has sufficient statistics
(cf. Kendall and Stuart (1967),p.28). In particular, if xl'x2""'xn is a random

sample having this distribution, the likelihood function being

-n N n n
L = C exp % fa. I sinjxi + b, I COiji)], (1)
j=1 J i I i=1
the quantities
n n
Aj = ( ‘Z sinjx; )/n  and Bj = .E cosix, Y/n (2)
i=1 i=1

are sufficient statistics.
Hence,if 6 is the vector of the set of parameters (aj,bj), the value § maxi-
mizing I, in (1) 1is a sufficient estimate of 6 . This estimate is unique and has

MVB covariance matrix.

3. COMPUTATION OF THE SOLUTION

With
_ pem _ 2, ,2,,1/2 - -
C = fo exp ¢(x) dx , ¢ [Z(aj + bj)] R uj aj/r R vj bj/r B
g{x) = Ilu.(sinjx-A.)+ v.(cosix-B.)]1 , W
J J ] J
we have
L_l/n = I(r) = fiﬂ explrg(x)ldx . (2)

Hence, maximizing L is equivalent to minimizing I(r). Moreover, if X maxi-
mizes g(x) , we have g'(xo) =0, g"(xo) = -1 < 0 and, obviously q(xo) =K >0
as soon as the X5 are not all equal to xO .

Hence, we have

g(x) =K - (x—xo)2 —g——-+ (3)
and

27
I(r) = 20r XP Kr . (4)

It follows that I(r) increases with r beyond any limit ; it has thus a finite
minimum. Moreover, 90 # 91 may not be two minimums. In fact, with 6 = (1—%)90

+ Ael , we would have two minimums, one for A = 0 and one for A = 1, which is impossi-
ble since 321(r)/3A2 is strictly positive. This confirms the uniqueness of the
solution.

For the computation of the solution, let =z be the 2N components

17 Zareetr Zoy
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a., b, of under estimation. The method used is the method of steepest descent.

1 1.
Therefore, 6 being given, we put

w o= wy = - [-3?—]e , 3 =1,2,...,2N ) (5)
J
and we consider I = I(6 + Aw ). Thus we have
3L 31 321 3’1
T T Iy aL v = Tloeggmh > O (6
R 32 3

and the limited Taylor expansion

2
1 97T 2
8) ~ Iw2x + > . — -
I I(6) wj + 3 ZZwak [az. P ] AT, (7)
b k
with minimum for
z w?
MoT I w0 [l T ©
ik sz sz
If Il = I(6 + Alw ) < I(0) , a new step is made at 61 =0 + Alm to compute

I2 . Otherwise, a minimum Ai is computed through quadratic interpolation from

I(8), 1, ., [31/3A]

+A 0w

4, ERRORS OF ESTIMATION

From 2.(l) we have

’

3logL
da.
J

and an equivalent expression for SlogL/Bbj .

= n [ A - E(sinjx)] ' . (1)

Similarly, we find

3210gL _ L.
2. ob. ~ 0 Covi(sinix,coskx) _ o

3 J
and, more generally, if we put

leogL
d9z. dz
J

- 3%1ogL  _ Bl
jk 3z, 9z,
j k

[~
m

1. (3)
k

the covariance matrix of the estimations becomes

vard = ( -A )7L . (4)

Finally,the computation of

ﬁi = fSC_lexp$(x)dx (5)
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being made through some summation

ﬁi -z ct expb (x) , (6)
we have
ap; = 27! expd (x) -aé (x) (7)

or, in matrix notation
= 1 .
ap, ¥e de . (8}

Thus, we have

Var ﬁi = W (Varé)we . (9)

5. EXAMPLE

The mean frequencies ¢ of the wind directions for January in Uccle (Brussels)

lead (Table 1) to the theoretical frequencies ey and e, through the adjustment

of a circular distribution with N =1 and N = 2. The computation of Aj and
Bj has been made by considering the observations as being uniformly distributed
in each sector.

With the size n = 669.97, Pearson's x2 gives Xl = 82.7, X2 = 11.7 for res-
pective degrees of freedom = 13 and 11 and critical values at the 0.05 level:
Xc = 22.4 and 19.7.

The second fit may thus be accepted. In this case, the solution is

a; =~ 0.3155 , by =-0.6766, a, = 0.4153, b, = - 0.2164 ,
and the covariance matrix is
al bl a2 b2

-2 -3 -3 -3
a;| 0.3546:10 -0.6425:10 0.9770-10 -0.7331-10
b, 0.4756-10"° 0.4169-107° 0.1488-1072
a, 0.3641-1072 -0.7842-107%
b, 0.3650-1072

This leads to the standard errors of estimation ¢ for e, given in Table 1.

2
It appears in that way that the fit gives an accuracy equivalent to that given

through sample estimation by a size 3.53 times larger (cf. Sneyers (1975)).

6. CONCLUSION

It should be noted that the solution found for the foregoing example, character-—
ized by equations 1(1), 1(3) and 1(5) with N = 2, leads to a distribution function
which enables the construction of the distribution of the wind direction on a conti-

nuous manner from O0° to 360° , the center of the sector N being 0°. It gives thus
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an immediate solution for smoothed frequencies as is required in statistical diffu-
sion models used to predict the concentration of pollutants. The solution presented
here may thus be considered as more advantageous than the smoothing method by weight
functions as used in Jones (1976).

Moreover if the choice ofl N in 1(5) may have some arbitrary character, it should
be kept in mind that this choice may be based on a preliminary selective harmonic
analysis of the observed frequencies as described in Sneyers (1975) , the components

used in 1(5) being then the same as the ones which have been selected.

TABLE 1.
Mean frequencies o of the wind directions for January in Uccle (Brussels) .Estimated

frequencies e, and ¢, . Standard error s on e, (10-3).

1 2

.0 el 82 8
N 18 27.4 21.0 2.2
NNE 20 23.8 27.6 2.8
NE 41 23.4 37.8 3.6
ENE 54 26.1 45.6 4.2
E 56 32.3 46.3 4.2
ESE 28 43.3 43.3 3.9
SE 36 59.7 43.8 3.8
SSE 60 80.8 53.9 4.3
S 920 102.6 79.9 5.8
SSwW 120 117.8 121.4 8.5
SW 163 119.1 153.4 10.9
WSW 125 107.9 139.4 10.0
w 92 87.2 90.5 6.7
WNW 50 65.4 48.6 4.0
NW . 28 47.4 27.4 2.6
NNW 19 35.0 20.2 2.1
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ABSTRACT

Davidson,R.R., Some properties of a family of generalized logistic distributions.
Proc. l-st Intern. Conf. on Stat. Climat., held in Tokyo, Nov.29 - Dec.l1,1979

A family of generalized logistic distributions is presented and a number of its
properties are discussed. This family is an extension of a class first introduced
by Gumbel who derived the limiting distribution of the reduced m-th midrange when
sampling from a large class of symmetrical continuous distributions. Originally
defined for m an integer, the resulting distribution is well defined for any
v > 0 as the distribution of log R where R has the inverted beta distribution
with parameters (v,v,1). A summary of the basic limit theory for extremes is pre-
sented with particular emphasis on the extreme value distribution of type I and
its generalization for m-th extremes. It is demonstrated that the generalized
logistic distribution does not have a unigue representation as the distribution
of the difference of independent random variables which are identically distributed
up to location. In particular, the logistic distribution does not arise uniquely
as the difference convolution of random variables having the extreme value distri-
bution of type I.

1. INTRODUCTION

Since the early part of this century there has been considerable interest in
the statistical behaviour of extremes and in extremal processes. Much of the early
work has been summarized by E.J. Gumbel (1958) in his book Statistics of Extremes .
The logistic distribution plays a prominent role in the theory of extreme values
and its applications. The work of Gumbel contains a number of examples both of
situations in which the logistic distribution arises as an appropriate model, and
of the importance of the logistic distribution in the limit theory for statistics
based on extremes.

In this paper a family of generalized logistic distributions is presented and
a number of its properties are discussed. This family is an extension of a class
first introduced by Gumbel (1944). Gumbel derived the limiting distribution of
the reduced m-th midrange when sampling from a symmetrical continuous distribution,
and called the resulting distribution the generalized logistic. Originally defin-

ed for m an integer, the resulting distribution is well defined for any v > O
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as the distribution of log R where R has the inverted beta distribution with
parameters (v,v,1l).

A summary of the basic limit theory for extremes is presented in section 3, with
particular emphasis on the extreme value distribution of type I and its generali-
zation for m-th extremes. The final section contains an analysis of the generalized
logistic distribution as a difference distribution. It is shown that the generalized
logistic distribution does not have a unique decomposition as the distribution of
the difference of independent random variables which are identically distributed
up to location. In particular, the logistic distribution does not arise uniquely
as the difference convolution of random variables having the extreme value distribu-

tion of type I.

2. GENERALIZED LOGISTIC DISTRIBUTIONS

The probability distribution with density function

T(2v) ., exp (-vy)
r2(v)  {l+exp(-y)}>’

£(y;v) o<y <® , v>0

is called the generalized logistie distribution with parameter v . The special case
v = 1 is the usual logistic distribution. This family of distributions was intro-
duced by Gumbel (1944) in the case where the parameter V is an integer. The charac-
teristic function of a random variable Y having the generalized logistic (v) dist-

ribution is
¢y (t) = T (v-it) T (v+it) /T2 (v) .

Since the distribution of Y is symmetric about zero it follows that ¢Y(t) = ¢Y(t).

In his important paper on ranges and midranges Gumbel (1944) derived the general-
ized logistic distribution and gave it its name. The v-th midrange is defined to
be the average of the two V-th extremes in a sample from an underlying distribution.
Specifically, if Xm;n and Xn—m+1;n are the m-th and (n-m+l)-th order statistics

in a sample of size n , then the m-th midrange wm a is given by Wm n = { Xm-n+
r r’ v

Xn-m+l-n]/2 . Gumbel demonstrated that when sampling from an unlimited continuous
i

symmetrical distribution with mean zero, the limiting distribution of the reduced

m—-th midrange is the generalized logistic distribution with parameter m . More
precisely, suppose X has symmetrical density function £, f£(-x) = £(x), and distri-
bution function F, and let o = 2nf(um)/m where um(n) =uy is the characteristic
m-th extreme value defined by F(um) = 1 - m/n. Then Um,n = amwm,n converges in

distribution to the generalized logistic distribution with parameter m as n becomes

infinite. As a special case of this result, the reduced midrange has as its limiting
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distribution the logistic distribution. This result provides an interesting example
of a measure of central tendency whose limiting distribution is not normal. A key
feature of Gumbel's derivation is the fact that the m-th extremes are asymptotically
independent as the sample size n Dbecomes infinite.

The generalized logistic distribution can be obtained through a straightforward
transformation from the inverted beta distribution. Let R be a random variable
with the density of the inverted beta (v,v,1) distribution, namely

v-1
r
2v) . _r | g<r<e,v>0.

flr;v) = 5
T2(v)  (l+x)

It then follows directly that Y = log R has the generalized logistic (v) distri-
bution.

It is a well known result that if U is the median of a sample of size n=2m-1
from a distribution with density function f and distribution function F , then

U has density function

(2m-1)!

= P ) L-F () 1™ £(u) .
{(m-1) 1]

f(usm) =
Using this result it is easily seen that the median of a sample of size n = 2m-1
from the inverted beta (1,1,1) distribution has the inverted beta (m,m,1) distribu-
tion. Because of the monotonicity of the transformation Y = log R, it then follows
that the median of a sample of size n = 2m-1 from the logistic distribution has
the generalized logistic (m) distribution.

A second family of generalized logistic distributions has been proposed by Dubey
(1969), but these bear no relationship to those presented here except in the special

case of the logistic distribution.

3. LIMIT THEOREMS FOR EXTREMES

The literature concerning the asymptotic behaviour of the extreme observation
in a sample dates back to the 1920's. Significant contributions were made by von
Mises, Fréchet, Fisher and Tippett, de Finetti, and Gumbel in papers which were
published prior to 1938. The early work on the theory of extreme values and its
applications has been summarized by Gumbel (1958), and a comprehensive review of
the asymptotic theory of extremes is contained in Galambos (1978).

The main theorem on the limiting distribution of the extreme is generally attri-
buted to Fisher and Tippett (1928). The principal idea used in their argument was
ingeneous, but the mathematical argument is sketchy. In a later paper Gnedenko (1943)

provides the most regorous and comprehensive treatment of the problem .

Theorem. Let Xn-n be the extreme observation in a random sample from a distribution
i
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with distribution function F . If there exist sequences {an > 0} and {bn} such
that the limiting distribution
. n
H(x) = lim F (a_ x + b )
n n
n—>ce

exists and is a proper distribution, then H must be one of the following three

types :
Gl(x) = expl[-exp(-x)] , - < x <
0 ’ x <
GZ(X) = { exp(—x-a] ’ x>0, a>0
expl-(-x)%1 x <0, a>0
Gy(x) = { =
1 x>0 .

The distribution Gl is called the extreme value distribution of type I, and is
the type which arises most frequently in practice. The following interrelationships
are of interest. If X3 has distribution function G3 then X2 = —1/X3 has distri-

bution function G2 ; if X2 has distribution function G2 then X1 = a log X2

has distribution function Gl .

The key idea used by Fisher and Tippett was the following : the maximum in a
sample of nr observations can be viewed as the maximum of n maxima in n samples
of size r . If a limiting distribution exists, then both these maxima will have
the same limiting distribution as r becomes infinite. Fisher and Tippett implicit-
ly assume the theorem on convergence of types (cf. Gnedenko and Kolmogorov (1968)

p. 40 Theorem 1 ) which Gnedenko (1943) attributes to Khintchine (1938). Use of
this result and some elementary ideas from the theory of functions yielded the
main theorem .

The 1limit theorem above has a direct generalization in the case of the m-th
extreme, when m is held fixed as n becomes infinite. This generalization was
given by Gumbel (1935) and states that if the m-th extreme Xn—m+1;n can be suita-
bly normalized so as to have a proper limiting distribution, then the limiting

distribution function must be one of the following three types .

(m) _ 1 ® w1 -u
Gl (x) = -1y fe_xu e du , ~® < g < ®
0 x <
(m) ' -
e,V ={ 1 m-1 —u
2 Tt f g% e du, x>0, a >0
1 f e m~1 -u
u du, x <0, a >0
G;m)(x) - {(m 1)! (_X)a
1, x >0
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(m)
1

The distribution G is called the m-th extreme value distribution of type

I. The interrelationships noted following the statement of the limit theorem for

extremes also hold in the generalized case. Furthermore, each of the distributions

(m) (m) (m)
Gl 2 ’ G3
by a positive valued parameter.

, G is well defined when the integer valued parameter m is replaced

4. REPRESENTATION AS A DIFFERENCE DISTRIBUTION

Let U be a random variable having the gamma (6,v) distribution with desity

function

£(uib,v) = P?v) Wl exp(-6w) , u> 0, 8,9 >0 .

It then follows that the transformed variable X = -log U has density function

£(x;6,v) F%;T exp(-vx)exp[-0 exp(-x)] , - < x € ® .

This distribution is called the generalized extreme value distribution with parame-
ters (6,v). When the parameter 6 = 1, Yy = log 6 is a location parameter, and the
shape parameter v = m , an integer, the above distribution reduces to the m-th
extreme value distribution of type I.

It now follows that the generalized logistic distribution arises as the diffe-
rence distribution associated with the generalized extreme value distribution.
Theorem. Let Xl and X2 be independent copies of a random variable X which
has the generalized extreme value distribution with parameters (6,v). Then the
difference D = X, - X, has the generalized logistic distribution with parameter

1 2
AV

Proof. If Uj are independent random variables with the gamma (e,vj) distribu-

tion Jj = 1,2, then the ratio R = U2/Ul has an inverted beta (VZ’Vl’l) distribu-

1 2

When V=V, = v it follows from the transformation described in section 2 that

D has the generalized logistic distribution with parameter v .

tion. Under the transformation Xj = -log Uj ;/ the difference D = X, - X, = log R.

In the special case v = 1, this theorem states that the logistic distribution
is the distribution of the difference of two independent random variables distributed
according to the extreme value distribution of type I. This result is implicit in
the work of Gumbel, and is presented explicitly by Davidson (1969) in the context
of paired comparisons.
It is of interest to note that the generalized logistic distribution does not

have a unique representation as the distribution of the difference of independent
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random variables which are identically distributed up to location. This is in
contrast to the case of normal distribution where it follows from a theorem of .
Cramér (1936) ( cf. Cramér (1970) p. 53 Theorem 19 ) that if Xl and X2 are
independent random variables whose difference has a normal distribution, then Xl
and X2 are normally distributed. The fact that the generalized logistic distri-
bution does not have a unique difference decomposition is a somewhat unexpected
result. The following theorem provides a class of such decompositions which is

distinct from the one presented in the preceding theorem.

Theorem. Let T have a beta distribution with parameters (v,n), and let 2 =

-log V where the distribution of V «conditional on T = t is a gamma distribution

with parameters { 6t,v+n ). If Zl and Z2 are independent copies of Z, then
the difference D = Zl - Z2 has the generalized logistic distribution with parame-
ter v .

Proof. Let U and U* be independent random variables which have the gamma
distribution with parameters (6,v) and (6,n) respectively. It is a well known

property that S = U + U* has a gémma (8,v+n) distribution, T = U/S has a beta
(v,n) distribution, and that S and T are independent random variables. Hence
for arbitrary n > 0 , it follows that if S has a gamma (0,v+n) distribution

and T has a beta (v,n) distribution with S and T independent, then U = S-T

has a gamma (6,v) distribution. Let S1 , 82 and T1 B T2 be independent copies

of S and T respectively which correspond to independent copies Ul ’ U2 of U.
3 - * = = . =

Then the ratios R 02 / Ul and R V2 / Vl , where Uj Sj Tj and Vj

Sj/Tj for j =1, 2 , are each a ratio of independentand identically distributed
random variables. Moreover, R and R* have the same distribution, namely the
inverted beta (v,v, 1) distribution. However, the random variables U and V

do not have the same distribution. In particular, the distribution of V conditional
on T =1t is a gamma (0t,v+n) distribution, and T has a beta (v,n) distribution.

The density of V is given by

V(v+n)-l

i v+n -0tv  v-1 _4yn-1
T }'o 8t) e £ (-t Tat .

£(vib,v,n)
In other words, the distribution of V is a mixture of gamma distributions where
the mixing variable T has a beta distribution. Invoking the transformations

X = -log U and Z = -log V it follows that D = X, - X, = log R and D* = Zl

1 2
- Z, = log R* have the same distribution, namely the generalized logistic distri-
bution with parameter v . Now the distribution of X is the generalized extreme

value (6,v) distribution. The distribution of 2 conditional on T = t is the general-
ized extreme value (6t,v+n) distribution, and T has a beta (v,n) distribution.

Thus, although Xl - X2 and Zl - Z2 have the same distribution, the distributiong
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of X and Z are distinct.

The approach taken in the proof of.this theorem has been to transform the ques-
tion of a decomposition of a difference into that of the decomposition of a ratio.
The latter problem has been considered in depth in the special case where the ratio
has a.Cauchy distribution. A general treatment of the question of the joint distri-
bution of random variables whose ratio has a specified distribution is given by
Kotlarski {1964) for the case of the Cauchy and Snedecor distributions.

It follows, as a special case of the above theorem, that the logistic distribu-
tion does not arise uniquely as the difference convolution of random variables having
the extreme value distribution of Type I. The fact that the logistiﬁ distribution
and its generalization do not arise uniquely as a difference distribution adds to
the value of these distributions in applications which involve the range or the
midrange. In particular, the mixtures described in the proof of the theorem provide
additional models for data whose midrange is asymptotically distributed as the gene-

ralized logistic.
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ABSTRACT

Gupta,S.S. and Panchapakesan,S., Some statistical techniques for climatological
data. Proc. l-st Intern. Conf. on Stat. Climat., held in Tokyo, Nov.29-Des.l,
1979

The need for and the increasing use of statistical techniques in the analysis
of climatological data are amply illustrated in the literature. Some known techniques
relating to meteorological problems such as weather modification experiments and
objective weather forecasting are briefly reviewed here. Also, selection and ranking
approach to multiple decision theory is discussed with emphasis on potential applica-
tions.

1. INTRODUCTION

The need for statistical methodology in analyzing meteorological data has long
been recognized. For example, weather modification provides, as noted by Braham
(1979), a "fertile field of interaction and collaboration between meteorologists
and statisticians." Satisfactory models have been found to describe meteorological
data (see Section 2). Time series data occur commonly in climatological studies.

Some of the important and interesting éroblems arise in connection with weather
modification experiments, objective weather forecasting and classification of meteoro-
logical patterns. Studies in meteorology in general and rain simulation in particular
have inspired novel developments in probability and statistics. The concept of charac-
teristic functional first developed by Kolmogorov was later reintroduced by Le Cam
(1947) motivated by meteorological studies (see Neyman (1979a)). The concepts of
outlier-prone and outlier-resistant distributions developed in Neyman and Scott

(1971) were motivated by cloud seeding experiments.

The objectives of the present paper are to briefly review some important known
applications of statistical techniques to meteorological data and to indicate the
potential applications of selection and ranking procedures to these problems. No
attempt will be made to be comprehensive in the treatment of either objective. Some
important distributions that have been satisfactorily used as models in meteorological

problema are described in Section 2. The next section deals with weather modification
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experiments and some related asymptotic optimal tests and nonparametric tests. Section
4 discusses techniques used in a variety of situations other than weather modification
experiments. The topics include Markov chain models, the biplot technique, selection
of the best predictors in forecasting and classification of weather patterns. The

last section describes some subset selection procedures and discusses the selection

of the best regression model under this formulation.
2. STATISTICAL MODELS

In this section, we briefly discuss several distributions that have- been found
useful as models for meteorological data. Any discussion of the techniques for infer-
ence will be deferred until later sections.

The gamma distribution has been extensively used as a model for precipitation
data. Rain simulation experiments indicate (see Neyman and Scott (1971)) has been
found a satisfactory model in practice. The distribution of nonzero rainfall per

experimental unit is assumed to have the density

£(x) = ____xa—l e-ex

8%
T (o) !

x>0,8 >0, a>0. (2.1)
Here, 8 is reciprocal of the scale parameter and a is the shape parameter; It is
generally assumed (Neyman (1979a)) that the seeding of the clouds can change the
value of the scale parameter but has no effect on the shape parameter. The gamma
diatribution has been used or verified as a model by Barger and Thom (1949), Mooley
and Crutcher (1968), Neyman and Scott (1967a), Schickedanz (1967), Schickedanz and
Decker (1969), Simpson (1972), and Thom and Vestal (1968).

Mielke (1973) considered for describing precipitation data the two-parameter

Kappa distribution with distribution function g

L8 /(o + /8 %HY%, x>0
F(x) = (2.2)
0 ’ X <0

where a > 0 and B > O denote the shape and scale parameters, respectively.

Wong (1977) made goodness-of-fit comparisons among the gamma, lognormal, three-
parameter kappa (06 in the place of o in (2.2)), and Weibull distributions using
five sets of Alberta hailfall data. He found the Weibull distribution a reasonable
alternative to the lognormal and three-parameter kappa distributions for describing
precipitation and streamflow data. It should be noted that the lognormal distribution
is outlier resistant (Neyman (1979a)) and that Weibull and gamma distributions can

be subsumed under the generalized gamma distribution with density
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f(x) =
BYOT (a)

x > 0, (2.3)

where o, B, and y are all positive parameters.
The three-parameter Weilbull distribution was used by Stewart and Essenwanger
(1978) as a model for wind speed near the surface. Tackle and Brown (1978) have

used the distribution function

F(0) + (L - F(0)) (1 - expl-(x/®)®h, x>0
F(x) = (2.4)
0 ’ X <0

where F(0) is the probability of observing zero wind speed.

Luna and Church (1974) have found the lognormal distribution as a satisfactory
model for wind speed at many sites. Yao (1974) found the beta distribution as a
satisfactory model for frequency distributions of relative humidity observationms.
The beta distribution has also been used by Mielke (1975).

Bivariate normal distribution is used by Wu, Williams and Mielke (1972) in the
analysis of continued-covariate and cross-over designs that arise in cloud seeding
experiments. For some other distributions that have been considered in connection
with meteorological data, see Mielke (1979).

Associated with all these distributions are the obvious problems of estimation.
The several methods of estimation applied to these distributions are of general
interest and not restricted to meteorological problems; as such, relevant references
can be amply found in the statistical literature. It suffices here to mention a
few recent papers motivated by meteorological applications, namely, Crow (1977,
1978), Flueck and Holland (1976), Mielke (1973, 1976), Mielke and Johnson (1973},

and Wong (1977). Other problems of inference are discussed in subsequent sections.
3. WEATHER MODIFICATION EXPERIMENTS

Early scientific weather modification experiments are attributed to Vincent
Schaefer (1946) and Barnard Vonnegut (1947) who showed that pellets of Dry Ice and
ninute particles of silver iodide would nuleate ice crystals in supercooled clouds.
Early days of weather modification are discussed by Byers (1974) and Elliot (1974).
One of the important experiments, known as Project Whitetop, was carried out by
Professor Braham and his colleagues at the University of Chicago during the summers
of 1960 through 1964. The data of this experiment have been reanalyzed by Professor
Neyman and his associates at Berkeley. The details of Project Whitetop, contréversies
regarding its conclusions, and relevant references can be found in the paper by

Braham (1979) and the comments by Dawkins and Scott (1979) and Neyman (1979b). A
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categorized bibliography of weather modification experiments is given by Hanson
et al (1979).

Weather modification experiments are getting increasing attension of statisticians
as evidenced by the papers in Volume V of the Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability (University of California Press,
1967) devoted entirely to this subject and two special issues of Communications
in Statistics - Theory and Methods (Volume A8, Numbers 10 and 11, 1979). In the
rest of this section, we briefly describe some of the problems and techniques.

A class of asymptotic tests that is routinely used in testing hypotheses regarding
the effect of seeding the clouds is called the optimal C(a) tests. These tests were
developed by Neyman (1959) and are applicable to testing composite hypotheses that
are frequently encountered in practice. These tests are applied by Neyman and Scott
(1967b) for evaluating single rain simulation exper-ments. The basic assumption
is that, whether or not seéded,'there corresponds to each experimental unit (a fixed
duration like 24 hours) a positive probability, say 1l-p, of the rainfall being zero.
Two mechanisms are introduced, one governing the change in p due to seeding and
the other governing the effects of seeding per wet day. The effect of each mechanism
is a change in the value of p in either direction. On each experimental day (a day
considered 'suitable' for seeding), a randomized decision is made whether or not
to proceed with seeding. As a measure of the effect of seeding, Neyman and Scott
(1967b) use £ = (ps - pc)/pc, where the subscripts s and ¢ denote "seeded" and "
control”, respectively. Neyman and Scott (1967b) provide three test criteria, labeled
, of which the first two are optimal C(a) tests of hypotheses H, and

3 1
Hz, that cloud seeding does not affect the frequency of wet days, and that it does

Zl, Z2’ and 2

not affect the rainfall per wet day, respectively. The criterion Z_, is not a C(a)

3
test; it is a linear combination of Zl and 22 so chosen as to be sensitive to depar-
tures from H3 that the seeding does not affect the target precipitation averaged

per experimental unit, whether wet or dry. The specialization of the conditional
density of the target precipitation given that it is not zero, joint with the predic-
tors if such are available, determines several different cases. For some recent
work on the detection of variable response to cloud seeding, see Neyman (1979a).
Efficient methods for summary evaluations of several independent experiments
are important in view of "the notorious frequency with which rain simulation experi-
ments fail to yield statistically significant results." Davies and Puri (1967) discuss
two related but distinct problems specializing certain earlier results concerning
C(a) tests.
Suppose that the distribution of the nonzero precipitation is gamma with density
given in (2.1). It is assumed that the effect of seeding is to change 6 to &0 (
i.e. effect is multiplicative). The interest is to test H: & > 1 against A: § < 1.
Note that & < 1 corresponds to increased average nonzero rainfall. The results of

several cloud seeding experiments indicate (Neyman and Scott (1967c)) a value of
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o in the interval (0.45, 0.75). One can use likelihood ratio tests or C{a) tests.
However, it is a simplistic assumption that the changes induced by cloud seeding
can be adequately represented by a simple scale or location parameter shift. Thus,
nonparametric techniques are useful' in testing for a change due to seeding in the

" distribution of precipitation amount. Commonly used nonparametric tests are Wilcoxon,
Kolmogorov-Smirnov, and median tests. Another test which is applicable is due to
Taha (1964) and is based on the statistic L = %’Z¥=l si, where the s, are the ranks
of the "seeded" observations in the combined sample of 2n observations. In the sence
of asymptotic efficiency, this L test is found superior to Wilcoxon test. James
(1967) has made some numerical comparisons of the Pitman efficiency of Wilcoxon,
gamma scores, exponential scores_and L tests for small values of o coming out in

favor of the exponential scores test.

s

J
where r > 0, and Zj =1 or 0 if the jth ordered observation in the pooled sample

sy N .
Tamura (1963) proposed a class of tests based on the statistic Ar = Zj=l Jrz

of size N is a seeded or a non-seeded observation. A similar class of two-sample
nonparametric tests is considered by Mielke (1972, 1974) to treat the same problem
but with the cross-over design.

Multivariate nonparametric and permutation procedures are useful when a number
of measured responses are obtained from each experimental unit. Mielke, Berry and
Johnson (1976) have considered multi-response permutation procedures, special cases
of which have been earlier suggested by Mantel and Valand (1970). For some further
discussion of these procedures, see Mielke (1979). .

Weather modification experiments are carried out in a natural environment subject
to much variability. Covariates are used in analysis in order to reduce the experi-
mental error. Bradley, Srivastava and Lanzdorf (1979) have discussed covariance
analyses effected through the use of multiple regression methods. They have also
reviewed the original results of an experiment conducted by North American Weather
Consultants and discussea a multivariate analysis without use of covariates or‘trans—

forms.
4, STATISTICAL TECHNIQUES FOR OTHER METEOROLOGICAL PROBLEMS

In this section, we briefly discuss applications of certain statistical techniques
to meteorological problems other than the weather modification. The examples are
chosen to indicate the scope and the nature of applications.

In several situations we need more sophisticated models than those discussed
in Section 2. An important problem in meteorology is the determination of the charac-
teristics of hourly temperatures. Hansen and Driscoll (1977) developed a stochastic
model for hourly temperatures for Big Spring, Texas. These temperatures are produced
by harmonics representing both diurnal and annual variations, and a Markov chain

expression incorporating adjustments for several variations such as seasonal variation
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of the serial correlation coefficient.

Markov chain models have been used to describe the daily occurrence of precipita-
tion. Gabliel and Neumann (1962) considered a model for daily rainfall occurrence
at Tel Aviv. Another model was introduced by Todorovic and Woolhiser (1975). Recently,
Katz (1977) proposed a more general model and discussed the distribution of the
maximum amount of daily precipitation and the distribution of the total precipitation.

The biplot is a graphical display of a two-dimensional approximation to a matrix
obtained by least squares using the first and second sinéular value components of
the matrix. It is related to principal component analysis and multivariate analysis
of variance (MANOVA). Its usefulness in the displgy and analysis of meteorological
data is demonstrated by Gabriel (1972) with two sets of data. In one of the examples,
the biplot is an approximation to simultaneous tests of different subhypotheses
in the one-way layout MANOVA. For mathematical and computational details of the
technique, see Gabriel (1971).

In forecasting the state of atmosphere at grid points, we have the problem of
obtaining vector-valued estimates of meteorological parameters at a grid point based
on multivariate information from several souces. In other words, our estimator Z,

a vector of n components, is given by 2 = Alxl + ...+ Amxm, where the xi have some
joint distribution. The problem is to find the "best" linear combination of the
information vectors. Thiebaux (1974a) has considered the criterion of minimizing

the variances of the components of Z. An example of this situation is given in
Thiebaux (1973). In another paper, Thiebaux (1974b) has discussed a related problem
regarding the estimation of covariances of meteorological parameters using local-time
averages.

McCutchan and Schroeder (1973) have used stepwise discriminant analysis of eight
meteorological variables to classify the days during their study period at a southern
California location into one of five types.

Many examples of statistical prediction schemes in climatology are available.
The prediction is based on a number of predictor variables. While the prediction
can be made more accurate by bringing in as many relevant predictor varibles as
possible, some of them may be highly correlated among themselves and the contribution
of some may be very marginal. The problem of selecting the best set of predictor
variables arise in various situations. Stringer (1972, pp. 132-133) has cited some
eiamples from literature regarding prediction of precipitation and visibility. Martin
et al (1963) have considered an example dealing with forecasting of the 24-hour
movement and change of central pressures of North American winter antincyclones.
Lund (1971) has discussed a problem of estimation of precipitation involving almost
4500 potential predictors.

Several criteria for defining the best set of predictor variables and various

techniques for selecting the best set have been discussed in a nice expository paper
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by Hocking (1976). Also, a brief review and evaluation of significant methods have
been given by Thompson (1978). Martin et al (1963) applied forward type stepwise
procedure. Lund (1971) has illustrated a method of blending stagewise and stepwise
procedures.

It should be noted that these techniques for selecting the best set of predictor’
vafiables are not designed to produce a best set with a guaranteed probability.

We will come back to this point in the next section.
5. RANKING AND SELECTION PROCEDURES

In dealing with weather data, one may want to compare different sites (weather
stations) on the basis of appropriate characteristics of the meteorological variables
involved. For example, we may want to compare these locations on the basis of mean
temperature, or mean nonzero precipitation amount, or variability of temperature
for a fixed duration. One may be interested in ranking the sites in terms of the
values of the characteristic or just in selecting the site with the largest (smallest)
value of the characteristic.

Formally speaking, we have k independent populations (sites) nl,...,nk, where
“i is characterized by the distribution function F(x;el) and Bi is an unknown parame-=._
ter which represents the "worth" of the pcpulation. For example, F(x;ei) may be
the distribution function of the 24-hour nonzero precipitation amount at the ith
site and ei may be the mean of the distribution. Let e[l] < wee 2 e[k] denote the
ordered ei. To be specific, let us say that “i is "preferable" to “j if e.l > ej
so that the best population is the one associated with the largest ei. Ranking and
selection problems have been generally formulated using either the indifference
zome approach or the subset selection approach.

Let us consider the simple problem of selecting the best population. Under the
indifference zone formulation of Bechhofer (1954), we want a procedure R which will
select the best population with a minimum guaranteed probability P* (1l/k < P* < 1)
whenever § (96

) > 6%, where §(8 ) is an appropriate measure of

k1’ % x-1) k1’ 9 1x-13
the distance between the populations associated with e[k] and e[k—l]’ and the quanti-
ties 6* and P* are specified in advance. In the cases of location and scale parame-
ters, the natural choices for S(BIK], e[k—ll) are e[k]_e[k-l] and e[k]/e[k_l], respec-
tively. Consequently, 8% > 0 in the first case and 8* > 1 in the second. Suppose
we want a procedure R based on samples of equal sizes. The problem is to determine
the minimum sample size needed to meet the probability requirement.

In the subset selection approach, our goal is to select a non-empty subset of
the k populations so that the best population is included in the selected subset
with a minimum guaranteed probability P*. Selectioy of any subset which includes
the best population is called a correct selection (CS). The general approach is

to evaluate the infimum of P(CSIR), the probability of a correct selection using
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The procedure R, over the parameter space Q = {8: 8 = (61,...,6k)} and obtain the

constants involved in defining R so that
inf P(CS|R) > P*. (5.1)

The condition (5.1) is referred to as the P*-condition or the basic probability
requirement. In order to meet this requirement, one determines the parametric config-

uration the Least Favorable Configuration (LFC), for which the infimum in (5.1)

8y
is attained. In general, there may not be a unique LFC. The expected size of the
subset selected is one of the measures generally used as performance characteristics
of a procedure.

For an extensive survey and bibliography of ranking and selection theory and
related topics the reader is referred to the recent book of the authors (1979).
Other books in this area are Bechhofer, Kielfer and Sobel (1968), and Gibbons, Olkin
and Sobel (1977). )

In the rest of this section, we describe briefly subset selection procedures
for normal populations in terms of means, for gamma populations in terms of the
scale parameter, for multivariate normal populations in terms of multiple correlations

coefficients and discuss selection of best predictor variables.

5.1 Normal Populations

Let wl,...,ﬂk be k independent normal populations with unknown means ul,...,uk,
respectively, and a common variance 02. Let i;, i=1,...,k be the sample means based
on samples of size n. The best population is the one associated with the largest
L When 02 is known, the procedure Rl proposed by Gupta (1956) selects the population

"i if and only if

_ _ _ dlc
Xi _>_max(xl,...,xk) - —/—:n' (5.2)

where dl = dl(k, P*) > 0 is the smallest constant such that the condition (5.1)
is satisfied. The LFC is given by My = el =

This implies that 4, is given by

Hye 1

7, ¢ tx +a) a0 ax = e%, (5.3)

-

where ¢(x) and ¢ (x) are the standard normal cdf and density, respectively. The values

of dl are tabulated for several values of k and P* by Gupta (1963a) and Gupta, Nagel

and Panchapakesan (1973).

When 02 is not known, the procedure R, of Gupta (1956) is the same as R, with

2 1
o replaced by s, where 52 is the usual pooled estimator of 02 based on v = k(n-1)
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degrees of freedom. Here again, the LFC is given by ul = oeee = My The values of

thie constant d2 (used in the place of dl) are tabulated by Gupta and Sobel (1957)

for selected values of k, v, and P*.

The procedures R, and R, can be modified in the case of the population with the

1 2
smallest By being defined the best. For procedures involving unequal sample sizes,

see Gupta and Huang (1976), and Gupta and Wong (1976).

5.2 Gamma Populations

o
—

Let m; have the associatéd density

exp (- x/ei), x > 0, ei >0
£(x, Gi) = (5.4)

0 - otherwise.

As we can see, it is assumed that the populations have the same shape parameter
r(> 0). Further, r is assumed to be known. Our interest is selecting the population
associated with the largest (smallest) ei. The gamma distribution not only serves
as a model for certain types of measurement, but ;lso includes the case where the
observations come from normal populations and the interest is in selecting the popula-
tion associated with the smallest variance.

For selecting the population associated with the largest ei, Gupta (1963b) investi-
gated the procedure R3 which selects L if and only if

X; 2 bmax(Xy, ..., X)) ) (5.5)

where X. ) ceny §£ are means based on samples of equal size n, and the constant b
(0 < b < 1) is chosen so that the P*-condition is met. Gupta (1963b) has shown that
P(CS|R3) is minimized when el = ... =8 and that the constant b is given by

w k-1 _
[5 65 (x/b) g, (x) ax = P*, (5.6)

where Gv(x) is the cdf of a standardized gamma random variable (i.e. with 6 = 1)
with parameter v/2 where v = 2nr. Thus the constant b depends on n and r only through
v and its values are tabulated by Gupta (1963b) for selected values of k, P*, and
Ve .

For selecting the normal population with the smallest variance, an analogous
procedure is given by Gupta and Sobel (1962a) and the appropriate constant can be

obtained from the tables in their companion paper (1962b).
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5.3 Multivariate Normal Populations

Let 7 be k independent P-variate normal population where L is N(Hi, Zi)'

17 e Ty
L= ves . dom o tion ve £ P 5 I .

Let X (Xil’ Xi2’ ’ le) be a random observatiol ctor from g ' e

The populations are ranked in terms of the Pyv where Py is the multiple correlation

coefficient of Xi with respect to the set (Xiz’ rers Xip). We are interested in

selecting a subset containing the population associated with the largest pi. Let
Ri denote the sample multiple correlation coefficient between Xi1 and (xi2’ ceey Xip)'
Two cases arise: (1) The case in which Xiz’ ceey Xip are fixed, called the conditional
case; (ii) The case in which xi2' ceey Xip are random, called the unconditional

case. In either case, Gupta and Panchapakesan (1969) proposed and studied the rule

R which selects T if and only if

R*” > ¢ max R#Z (5.7)
1<j<k
2 2 2 . .
where R; = Ri/(l-Ri), and 0 < ¢ = c(k, P*, p, n) <1 is chosen to satisfy the P*-
requirement. In this case, the infimum of PCS is attained when pl = p2 = ... = pk =0

and the appropriate constant c¢ is given by

o k-1 .
I Fag,om /9) f50 o () ax = P, (5.8)
1 _ 1 .

where q = 5 p-1), m= 5-(n - p), Fr s denotes the cdf of an F random variable
r

with r and s degrees of freedom, and fr s denotes the corresponding density. The
14

values of ¢ are tabulated by Gupta and Panchapakesan (1969) for selected values

of k, m, g, and P*.

5.4 Selection of Best Set of Predictor Variables

In Section 4, we referred to the techniques that have been commonly used for
selecting the best predictor variables. We pointed out that these procedures are
not designed to guarantee a minimum probability of obtaining the best set. Recently
this problem has been investigated by Arvesen and McCabe (1973, 1975), McCabe and
Arvesen (1974), and Gupta and Huang (1977) under the subset selection formulation
described earlier in this section. Investigations along these lines continue to

be of interest in view of their practical importance.

5.5 Other Procedures and Related Problems

There are several parametric and nonparametric procedures available in the litera-
ture to suit many contexts that commonly arise. There are single-stage, double-stage

and sequential procedures. There are several modifications of the basic problem.
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Also important are the related problems of estimating the ordered parameters. Many
of these are areas of current research. For an extensive survey and bibliography,

see Gupta and Panchapakesan (1979).
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ASYMPTOTIC THEORY OF ESTIMATION OF THE LOCATION AND SCALE PARAMETERS BASED ON A
SET OF SMALL NUMBER OF SELECTED SAMPLE QUANTILES
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ABSTRACT

Ogawa,J., Asymptotic theory of estimation of the location and scale parameters based
on a set of small number of selected sample quantiles. Proc. l-st Intern. Conf.
on Stat. Climat., held in Tokyo, Nov.29-Dec.l, 1979

We are concerned with the following situation. Suppose that we are given a large
sample of size n from a population whose density function is of the form
f((x-n)/0)/o , where u is the location parameter, ¢ is the scale parameter and the
functional form f£(-) is known This sample has been arranged as order statistics.
For a given spacing 0 < X cel< A one selects a set of k sample guan-
tiles x(nl) < x(nz) < L..< x(n ? n, = [nk ], i=1,2,...,k . (i) Find out the
best estimators of p and ¢ baseg on %he above set of sample quantiles and (ii) find
out the optimal spacings which give the highest efficiencies of the estimators.

The theory will provide an economical method of estimation of population parame-
ters in processing the large quantity of climatolygical data.

1. ASYMPTOTIC DISTRIBUTION OF A SET OF SELECTED SAMPLE QUANTILES

We consider the distribution whose density function depends only on the location
and scale parameters: (l/c)f(x-u)/c , where u is the location parameter and ¢ is

the scale parameter, and the function f(u) is a known function. For a given spacing
0 < Al <A, < ... < Ak <1 (1.1)
one has a set of k sample quantiles

< < ... <
x(n) < x(ny) x(ny)

where n, = [ nki+l l] ,1i=1,2,...,k .

One defines u, as the Ai-quantile of the standardized population, i.e.,

Ap= JUofw) e, i=1,2,000k, and £y = E(u) 4 1= 1,200k, (1.2)

—c0

then the Ai—quantile X, of the population can be written as X, = + ou, i-=

1,2,...,k. For the sake of convenience we put



XO = 0, u, = -, fO = f(uo) =‘0, Xy = -,
Mg = 0 g = F e By T E0) = 00, S e
It can be shown that the asymptotic joint distribution of X(nl),...,x(nk) as
n - « has the density function
h(x(nl) reesrx(ng) iH,0)
_ 2.-k/2 _ _ -1/2 _k/2 _.n
= (2m0%) fl...fk[xl(kz kl)...(Ak Xk_l)] n expl ;;E s] (1.3)
where
k Ao =y
i+l Ti-1 2 2
S = z £, (x(n,)-u-ou.)
i1 Gy ) Aymhy ) 2 i
kOERLL
-2 I 5 (x(n;)-u-ou,) (x(n;_,)-u-ou; ,) (1.4).

i=2 i Ti-1 |

(See Mosteller (1946)).

2. FISHER BMOUNT OF INFORMATION AND THE RELATIVE EFFICIENCIES

We calculate the Fisher amount of information from (1.3) and then based on the
whole data as a random sample. Relative efficiencies will be defined by the ratio

of them,

Case I. The scale parameter ¢ is known and only the location parameter 1t is to

be estimated.

The Fisher amount of information with respect to p calculated from -h is shown

to be
3log h. 2 2 h
O e e (2.1)
u Buz 2
where
2

k+1  (f,-f. )
K = I T . (2.2)

i=1 i Ti-1

The Fisher amount of information with respect to u calculated from the whole data

as a random sample is seen to be

n £r.2
I ( = — E[-—1" . 2.3
u) 2 = (2.3)

The relative efficiency of the estimator of p based on a set of selected sample
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quantiles x(nl),...,x(nk) is defined by
I
_ s _ £'.2
MW= Ty TR/ EEET (2.4)

For example :

1 —u2/2
Normal distribution f(u) = — e n(u) = Ky
2
oY
Logistic distribution f(u) = —— n{u) = 3K, .
(1+e™ 2 !

Case IT. The location parameter u is known and only the scale parameter o is

to be estimated.

The Fisher amount of information with respect to o calculated from h is shown

to be
' j 2.5
IS(U) - B[ aégg h ]2 __%logh _ 2k n K, (2.5)
302 o2 o2

where
k+1 (f,u,-f u )2

K, = I _1;_;;11-1_ . : (2.6)
i=1 i i-1

The Fisher amount of information with respect to o calculated from the whole data

as a random sample is seen to be

n

I (@ = -2 qep 39204
w 0_2

) ] . (2.7)

The relative efficiency of the estimator of ¢ based on a set of selected sample

quantiles x(nl),...,x(nk) is defined by

K2
n(g) = —m—mmmMmM—————— . - ) (2.8)
Uf' (U) .2 ’
e T R
For example :
X
Normal distribution n(oc) = e B
Exponential distribution n{c) = K .
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Case ITII. Both the location and scale parameters are unknown and we are concerned

with joint estimation of up and o.

The area of the ellipse of concentration of the maximum likelihood estimators
of u and ¢ based on the whole data as a random sample is proportional to the inverse

square root of

£'(u) .2 uf'(u),2 2
£(0) 17« E[——ETETJ -1) -E7[

Yo 2
ue (@ g

£(u) 2

n?
— (Bl (2.9)
[¢)

The greatest lower bound of the area of the ellipse of concentration of the joint

unbiased estimators of u and ¢ 1is proportional to the inverse square root of

2

3%1og h., _ 3%log h, 2 3%log h. _ n° 2 nk
E[ a2 ] EI 5o 1 ~EI 51 80 ] = A ( KK, )+ 2 a K, (2.10)
where
k+1 (£,-f. )Y (f,u.-f. u, .)
K _ 5 1 ii Ti-17i-1 . (2.11)
3 . A=A,
i=1 i Ti-l

Relative efficiency of the joint estimation of u and o based on a set of the selected

sample quantiles x(nl),...,x(nk) is defined by
2
K.K, - K
172 3 .
nu,0) = 5 . (2.12)
£'.2 uf'. 2 2 Uf'
‘E[ZF17(EI 17-1) - ET [
£ £ f2

For example:

2

s . 1
Normal distribution ngu,c) = 3 (Kle- K3

)

3. THE BEST LINEAR UNBIASED ESTIMATORS

Case I. ¢ is known and only u is to be estimated.

Applying the Gauss-Markov theorem on least squares, the BLUE u; should be

obtained by solving the equation <as/au)u_u* =0 ,'i.e.,
o

k Ai - A k f.f

+1 i-1 2 ivi-1
[z - — £2 -2 3 2y .
im1 Qa7 ) i=2 iAo O
AR FaTh
= I -y oo ) fixnp -
i=1 MM A



53

or
* = - 3.
Kluo X oKy (3.1)
where
Kl (£,-£, ) (£;x(n) £,  x(n; 1))
X = z T . (3.2)
i=1 i Ti-1
Hence one obtains
k K3
p* = £ a,x(n,) - —o0 (3.3)
o jop R Ky
where
f £f.-f -f
-1 i+1 .
a, == L= e BUTIE Tl P TRPE (3.4)
1 i "i-1 i+l i
and
a 1
* = — —
V(uo) a X . (3.5)
1
For a given spacing 0 < A< Ay € .s Ak < 1, one can consider the dual spacing
* * *
0 < Al <AE <L Ak <1 (3.6)
where X; =1 - Ak—i+l , i=1,2,...,k. The self-dual spacing is called symmetric.
For a symmetric spacing
Mot Mg = i=L2,0k (3.7)

1f, in addition, the function is even, i.e., f(-t) = £(t), then for a symmetric

spacing

uy + Wi T o, i=1,2,...,k, (3.8)
and hence

£, = f , i=1,2,....k, (3.9)

i k-i+1 .

and consequently

Ky = 0 . (3.10)
Thus
k
* =
ux i aix(ni) ’ (3.11)
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which is independent of o .

Case II. p is known and only ¢ is to be estimated.

The BLUE 06 of ¢ should be obtained by solving the equation (8S/80)U=0* =0,
vi.e., ©
k Mg 2 2 ko Fiuiti %
L o0, %™ 2 2~ 1%
i=1 i+l “i i Ti-1 i=2 i "i-1
TR R O o O R U L S i A
= =5 - PO ] £, x(@p-n)) ,
i=1 i1 17
or
* = - .12
K, * Y - Ku (3.12)
where
k+1 (fiui- fi_lui_l)(fix(ni)—fi_lX(ni_l))
Y = % Y . (3.13)
i=1 i i-1
Hence one obtains
k K3
* = - —
o _Z bix(ni) ¢ (3.14)
i=1 2
where
£ Bt Eia%a Fiavia Y .
b, = [ 5= - o1 1= L2, 0k, (3.15)
2 i Ti-1 i+l i
and
2
¢y = 91
V(Go) o Kz . (3.16)

If £(-t) = £(t) and the spacing is symmetric, then
k
ot = z bix(ni), (3.17)

i=1

which is independent of .

Case ITI. Both p and ¢ are unknown and they are to be jointly estimated.

The BLUE's u* , o* of u , o respectively are obtained by solving the equations

(85/311)u = 0 and (3S/30)

=0, i.e.
=p*, g=g* 4 4

u=p*,o=c*
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i.e.,
* * = * =
Kl + K3 X, K3 * 4+ K2 Y . (3.18)
Hence by putting
A= KK, - K (3.19)
172 3 .
we have
K K k K X
2 3 2 3 .
¥ = — - — = = — - — = <. Ky .
u A X A Y .Z c.x(ni) A X a; X bi , 1 =1, k, (3.20)
i=1
. K, Ky k Ky Ky
g = - —Z—-X + - Y = -EldiX(ni) : di = —'Z—ai+ = bi , 1 =1,...,k, (3.21)
and
2 K 2 X X
K =0 2 s =9 1 £ g*) = - o 3
V{u*) T V(o*) — 5 Coviu*.o ) 5 - (3.22)
If f(-t) = £(t) and the spacing is symmetric, then
u* = u; , o* = 0; and Cov(u*,o*) =0 .
4. OPTIMAL SPACINGS FOR EXPONENTIAL DISTRIBUTION
In case of exponential distribution, £(t) = e_t , t > 0, we have
-u, -u, \
Ai = 1-e 1L , fi =e i ,1=1,2,...,k,
and
2 2
u (u,~u.) (u, -u )
K2 = L + 2 1 + oeen +-—%§—lijl—~ . (4.1)
et1-1 et2-e™ e'k-e"k-1
One has to find the spacing Ai =1-¢% ,4i=1,2,...,%k , which maximizes K, -
This can be done successively as follows. For k =1
u u
1 2 1 1
K =gy =ud /- L et = 2n =)
e 1-1 l-e 1
hence the optimal spacing should be
_u* _ut
e 1 =1 - ui/Z ’ ui = 1.592, Xi =1-e 1 =0.795
1 uleul uleul uleul 2
¢ (ul) = 2 -4 -y + 2( m )

11 el1-1 el1-1 e'1-1
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Since
*
ur el
1
u* =2
e 1-1
2-8-2u*+8 2(1l-u¥*)
u o" (u¥) = 1 = 1 o,
* *
0 1 u* 2 : e -1 &1t
(1.592)
Ai gives the optimal spacing and the maximum value of K2 is Kél) = ¢(u{) = 0.64761.
For k = 2, K2 comes out to be
(2) _ (1) (1) _ _
K2 = ¢(ul) + e ¢(t tl =u, u; .
Since ¢(t;l)) is maximized for t{l) = ui = 1.592 taking on the maximum value

0.6761, the value Kéz)

(2)

should be maximized at

¢'(u{2)) -e¥1 x 0.6761 = 0
or
¥ (u ‘2) 2. w(u‘Z)) +0.6761 = O,

where we have put
v = ue / (e%-1) .

Taking the fact that the function ¢(u) is monotone increasing and Y(u) > 1 in

0 < u < += into account, we have W(u(z)) =1+ vV 1-0.6761 . Hence

(2)— 1.02 , A{z) = 0.63941,

(2)_ (2) (L) _ (2) _ (2)_
u, "= uy + uy = 2.61 , XZ = 0.92647 , K2 = 0.82026 .
For k = 3,

1)
-t

Ké3) = ¢ +e g ¢(t(l) +e "1 ¢(t{2)) ]
where

1) _ - (1) _ _ 2y _ (1) (L _
tl = u2 ul ’ t2 u3 u; tl = t2 - tl = u3 - u2 .
Now ¢(t {2)) is max%m?zed at tiZ) =u;-u, = 1.59 and ¢(t(2)) = 0.64761 .

-tll

Then (&t (1’) + e 17 x 0.64761 is maximized at t{l) =u, -u =1.02 ; the
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maximum value is 0.82026. Finally  ¢(u;) + e Y1 4 0.82026 is maximized at u

1
3 . . T T A RoRaE 3
= u{ ) satisfying w(u{3)) =1+ /1 - 0.82026 , hence ui3) = 0.75, A{ ).
0.52763. Consequently
3
ué o 1.02 +0.75 = 1.77, A§3) = 0.82967,
u§3)= 1.59 + 1.77 = 3.36 , A§3) = 0.96527 , Ké3) = 0.89049 .

In this manner one can continue the calculations and determine the optimum spac-
ings for k = 4,5,...,15 . The result is presented in the following Table 4.1. Of
course, since the highspeed computer is available nowadays, this whole process can
be computerized rather easily. For the applications of this theory, see Greenberg
and Sarhan (1958) and Ogawa (1960).

TABLE 4.1 Optimum spacings for estimates of relative efficiencies and the coeffi-
cients of best estimates

T pi 3 ! 5 [ 7 ]
1 159 1.02 0.75 0-61 0.50 0.43 0.37 0.33
* |.79607 |.63941 |.52763 | .45665 | .39347 | .34949 | .30927 | .28108
ay |.40731 |.42835 |.39974 | .36098 | .33051 | .29900 | .27352 | .24989
U 2.61 1.77 1.36 1.11 0.93 0.80 0.70
Ay .92647 | .82967 | .74334 | .67044 | .60545 | .55067 | .50341
as .14687 |.20233 |.21719 | .21896 | .21499 | .20654 | .19671
U3 3.36 2.38 1.86 1.54 1.30 1.13
A3 .96527 | .90745 | .84433 | .78562 | .72747 | .67697
as .06938 | .10994 | .13173 | .14242 | .14850 | .14845
uy 3.97 2.88 2.29 1.91 1.63
Ay .98113 | .94387 | .89873 | .85192 | .80407
ay .03770 | .06668 | .08571 { .09839 | .10677
Us 4.47 3.31 2.66 2.24
As .98855 | .96348 | .93005 | .89354
as .02288 | .04394 | .05919 | .07074
g 4.90 3.68 2.99
Ag .99255 | .97478 | .94971

" ag .01487 | .02996 | .04255
u7y 5.27 4.01
A7 .99486 | .98187
az ) .01027 | .02154
us 5.60
Ag .99630
as .00739
ug
A9
ag
u10
A10
aig
un
An
an,

Ky |.64761 | .82026 | .89049 | .92691 | .94757 | .96056 | .96926 | .97537

( This table was calculated by the Support of the Ordnance Research through
Dept. of Biostat., School of Public Health, University of North Carolina,
Chapel Hill, N.C., U.S.A. )
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TABLE 4.1 (continued)

| 9 10 11 12 13 14 15

Uul 0.30 0.27 0.25 0.23 0.21 0.20 0.19
A .25918 | .23662 [ .22120 | .20547 | .18942 | .18127 |.17304
ai .23224 | .21644 (.20181 | .19003 | .17766 | .16759 | .16096

U 0.63 0.57 0.52- 0.48 0.44 0.41 0.39
Ao .46741 | .43447 | .40548 | .38122 | .35596 | .33635 | .32294
as .18514 | .17729 | .16860 | .16032 | .15409 | .14552 |.13861

u3 1.00 0.90 0.82 0.75 0.69 0.64 0.60
A3 .63212 | .59343 | .55956 | .52762 | .49842 | .47271 | .45119
as .14569 [ .14135 | .13803 | .13398 |.13001 | .12609 |.12031

Uy 1.43 1.27 1.15 1.05 0.96 0.89 0.83
Ay .76069 | .71917 | .68336 | .65006 |.61711 | .58934 | .56395
ay .10999 |.11122 |.11012 |.10971 | .10856 | .10644 | .10430

us 1.93 1.70 1.52 1.38 1.26 1.16 1.08
As .85485 | .81732 | .78129 | .74842 | .71635 | .68651 |.66040
as .07910 |.08396 | .08661 | .08748 | .08887 | .08830 | .08803

Ug 2.54 2.20 1.95 1.75 1.59 1.46 1.35
Ag .92113 | .88920 | .85773 | .82623 | .79607 | .76776 | .74076
ag .05239 | .06037 | .06539 | .06880 | .07093 | .07281 | .07350

uy 3.29 2.81 2.45 2.18 1.96 1.79 1.65
Ay .96275 | .93980 | .91371 | .88696 | .85914 |.83304 |.80795
az .03152 | .04000 | .04702 | .05195 | .05578 | .05802 | .06019

ug 4.31 3.56 3.06 2.68 2.39 2.16 1.98
Ag . 98657 | .97156 | .95311 | .94144 |.90837 |.88467 |.86193
asg .01596 | .02407 |.03115 |.03736 |.04213 | .04570 | .04800

Ug 5.90 4.58 3.81 3.29 2.89 2.59 2.35
Ag .99726 | .98975 | .97785 | .96275 | .94442 | .92498 |.90463
ag .00547 | .01218 |.01874 | .02475 |.03028 | .03447 |.03778

AN 6.17 4.38 4,04 3.50 3.09 2.78
X190 .99791 | .99201 | .98240 | .96980 |.95450 |.93796
aio .00418 |.00948 | .01489 | .02006 |.02479 |.02851
Uil 6.42 5.06 4.25 3.70 3.28
A1 .99837 | .99365 | .98574 | .97528 |.96237
ayi .00325 | .00754 | .01207 |.01643 |.02051
Ui 6.65 5.22 4.45 3.89
12 .99871 | .99486 | .98832 |.97956
ayo .00258 | .00611 | .00989 |.01358
TE) 6.86 5.47 4.64
A13 .99895 | .99579 |.99034
a3 .00210 | .00500 |.00817
Uiy 7.06 5.66
A1y .99914 |.99652
aiy .00172 |.00414
Uls 7.25
A5 .99929
ays .00142

Ko -97982 | .98316 |.98574 |.98739 |.98939 |.99071 |.99180

5. OPTIMAL SPACINGS FOR THE NORMAL DISTRIBUTION

In this case

-t%/2

£(t) e , £(-t) = £(t) ,

1
v2m
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u, 2 2
R D T4, £ = (2m 2792 =1,k

Case I. o0 is known.

Since

i Fia £t fi—fi_11
— = 1[2u,+ ot T on 1,
i+l i i il i+l i i i1

i=1l,...,k,

and due to the convexity of f£ as a function of X

i T AU o B
X -x > X Y , 1i=1,...,k,
i M

the optimal spacing must satisfy the following system of equations
£, £.-f.
i Ti-

£..-

+
20, + L, 5 Lo, i=1,.00x. (5.1)
™ M

It is easy to see that the system of equatuions (5.1) is self-dual, i.e., the dual
of the i-th equation is nothing but (k—i;l)—th equation of the system. Higuchi(1956)
has shown that the system of equations (5.1) has a unique solution giving the
maximum of Kl . Hence the optimal spacing must necessarily symmetric. Therefore

the number of equations of (5.1) reduces to k/2 or (k+1)/2 according as k is

even or odd. Solving those equations numerically we obtained the optimal spacings

up to k = 15. The result is presented in the following Table 5.1.

TABLE 5.1

Optimal spacing for estimating the mean y of normal population when ¢ is known.

1] 2 3 4 5 6 7
w1 —.612003 [-.981599| -1.244357 |-1.446850 |-1.610758 |~1.747928
b .270268 | .163149| .106684| .073969| .053616| .040238
a .500000 | .295321| .191840| .132852| .096389| .072472
Uy 7612003 | .000000| -.382284 | -.658911 | -.874362 |-1.049957
g .729732| .500000| .351125| .254976| .190961| .146869
a, .500000 | .409358| .308160| .232597| .178691| .139991
U3 T981599| .382284 | .000000| -.280288| -.500550
“lxg .836851| .648875| .500000| .389628| .308344
a3 .295321| .308160| .269103| .224920| .186259
Uy 1.244357 | .658911| .280288| .000000
Ay .893316| .745024| .610372| .500000
ay .191840 | .232597| .224920] .202555
us 1.446850| .874362| .500550
s .926031 | .809039| .691656
as .132852| .178691| .186259
ug : 1.601758 | 1.049957
g .946384 | .853131
ag .096389 | .139991
Uy 1.747928
Ag .959762
az .072472
Xy 7809826 | .882518| .920059 | .942022| .956000| .965452
Ky/2 .330079 | .532326| .657107 | .738358| .793954| .833588
52 .267306 | .469787| .604577 | .695550| .759019| .804789




60

TABLE 5.1 (continued)

8 9 10 11 12 13 14 15

u1 | -1.865528|-1.968218| -2.059193] ~-2.140732|~2.214552 ~2.281837| -2.343673| -2.400804
A1 .031054| .024521| .019738| .016148| .013396| .011249| .009547| .008180
ay .056053| .044362| .035788| .029342| .024392| .020522| .017449| .014974
U» | -1.197594|~1.324583]-1.435733|-1.534370(-1.622890| -1.703070{-1.776268|-1.843532
Ao .115538] .092655| .075539| .062469| .052306| .044277| .037844| .032626
a, .111701{ .090604| .074564| .062154| .052399] .044620| .038337| .033205
U3 —.681217| -.833841| -.965597|-1.081245[-1.184106| ~1.276582]|-1.360470]-1.437139
A3 .247867| .202185| .167123| .139794| .118186| .100857{ .086841| .075339
as .154613| .129197| .108831| .092438| .079148| .068284] .059329| .051886
vy T.221819| -.404740| -.559913| -.694313| -.812600| -.918039{-1.013009|-1.099286
Ay .412227| .342834| .287769| .243743| .208224| .179299| .155528| .135822
ay, .177633| .154329| .133851{ .116305| .101420/ .088826| .078157| .069092
s .221819| .000000| -.183729| -.340142| -.476012| -.595882| -.702950| -.799550
As .587773| .500000] .427113| .366875|‘ .317033| .275627| .241043| .211986€
ag .177633| .163015| .146966| .131448| .117231| .104540| .093354| .083554
e 681217 | .404740| .183729| .000000| -.156887| -.293514| -.414311| -.522404
Xg .752133| .657166| .572887| .500000| .437667| .384565| .339323| .300695
ag .154613| .154329| .146966| .136626{ .125410| .114360| .103965| .094424
U7 1.197594| .833841| .559913| .340142| .156887| .000000| -.136929| -.258222
Ay .884462 | .797815| .712231| .633125| .562333| .500000( .445544| .398118
a7 .11170L| .129197| .133851| .131448| .125410{ .117696| .109409| .101151
g 1.865528 | 1.324583| .965597| .694313| .476012| .293514| .136929| .000000
Ag .968946 | .907345| .832877| .756257| .682967| .615435| .554456| .500000
ag .056053 | .090604| .108831| .116305| .117231| .114360| .109409| .103427
g 1.968218| 1.435733| 1.081245| .812600| .595882| .414311| .258222
Xg .975497| .924461| .860206! .791776| .724373| .660677| .601882
aq .044362| .074564| .092438| .101420| .104540| .103965| .101151
10 2.059193| 1.534370| 1.184106| .918039| .702950]| ..522404
X0 .980262| .937531| .881814| .820701| .758957| .699305
10 .035788| .062154| .079148| .088826| .093354| .094424
U1 2.140733] 1.622890| 1.276582| 1.013009| .799550
211 .983852| .947694| .899125| .844472| .788014
a1 .0293421 .052399| .068284| .078157| .083554
1o 2.214522 1.703070] 1.360470| 1.099286
Ao .986604 | .955723| .913159| .864178
aio .024392| .044620| .059329| .069092
13 2.281837| 1.776268| 1.437139
X13 .988751| .962156| .924661
a13 .020522| .038337| .051886
U1y 2.343673 | 1.843532
A1y .990453 | .967374
ay .017449 | .033205
Uis 2.400804
A1s .991820
a1s .014974
Xy .972147| .977063| .980780| .983660| .985937| .987768| .989263 | .990499
K,/2] .862811| .884965| .902156| .915762| .926714| .935660| .943062 | .949255
A/2 .838779} .864667| .884817[ .900799| .913682| .924215| .932936| .940236

Case IT. p is known.

In this case,
. O L N o S A N B B | 2a2-24 Finiahi% B
U, i o, XA, YT =y X=X, '

i i+l i i i-1 i+l i i "i-1
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Let
finhnhiy %hiaY%ia » o FiaiaH% ) BRia%iag
Gi =" X Y - FUESY " Hi = 2ui—2+ by Y + TS '
i+l i i Ti-1 i+l i i i-1
" i=1,...,k,
then one has to consider 2" systems of equations such as
G =0,..., Gy =0, H =0/...,H =0, m= C,l,.-0k

1 m Tl k

where (il,i2,...,ik) is a permutation of (1,2,...,k)- Higuchi (1956) has shown
that the optimal spacing must be among the solutions of the system of equations

Hi = 0, 1=1,2,...,k . (5.2)
This system is also dual. Higuchi (1956) has shown that the system (5.2) has a solu-
tion — spacing — for any assigned number of negative v and that gives a local
maximum of K2 . Hence there are k+l local maxima of K2 . One has to pick up the
greatest maximum among them. It turns out that the optimal spacing is symmetric

when k is even, whereas the optimal spacings are asymmetric when k is odd. The

numerical results are presented in the following Table 5.2.

TABLE 5.2

Optimal spacing for estimating ¢ of normal population when u is known.

1 2 3 4 5 6 7

75 —1.482072 |-1.452028 |-1.995607 [-1.982115|-2.313048 |-2.305346
A .069161| .073247| .022988| .023733| .010360| .010574
by ~.337365| -.311281| -.115343| -.113609] -.054920| -.054812
o 1.482072| 1.185513 |-1.140138]-1.118931~1.600190 |-1.589698
Ag .930839] .882093| .127114| .131585| .054778} .055951
bo .337365| .253632| -.236657| -.231751| -.124340| -.123875
U3 : 3.024851 | 1.140138| .983717| -.955753| -.940040
X3 .978559| .872886| .837373| .169599} .173598
b3 | .122146| .236657| .185739| -.182056| -.180571
uy 1.995607 | 1.619039| .955753| .854805
Ay .977012| .947281| .830401| .803670
by, .115343 | .125884 | .182056 | .148468
s 2.326934 | 1.600190 | 1.384815
Xs .990016 | .945222| .916946
bs .055427 | .124340| -117101
g 2.313048 | 1.910546
X6 .989640 | .917968
be .054920 | .072965
Uy 2.548769
X7 .994595
b .030797
Ko/2 652245 | .735800| .824396 | .858772 | .894290 | .911681
Xy .511738 | .612725| .712490 | .761475| .809198 | .836651
5/ .333778 | .446339| .587374 | .653239 | .723657 | .762591
K3/K> 1000000 | .064496| .000000 | .012691 | .000000 | .010074

- k

(ox = Zi=lbix(ni)— (K3/Kolu )



TABLE 5.2 (continued)

8 9 10 11 12 13 14 15
uy -2.540770(-2.535802 |-2.717094 |-2.713636 [~2.860243 |-2.857701 [-2.980280 |-2.978340
A .005530| .005610 | .003293 .003327 .002117 .002134 | .001440]| .001449
12 -.030817! -.030867 | -.019144 | -.019194 | -.012756 | -.012792 | -.008960 | -.008974
Up -1.900308 (-1.893940 [2.122213 [-2.117929 |~2.297395 [-2.294318 |-2.441524 |-2.439212
Xo .028696| .029116 | .016910 .017091 .010798 .010886 | .007313| .007360
Do -.072916| -.072976 | -.046484 | -.046586 | -.031516 | ~.031596 | -.022393 | -.022449
U3 -1.371482(-1.363168 [1.652317 {-1.467036 |-1.864608 [-1.860935 |-2.,034780 |-2.032078
A3 .085112| .086415 .049235 .049775 | .031118 .031377 .020936 | .021073
bj -.116768| -.116704 | -.077448 | -.077568 | -.053733 | -.053849 | -.038767 | -.038855
Uy ~.835453| -.823296 [1.215945 |-1.209191 (~1.479335 [-1.474894 |-1.681780 |-1.678611
Ay .201731( .205170 | .112003 .113295( .069525 .070120 | .046306 | .046614
b -.147218| -.146606 | -.106263 | —.106308 | -.076514 | -.076639 | -.056400 | -.056512
Us .835453 .763439 | -.749071 | -.739341 [-1.101083 [-1.095476 |-1.349216 |-1.345428
As .798269| .777399 | .226907 -229850 | .135430| .136654 | .088634 | .089244
bs -147218| ..123599 | -.123029 | -.122708 | -.096081 | =.096146 | -.073381 | -.073492
Ug 1.371482] 1.225978 .749071.f .694439 | -.683252 | -.675257 [-1.011761 |-1.007019
Xe .914888 .889897 .773093 .756296 | .247224 .249756 | .155826 | .156963
be .116768 .106287 .123029 -105609 | ~.105284 | ~.105080 | -.086998 | -.087058
uy 1.900308| 1.660178 |1.215945 | 1.108968 | .683252 .640027 | -.631016 | -.624304
A7 .971304 .951561 | .887997 .866278 | .752776 | .738923 .264015 | .266214
b7 .027916| .077337 .106263 .096031 | .105284 .091957 | -.091741 | -.091592
ug 2.540770( 2.128597 | 1.652317 | 1.485589 | 1.101083 | 1.018158 | .631016 | .595750
Ag .994470| .983356 | .950765 .931306 | .864570| .845698 .735985 | .724329
bg .030817 .046374 .077448 -076371 | .096081 .086939 | .091741 | .081246
Uqg 2.722254 [2.122213 | 1.869782 | 1.479335 | 1.354334 | 1.011761 | .945072
Xo .996758 | .983090 .969243 | .930475 .912185 .844174 | .827689
bg .019085 | .046484 .053593 | .076514 .073249 | .086998 | .079047
Ujg 2.717094 | 2.301732 | 1.864608 | 1.686064 | 1.349216 | 1.250873
X109 .996707 .989325 | .968882 .954108 | .911366 | .894510
big .019144 -031419 | .053733 .056265 | .073381 | .069350
Uyl 2.863825 | 2.297395 | 2.038437 | 1.681780 | 1.546036
11 .997907 .989202 .979247 | .953694 | .938952
b11 .012712 .031516 .038658 | .056400 | .056498
Uyo 2.860243 | 2.444652 | 2.034781 | 1.849161
X12 .997883 .992750 | .979064 | .967783
byo .012756 | .022324 .038767 | .042531
Uls 2.982907 | 2.441524 | 2.179081
A13 .998572 .992687 | .985337
D13 .008920 .022393 .028814
Uiy 2.980280 | 2.565922
Ay .998560 | .994855
by .008550 | .016459
Uls 3.085354
A1s .998983
bis . 006514
Ko/2 .929439| .939435 | .949577 .955844 | .962178 .966365 | .970585 | .973518
X .863344 .880323 | .896848 .908113 | .919097 .926975 | .934670 | .940408
A2 .802426( .826953 ! .851626 -867994 | .884335 | .895787 | .907176 | .915500
K3/K» .000000} .005529 , .000000 - 003369 | .000000 | ,002208 ; .000000 | .001526

Case III. Joint estimation of u and ¢ .

There is a conjecture that the optimal spacing in this case must be symmetric.

However, we have been able to show that this conjecture is correct only for k = 2

(Ogawa (1976a,b)).

For k = 2,

it turns out that
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/A1 Aama V1A 222
- 2 £ 55 -+, (ay-u) £y
Ak, ~ ¥y = | = T X Oo-ApD (I-Ag) -3
A1 Ag-Ap YImag 1842741 2
flul f2u2-flul -f2u2
AT ag-a V1-2o
It follows that
dlogh _ =2 B B sem 2 0 T2 T2 5.4)
9ul u,-uy 1 A A My ! Bu2 u,-uy 2 Ax-A1 1-XAp
Hence theoptimal spacing must satisfy the equation
f f_-f -f
1 2 71 2
Xl + P + I:K;'+ 2(ul+u2) = 0. (5.5)

+
17 %2

Although we have not yet been able to show theoretically that the optimal spacings

One canshow that this equation has a unigue solution such that u = 0.

are symmetric, we present numerical results by computer search in the following Table

5.3. We hope that those results are very near the optimal.

TABLE 5.3

Optimal spacing for estimating y and ¢ jointly in case of normal population.

1 2 3 4 5 6 7

11 -1.110591(-1.383403] -1.696102| -1.881729| -2.060013| -2.194565
A1 .133372| .083271| .044933| .029936] .019699| .014065
2 .500000| .224449| .108404| .067572| .043173| .030123
d -.450211| -.361428 -.201303| -.140604| -.095707| -.070629
o 1.110591| .000000| -.689421| -.996941|-1.264729|~1.455219
Ay .866628| .500000{ .245279 .159396{ .102984| .072804
c, .500000| .551102{ .391596| .234282| .142000| .096637
d .450211| .000000| -.230004| =-.236144F ~.186276| -.146903
s 1.383403| .689421| .000000| -.491807| -.786273
X3 .916729| .754721| .500000| .311428{ .215854
c3 0224449  .391596| .396292 314827 .217038
ds .361428| .230004| .000000| -.136750| -.166812
uy 1.696102| .996941] .491806| .000000
Ay .955067| .840604| .688572| .500000
ey .108404| .234282| .314827| .312405
dy .201303| .236144| .136750] .000000
Us 1.881729| 1.264729| .786273
Xs .970064| .897016| .784146
es .067572| .142000| 217038
ds .140604| .186276] .166812
Ug 2.060013| 1.455219
Ag .980301 .927196
cg .043173|  .096637
dg .095707] .146903
uy 2.195465
A7 .985935
ey .030123
d- .070629
d/2 .406503| .552681| ,682616] .755652| .810322| .847387
Xy .695217| .853665| .881605{ .923516| .938378| .953481
Ky/2 .584714| .647421| .774288| .818242| .863535| .888729
TABLE 5.3 (continued)



64

8 9 10 11 12 13 14
U ~2.318807|-2.422614|-2.516547|~2.599516(-2.675132( -2.743687|-2.806783
A .010203 .007705 .005926 .004668 .003735 .003038 .002502
3] .021555 .016102 .012291 .009624 .007665 .006211 .005100
dl -.052750| -.040906| -.032229| -.025951| -.021188| -.017554| -.014708
Uy ~1.621826|-1.757898]-1.878343|-1.982883|-2.076834| -2.161028}-2,337765
Ao .052420 .050273 .038076 .029643 .023503 .018975 .015535
co .068011 .050273 .038076 .029643 .023503 .018975 .015535
d» -.114630] -.091540| -.073747| —.060406| -.050006| —-.041902] -,035445
us ~1.022305]-1.204642|-1.360159|-1.,491503}-1.607191| -1.709222|-1.801028
A3 .153308 .114171 .086893 .067915 .054006 .043705 .035849
<X .148655 .107737 .080469 .062042 .048838 .039213 .031966
ds —.153529| -.132444|( -,111862| -.094543] -.080076| -.068272[ -,058550
Uy —.382800| -.649718| -.862079]-1.033132]-1.178842|-1.304219(-1.414928
Ay .350934 .257937 .194322 150771 .119231 .096079 .078545
ey .761779 .196759 .145461 .110621 .086107 .068551 .055514
dy, -.090940| -.123801} ~-.125005| -.115205{ -.102730f ~-.090599| -,079599
Usg .382800 .000000} -.314269| -.553385| -.746620| -.906411{-1.043417
Asg .649066 .500000 .376658 .290000 .227647 .182359 .148378
Cg .261779 .258259 .223703 .178023 .138722 .109541 .087960
d5 . 090940 .000000| -.065103| -.095281] -.102565| -.099391| -.092318
Ug 1.022350 .649718 .314269 .000000| -.267072| -.481728| -,658847
Ag .846692 .742063 .623342 .500000 .394707 .315000 .254988
Cg .148655 .196759 .223703 .220096 .195164 .161661 .130930
dG .153529 .123801 .065103 .000000| -.048999| -.075443| -.085160
U7 1.621826| 1.204642 .862079 .553385 .267072 .000000] =-,232470
Ay .947580 .885829 .805678 .710000 .605293 .500000 .408086
cy . 068011 .107737 .145461 .178023 .195164 .191698 172994
d7 .114630 .132444 .125005 .095281 . 048999 .000000| -.038237
ug 2.318807| 1.757898| 1.360139] 1.033132 .746620 .481728 .232470
Ag . 989797 .960618 .913107 .849229 .772353 .685000 .591914
cg . 021555 .050273 .080469 .110621 .138722 .161661 .172994
dg . 052750 .091540 .111862 .115205 .102565 .075443 .038237
Ug 2.422614| 1,878343( 1.491503| 1.178842 .906411 .658874
Ag . 992295 .969833 .932085 .880769 .817641 .745012
Cq .016102 .038076 .062042 .086107 .109541 .130930
dq .040906 .073747 .094543 .102730 .099391 .085160
Ui g 2.516547| 1.982383| 1.607191} 1.304219| 1.043417
Ao .994074 .976310] .945994 .903921 .851622
3T .012291 .029643: .048838 .068551 .087960
le .032229 .060406 .080076 .090599 .092318
Ui 2.599516| 2.076834| 1.709222| 1:414928
A1 .995332 .981029 .956295 .921455
c11 .009624 .023503 .039213 .055514
dyy .025951 .050006 .068272 .079599
Uy 2 2.675132| 2.161029| 1.801028
A2 .996265 .984653 .964151
Cyo .007665 .018975 .031966
dl2 .021188 .041902 .058550
U113 2.743687| 2.237765
A3 .996962 .987382
C13 .006211 .015535
d) 3 .017554 .035445
U1y 2.806783
Ay .997498
C1y .005100
dl% .014708
A/2 .875282 .895995 .912097 .924703 .934818 .943021 . 949780
Ky .961709 .968858 .973707 .977728 .980772 .983288 .985309
KZ/Z .910133 .924794 .936727 .945767 .953145 .959048 .963941
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For the applications of this theory, the reference is made to Eisenberger and

Bosner (1965).
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ASYMPTOTICS FOR THE MULTISAMPLE, MULTIVARIATE CRAMER - VON MISES STATISTIC WITH
SOME POSSIBLE APPLICATIONS

D.S.COTTERTLL! and M.CSORGO

1 Dept. of National Defence, Ottawa (Canada)
2 Carleton University, Ottawa (Canada)

ABSTRACT

Cotterill,D.S. and CsorgS,M., Asymptotics for the multisample, multivariate Cramer-
von Mises statistic with some possible applications. Proc. l-st Intern. Conf.
on Stat. Climat., held in Tokyo, Nov.29 - Dec. 1, 1979

Let Y ,...,Y (n =1,2,...) be independent rv uniformly distributed over the
d-dimensional un1t cube 14 (4 > 1) and let {ap(y), v € 14, n=1,2,...} be the )
empirical process based on this se%uence of random samples. Let Vj d( ) be the dist-
ribution function of the rv [ 4d %, (y)dy, and let Vg(- ) be that of fId B? (y)dy .
where {B(y); vy € 18} is a Brownlan bridge, i.e., a separable Gaussian process
with EB(y) = 0 and EB(x)B(y) = T, % (x; o v;) - (03 x) My, Put 8.4 =
sup{|vy,a(x)Va(x)|; 0 < x <=},

In Cotterill and Csorgb (1980), we proved the rates of convergence for the latter
distance; for example, Ap,2 = O(n~ l/zlogzn) for 4 = 2. Again in the quoted paper,
we also calculated the "usual" levels of significance of the distribution function
Va(+) for & = 2 to 50. Previously these were only known for d = 1 ( Anderson-Darling
(1952)), d = 2 (Durbin(1970)) and 4 = 3 (Krivyakova, Martynov and Tyurin (1977)).

Prrliminaries and earlier results are summarized in Section 1. Section 2 is devoted
0 some asymptotics. for two-sample Cramer-von Mises functionals in terms of empirical
measures as measures of integration. Section 3 is on some possible applications.

1. INTRODUCTION

Let Yl’ . Yn be independent rv uniformly distributed over the d-dimensional
. d - . . ; .
unit cube I (@ > 1), and let En(y) be the empirical distribution function of
. d . -1 .
Yl,...,Yn , i.e., for y = (yl,...,yd) eI, En(y) is n times the number of
Yi = (le,...,de), j =1,...,n, whose components are less than or equal to the

corresponding components of y, conveniently written as

_ln d

E (y) =E (Y,ree.s¥,) =n I ) ’ (1.1)
n n -1 d j_l i= 1 IO,Y l

where, for real numbers a,u € [0,1],

1 if u<a
Tro,a1 @ {0 if usa - (1.2)

Consider the uniform empirical process
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oy = o2 E @AW, ye® ax1, (1.3)

where A(y) = Hiil v -

It will be convenient for us to also think about an(') in terms of continuous
distribution functions F on Rd . Let F Dbe the class of continuous distribution
functions on d-dimensional Euclidean space Rd (@ > 1), and let Fo be  the subclass
consisting of every member of F which is a product of its associated l-dimensional

marginal distribution functions. Let Fn(x) be the empirical distribution function

; _ d . -1 .
of Xl,...,Xn ,i.e., for x = (xl,...,xd) e R ., Fn(x) is n times the number of
Xj = (le""'xjd)' j=1,...,n, whose components are less than or equal to the
corresponding components of x, namely
-1 n d
Fn(x) = Fn(xl,...,xd) = n i) I I(_w,x‘](in) ’ (1.4)
j=1 i= i

where, for all real a,u

_ 1 if u<a
Twar® = 5 5F usa . (1.5)
Consider the empirical process
1/2 a
B, (x) = n / [F_(x)-F(x)], x = (x;s...,%;) € R , d > 1. (1.6)

Let vy, = Fi(xi) be the ith marginal distribution function of F ¢ F and let

F;l(') be its inverse. Now if F € Fo , then

d

_ 172
Bn(X) = n [Fn(x)-_H Fi(xi)]
i=1
172 ~ - (L.7
= 2P Fy)) e Rty )] - A)] )
172 a
= n"TE (W-AY)] =e (y) s ¥y = ¥y €T, A2 1,
i.e., if Fe Fo , then B8 is distribution-free.
As to an(-) , the following results are known.
Theorem A. Let Xl,...,Xn (n =1,2,...) be independent random d-vectors with

a common distribution function F € Fo and let an(-) be as in (1.7). Then one

can construct a probability space (9,A,P) with {an(y);y € Id(d > 1)}, a sequence
of Brownian bridges {Bn(y); y € ¢ (d > 1)} and a Kiefer process {K(y,t); y ¢ 4
(@ > 1), t > 0} on it so that for any u > 0 there exists a C > O such that (cf.

Csorgg and Révész (1975a)) for each n

/2 M@y g

P { supla_(y)-B_ ()| > Cllog n)° . 1.8

yeId

and whence
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sup Ja (v)-B_(v)|2%" ol(lon m/2 o7/ (@ g5 4, (1.9)
yeId

sup sup lkl/zak(y)—K(y,k)| a.s. O[logzn- n(d+l)/(2(d+2))] ,da> 1. (1.10)
1<k<n ysId

Also if d = 1, then (cf. Lomlds, Major and Tusnady (1975)) for all n and x

1/ Ax

P{ sup lan(y)—Bn(y)I >n” 2(01og n+ x)} < Le” , (1.11)

O<y<1
. 14
where C, L, A are positive absolute constants (e.g, (cf. Tusnady (1977a)) they
can be chosen as C = 100, L = 10, A = 1/50), and

P{ sup sup Ikl/zak(y)—l((y,k)l > (Clog n + x)log n} < e ¥, (1.12)

1<k<n O<y<l

where again C, L, A are positive absolute constants, and where

sup fa_(y)-B_ (v)] 325 6(n™2%10g n) , (1.13)
0<y<1 ‘ .
sup sup | kl/zak(y)—K(y,k)l 3:5: 5(log®n) . (1.14)

1<k<n 0<y<l
v
Further, if d = 2, then (cf. Tusnady (1977)) for all n and x

1/ AX

p{ sup2 lan(y)—Bn(y)| >n 2( Clog n + x) log n} < Le , (1.15)

yel

where C, L, A are positive absolute constants, and whence

a.s. -1/
sup2 lan(y)—Bn(y)l = o(n

yel

2logzn). (1.16)

The respective a.s. rates of (1.9), (1.10), (1.14) and (1.16) are best available,
while that of (1.13) is best possible. For further illuminating comments concerning
rates in higher dimensions we refer to Tusnédy(l977b). v

The Brownian bridges and the Kiefer process of the above theorem are Gaussian

processes, defined in terms of a multi-parameter Wiener process as follows:

D1. Wiener process: A separable Gaussian process

Wix) = (Wlxp,.enixg)s 0<%, <= (= 1,...,4)) .
with EW(x) = 0 and covariance function Ew(xl)w(x2) = L(xl A %,) , where x, =
(ryyreeryg)s 2 (rgyreseoXoqds ¥pa Xy = (R p XppreeiXyg f %) and

Mrp A ) = T (K axyy) -

D2. Brownian bridge:
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B(x) = {B(xl,...,xd);o_ixiil (1i=1,...,d4)} .

= {WER)-A(OW(L,...,1); x € 9, with A = T x;

i=1
Whence EB(x) = 0 and EB(x,)B(x,) = AxyAxy) = AxDA(x,)
D3. Kiefer process :
a

K(x,£) = {K(x,£); x eI, t>01}

= {wlx,t)-A(x)W(l,...,1,t); x € %, ¢t > 0} .
whence EK(x,t) = 0 and EK(xl,tl)K(xz,tz) = (tlAtZ){X(xlez)-X(xl)X(xz)} .

Given F € Fo , we are interested in the asymptotic distribution of the multi-

. ’ - . N
variate Cramer-von Mises statistic

d d
2 2 _ 2
LA J g0 mar ) = [ oan(y) Tay, . ax1, (1.17)
R i=1 I i=1
where Bn(x) , an(x), ¥y = Fi(xi) are as in (1.7). Naturally, say by (1.9) , we
have for d > 1 that
e () Zrnee) (1.18)

for every continuous functional h on the space of real valued functions on Id

endowed with the supremum topology, and whence also that

W2 —D—> w; =de2(y)dy 2 f
I

i}

2 2
Bn(y)dy wd(n) ,d > 1, ‘ (1.19)

n,d Id

with dy standing for Hiildyi from now on. A direct way of seeing (1.19) is via

O[rld(n) (log log n)l/zl if 4> 3,
|W§ a Wg(n)| BaS- olp, (n) (log log M2 i a=2, (1.20)
O[pl(n) (log log n) 1/2] if 4d=1,
or via
) L o Y2r_ (n) (log 1og m¥?] if a > 2,
- 2 a.s. 24 -
‘Wn qa - ® f a K (y.n)dy! = { 1/2 E
! I Olp,(n) (log log n) /1 if 4 = 1, (1.21)
where
/(@) Qog ;7 if i =1,
r. (n) { (1.22)
id L (8+1)/(2(a+2)) Log?n if i=2,

and
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n_l/zlog n if i 1

) - - .2
0;m { n 1/21092n if i = 2. (1.23)

The respective statements of (1.20) follow from (1.9), (1.16) and (1.13) respect-
ively and those of (1.21) by (1.10) and (1.14) respectively when they are also com-
bined with appropriate laws of iterated logarithm. From (1.21), in turn, not only

. . 2
can we deduce that (1.19) is true, but also a law of iterated logarithm for Wn a

from that of fIdKZ(y,n)dy . For a proof of (1.20) and (1.21) we refer to that of
Corollary 1 in Csorgg (1979) .

In addition to (1.19), from Theorem A we can also prove rates of convergence
results for this convergence in distribution. Let Vn,d(x) be the distribution func-

tion of Wi of (1.17) and let Vd(x) be that of W2 of (1.19). Then (1.19) reads
’

d d

. 2 . _
lim p{wn'd < x} = lim vn,d(X) =V, d21 (1.24)
e n¥o

Put An,d = o5uR., Vn,d(X) - Vd(x)l . Then we have

Theorem B (Gotze (1979)). A = otn %) for any € > O.

n,l
This theorem is the best available such result for An so far. Earlier S.Cs8rgd

-1/2 1

(1976) showed that A = 0(n log n) and, on the basis of his complete asymp-

n,l

totic expansion for the Laplace transform of wi 1 he conjectured that An 1 is
r I

of order 1/n . This conjecture was further studied by S.Csérgs and L.Stachd (1979) .
As to higher dimensions d > 2, nothing is known about the exact distribution

,d a (cf. (1.24))

is known (cf. Dugue (1969), Durbin (1970)), and that (cf. Ahderson and Darling

function Vn (cf.(1.24)), and only the characteristic function of V

(1952), Rosenblatt (1952b)) W2 may be written in the form

a
2 S NP
Woo= I ouox , d21, (1.25)
k=1
where Xy are independent standard normal random variables and W, are the eigen-
values of the integral equation
de E(B(x))B(x,) }(x))dx, = uf(x) (1.26)

with eigen functions £ and kernel EB(xl)B(xz) (cf. D2.). Whence, in order to tabu-

late Vd (d > 2) , one may try working with a numerical inversion of the characteris-

tic function of Vd

for (1.25). Unfortunately both ways turn out to be quite difficult to follow

, or one may try to calculate a number of necessary eigenvalues

directly. Durbin (1970) suceeded in solving the latter problem for d = 2, and
Krivyakova, Martynov and Tyurin (1977) for d = 3.

Using the characteristic function of Dugue (1969), we obtain in Collerll and
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Csﬁrgg (1980) a recursive equation in the cumulants of wg , and then use the
Cornish-Fisher asymptotic expension to calculate its critical values for 4 = 2,3,
...,50 at various levels of rejection probabilities. These are within 3 % of Durbin's
value for d = 2 and those of Krivyakova, Martynov and Tyurin for & = 3. As far

as we know there exist no other tables for d > 4.

Since nothing is known about the exact distribution function Vn for 4 > 2,

4
I
it is desirable to have a Theorem B type result also for An a when d > 2. As to
’
the latter we have
Theorem C (Cotterill and Csérgoé (1980)).
-1/2 2 X _
A - { O(n log ' n) if d = 2, (1.27)

n,d -1/(2(d+l))

on (log ;%) ifa> 3.

As far as we know, the rates of (1.27) are the only available ones for An a
’
(@ > 2) and these combined with Theorem B tell the whole story as presently known

for 4 > 1.

2. ON SOME MULTIVARIATE TWO-SAMPLE ASYMPTOTICS.

Let X. = (X ..,de) (3 =1,...,n), Y. = (Y ) (3 =1,...,m) be two

5 7 B 37 Yyprer¥a
independent random samples with respective distribution functions F and G in F.
Let Fn(x) and Gm(x) be the empirical distribution functions of Xj and Yj' res—
pectively (cf.(1.4)). Given F =G € Fo , let Sn’m(x) = (nFn(x)+me(x))/(n+m) ’
i.e., the empirical distribution function of the two independent random samples

combined. One is frequently interested in the asymptotic distribution of multi-sample

statistic like, e.g., that of

2 nm
nm,d n+m Rd

2 .
(Fn(x)-Gm(x)) dSn+m(x) , d > 1. (2.1)

Given F = G ¢ Fo , let

B (0 = [/ (mim)1Y 2 (F (0 (x))
1/2 _1/2 d 1/2 1/2 d
= [m/(n+m)] n (F (x)- T F.(x.)) - [n/(n+m)] m (G_(x)- T F.(x.))
n . it m - i
i=1 i=1
= [m/(n+m)]l/ (x) - [n/(n+m)]l/ (X), X € Rd, (@a=>1, (2.2)
where eél) and Séz) are two independent empirical processes defined as Bn of
(1.7), and

1/2 (l) /2, (2)

v ., yeIt,@>1, (2.3

B (V) = [m/ (n+m) ] (y) - [n/(n+m)]
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where BN ana g(2
n n

B(y), ¥ € ¢ (d > 1), a Brownian bridge for each n and m,
(1)y

are two independent sequences of Brownian bridges.

[A=F=]

Since Bnm(y)
{B_} of (2.3) is alsc a sequence of Brownian bridges. Now the sequence {B
W 3 3 1a
n n

resp. {B£2)} can be so constructed that it approximtes B8 resp.

Theorem A. Hence, given F = G ¢ Fo , a version of Theorem A can be stated immedi-
i i . = F,(x, i 1.
ately also in terms of Bnm and Bnm' For example with v Fl(xl) as in (1.7),

for

172 (1) l/2a(2)
n m

B (X) = [m/ (n+m) ] (v) - [n/(n+m)]

y) = o (v), (2.4)

d
Y= (¥yr-ea0¥g) €T @2>1),

where uél) and aiz) are defined as an of (1.7), we have the following version

of (1.8):

There exists a sequence of Brownian bridges {Bnm} so that for any u > O there

is a C > 0 such that for each n and m

M, U
- < v 2.5
P{ sup dlunm(y) B> e myr @} < @ v, (2.5)
y el
where rld(-) is as in (1.22). Whence
a.s.
- = v
sup di oY) B ()| or, MV m) , ax1, (2.6)
yel
and so h(unm(-)) ——2—¢ h(B(-)) for every continuous funetional h on the space
of real valued functions on I endowed with the supremum topology, which, in turn,
implies
d
2 2 D 2
[ et (yyay = [ B (x) T aF, (x,) > We o, d > 1, (2.7)
Id nm Rd nm i=1 i7i a
where for wg we refer to (1.19).
Hence for W2 = f Bz (x)ds (x) of (2.1) we should also have the same
nm,d rE Fnm n+m ) should a
convergence in distribution statement, i.e., that
2 D 2
>
Yom, d > Wy, d>1. (2.8)

Indeed, it follows from an appropriate analogue in the present case of Lemma
in Kiefer (1959) that the statement of (2.8) is true. We are going to present this
appropriate analogue of Kiefer's Lemma here via extending the proof of Corollary
5.6.4 of the forthcoming monograph of Cs&rgg and Révész (1980) to the present

multivariate situation. We have

PROPOSITION 1. Given F =G € Fo , (2.6) is true, i.e.,
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2
1im  P{ j’Rd B (xds

(x) <ul = P{dez(y)dyf_u} ,u>0(d>1). (2.9
n,mre I

The proof of Proposition 1 is based on either of the next two preliminary corolla-
ries, whichmight be of some interest on their own.

Let ¥y = Fi(xi) be the ith marginal distribution function of F and let F;l(-)
be its inverse. Define (cf. (2.3) for Bm(y))

2 2
wimm) = [ B (yas (y) ,d>1, (2.10)

I
here S_. (y) = [nF_(F l(y.) Fl(y)) e (F- yo) F 1y )1/ (ntm)
where S (v} = (OF (F 70y ) re. o Pyt (¥ ) 4mG (F) T (yg)he -0 By (vy .

In terms of our present terminology, W

m, d of (2.1) (cf.also (2.4)) can be written

as

2 2
W - ol (y)as ¥y 4> 1 2.11
nm,d f d nm( ) n+m( ) »d2l, ( )

-~

and we have the following corollary to Theorem A a la (1.20).

COROLLARY 1. Given F =G ¢ Fo

- OE(rld(n)Vrld(m)) (log log(nvm))l/2] if 4 > 3,
W - Wnm | 25 0l (o, (M)Vp, (m) (log log(nvm) /2] ifd =2, (2.12)
mm,d ~ "a 2 2 1
0[(Dl(n)Vpl(m)) (log log(nVm)) ] if d = 1.

PROOF. We give details for the case of d > 3 . The proof in the latter two

cases goes similarly. We have

2 2
W o witam | < fIdlanm(y) B W - lo 4B (9)[as ()

< (sup_ o (»-B_ (V) ( sup |B_(v)-a_ (v) |+ 2 sup_|o__(v)])
yeId nm nm yerd nm nm yeld nm

P20y gmIVEy @) Olry g (V4 (m)) + O((log Log (avm)) /2

A.Se.

/2

it

O((x 4 (MVE  (m)) (Log log(nvm)™/?)

where the line before the last one follows from applying (2.6)twice and by the law

of iterated logarithm for sup {‘anm(y)‘:y ¢ 13} . The latter, in turn, is done
(1) (2)
n

and o (cf.(2.4)) separately

via applying the law of iterated logarithm to a '

via (1.10) and Theorem 2 in Csérgg and Chan (1976).

The other preliminary corollary to Proposition 1 we have in mind is

COROLLARY 2. Given F= G € Fo , and Wé(n,m) and Wim a as in (2.10) and (2.11)
’

respectively, then
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O(rld(n) rld(m)) ifda> 2,
< u} - P{wg(n,m) <u}] = 0(p,(n) py(m)) if d =2, (2.13)
O(py(n) py(m) if d = 1.

sup |P{W
0<u<e»

nm,d

[}

PROOF. For d > 2 we use the inequality of (2.5) (an analogue of (1.8)), for
d = 2 we use a similar analogue of (1.15) and for d = 1 that of (1.11) and, -mutatis

mutandis, repeat the proof of Theorem 1.

PROOF OF PROPOSITION 1. By (2.12)

2
nm,d

a.S.

lim |w >0 ,d>1.

2
- Wd(n,m)l
n,m >
Hence, or by (2.13), it suffices to show that for any given € > 0 and 0 <8 <1

there exists an n, = no(E,G) such that

2
| s B (vias__ (v) - S

2
>
1 Bnm(y)dy l>€) < 8, whenever n 2 n,. (2.14)

Id

Let Rl""'R a (@ > 1) be d-dimensional rectangles of equal sides of length 1/4,
which are obtained by subdividing each side of I9 into £ equal parts. Then

The left hand side of inequality (2.14)

ld
el L |s ]& c ats, -y | > el
gd 24
2
<p{ I |f B (as, |+ |/ & (may|>e)
k=1 ® M k=1 e

IA

p{ 29 max sup [B (y)l S dS_ . (y)) > e/2} + ped max sup [B (y)l£%> e/2}

1<k<fd yeR, R mm 1<k<l YeR,
j_P{ﬂ ( max _ sup ]B () ) ( max (R ))>e/24P{ max sup |B 2 (y) |>e/2}
1<k<l VeR, am 1§k§£d n "k 1<k<Ld YER, nm
< P{Z ( max sup |B (y)|)( max ] (R, ) - l-|+ J:') > g/2})
- 1<k<£d YeR, 1<k<td ™ " 23 g4
+ P{ max _ sup IB (y)|>e/2}
l<k <4 ngk
< P{ max 4 sup |Bnm(y)l > g/4} + p{ max sup IBim(y)I > Ves2}
1<k<t YeR yeRk
+P{€d max [s  (R)- = ] > VEVZ} + P{ max _ sup |B2 (y)l > g/2}
1f¥§gd n+m Rk ld 1<k< 24 YERk nm
=P1+P2+P3+P4 . (2.15)
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Given € > O and O < 6 < 1, we can choose now £ so big that P, < 8/4, P, < 8/4
and P4 < &§/4, siﬁce for each n and m
2 a.s.
max . sup |Bim(y)] 2 ax sup |B“(v)]| %27 o((log £ /2% ,
1<k<l YeR 1<k<l yenk
d . .
by the continuity modulus of B(y), y € I , or by simply saying that the latter Gauss-
s . d .
ian process is uniformly continuous over I . For the already given £ ,e > 0 and
0 < § < 1, next we choose n and m so big that P3 < 8§/4 by the Glivenko-Cantelli
theorem. This also completes the proof of Proposition 1.

REMARK 2.1. Given F ¢ Fo , Bn as in (1.7), the statement of Proposition 1 can,

of course, be also stated for the latter as follows

lim B{ f _82(x)dF (x) < u} = B{ f
a ' n n -

8% (y)dy <u} , u>04(d>1). (2.16)
n > o« R I

d
: L 2 . \
We note also that the calculation of the statistic fRd Sn(x)an(x) is easier than

that of Wi of (1.17) (cf. Durbin (1970)) and, in the light of (2.16), the former

d
'
can be used instead of the latter in practical situations. The proof of (2.16) is,

mutatis mutandis, identical to that of (2.9).

3. SOME APPLICATIONS OF THE Wi a STATISTIC.
’

The results of sections 1-2 are valid in terms of the statistical goodness—of-

fit hypothesis
H : FeF_ , (3.1)
(o] (o] .

and are directly applicable to test such a one, provided the marginal distribution

functions Fi of F = HiilFi under Ho are completely specified. This, of course,
also limits the direct use of Wn,d to such completely defined goodness-of-fit
situations only. On the other hand, if X = (Xl,...,xd) is a random vector with
distribution function PF(x) = F(xl,...,xd) e F, then making the transformation T

y = (yl,...,yd) = Txl= T(xl,...,xd), where T 1is given by

Y. = P{Xi f_inXl = Kyreee X =X

i 1 5% = Fi(xilxi—l""'xl) ,i=1,...,4,

the random vector Y = TX is uniformly distributed over Id, i.e., ¥ ,...,Y, are

1 d

uniformly and identically distributed on [0,1] (cf. Rosenblatt (1952a)): Thus T
. X X . . . s . d

transforms the hypothetical distribution F to the uniform distribution on I~ ,

provided y = (yl,...,yd) is completely specified, for then Wi is computable.

d
’
The transformation T with further conditions on F ¢ F was also used by Csﬁrgg
and Révész (1975b) in order to prove a Theorem A-type strong invariance principle
for the original (i.e., F is not necessarily in Fo ) empirical process Bn(x) of

(1.6) . There is, of course, nothing wrong with working with the transformation
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T in order to prove a theorem for the original empirical process B (x)} of (1.6)

of the random sample Xj = (le""’xjd) , J=1,2,...,n. But if we are to apply
T to Xj to begin with, in order to get a uniformly distributed random sample
Yj = TXj (j =1,...,n), then there are d! transformations T of the type described

above corresponding to the d! ways in which one can number the coordinates Xprenss
Xq - Thus if T is to be applied to the original random sample Xj (j=1,...,n),
then, from a statistical point of view, an element of arbitrariness is introduced.
Anyhow, it is hoped that, just like in the case of statistics based on the univariate
sample distribution function, our results and tables will have a wider range of
applicability than the test of multivariate goodness-of-fit (for more remarks in
this direction we refer to Durbin (1970, Introduction)) even though our discussion
was conducted in goodness~of-fit terms only.

Indeed, it is more appropriate to test the null hypothesis Ho : F e Fo against

1
rical process (cf. Hoeffding (1948) and Blum, Kiefer and Rosenblatt (1961))

the alternative H, : F ¢ F- Fo in terms of the Hoeffding, Blum, Rosenblatt empi-

Tn(x) = Tn(xl,...,xd) = nl/2

| =

[P0 = TF (x) 1, a22, (3.2)

i=1

where Fni(xi) is the marginal empirical distribution function of the ith component

of Xj’ than in terms of Bn(x) of (1.7), since an of (3.2) does not depend on

the particular form of F. Given F € Fo , strong approximations of the process

Tn are discussed bstargs (1979), and in a forthcoming paper we are going to carry
out the program of the two parts of the present paper for the asymptotic distribu-
. C s 2 d 2 S
tion of the statistics fRd Tn(X)Hi=1dFi(xi) and fRd Tn(x)an(x) , d > 2.
Here we are going to apply our results to a characterization based goodness-
of-fit test for normality and to some two-sample tests of independence. Towards a

test for normality, we first quote a characterization theorem for the univariate

normal family N(x;u, 02) :

Theorem D (Bondesson (1974)). Let Yl""'Yﬁ be univariate independent rv with
continuous distribution functions and such that Yl and Y2 have the same distri-
bution function. Let

i

2. = (LY -iv./GEanY? L i=1,...m1, 3.3)
i k i+l
k=1
and
i
x. = Y% /(122  i-1,. 2. (3.4)
i i+l x=1 k

Then, provided m > 6 , X are independent Student rv with 1,2,...,

s X0, X
1 2 m-2
m-2 degrees of freedom respectively if and only if the Yi (i=1,2,...,m) are

i.i.d. N(x:;u, 02) rv.



78

A weaker version of this theorem first appeared in Cs8rgd, Seshadri and Yalovsky
(1973) . It can clearly serve as a basis for a test of normality of the Yi (i =1,
...,m), since it replaces the latter composite statistical hypothesis by the equiva-
lent simple one that the Xi (i=1,...,m=2) are independent Student rv with 1,2,...,
m-2 degrees of freedom respectively. The latter randomization reduction of m vari-
ables to m~2 variables is very economical: two nuisance (from the composite good-
ness-of-fit point of view) parameters are eliminated and we are left with m-2 vari-
ables to base our simple goodness-of-fit test on. Unfortunately our reduced problem
is in terms of independent but not identically distributed rv, and this, in turn,
presents difficulties when trying to construct exact tests (cf. CsBrgd, Seshadri
and Yalovsky (1973)). We are going to tackle this problem asymptotically here. To-

wards this end we first give a multi-sample version of Theorem D.

PROPOSITION 2. Let Yj = )}, m (fixed) > 6, j = 1,2,...,n, n =

(le,sz,...,ij
1,2,..., be i.i.d. random m-vectors with independent univariate components for

each j. Assume that the latter marginal distribution functions are continuous and

such that le and sz are identically distributed. Let
Z = ; Y., -iyY )/(j.(i+l))l/2 i=1 m~-1 j =1 n (3.5)
ji_ “ Tk 3i+l ’ ooy ] reees ’ .
k=1
and
1/2 i 2 1/2
xji = i Zji+l / (z ij ) , i=1,...,m2, 3 =1,...,n . (3.6)
k=1
Then Xj = (le,ij,...,ij_2), j=1,...,n , are i.i.d. random (m-2)-vectors by
definition, and, for each 3Jj, the components le,Xj2,...,ij_2 are independent
Student rv with 1,2,...,m-2 degrees of freedom respectively if and only if in

(1<j<n, 1<i<m are i.i.d. N(x;u,0%) rv.

Proposition 2 1is simply a repetition of Theorem D n times, resulting in m-2
independent Student random samples of size n, each with respective degrees of free-—
dom 1,2,...,m-2.

Let v; = Fi(xi) be Student distribution functions with 1 degrees of freedom

(i=1,...,m=2), and let

F (X) = F (Xy,..0,%X_ ) = nt g m£2 I (%)

n n'"1 T 2 o1 i=1 (==r%;] ji

be the empirical distribution function (cf. (1.4)) of Xj = (le'sz""’xjm—z) of
Proposition 2. In terms of these ingredients, define Bn(x) = an(y) as in (1.7) .

Then, with d = m-2 (m > 6), Theorem D holds for Xj = (le,sz,...,ij_2) 3 =1,

2,.+.y,n, n=1,2,..., of Proposition 2, and whence, again with d = m-2 (m > 6),

the appropriate statements of (1.18), (1.19), (1.20) and (1.27) are also true for



79

these Xj . Hence, when testing the composite goodness-of-fit hypothesis

H : Y. = . iareeas YL , fi >6, J=1,..., are n 1i.i.d. m-vectors
° 3 (Y]l,sz, Y]m) m(fixed) > 6, J n,
of m i.i.d. N(x;u,0%) rv (3.7)

via the equivalent simple goodness-of-fit hypothesis

H' : X, = . cnr e Xs
o 5= XypeXypree- Xy
are n i.i.d. (m-2)-vectors of independent Student rv with 1,2,...,m-2

} of Proposition 2, m(fixed) > 6, j =1,...,n,

degrees of freedom respectively, (3.8)

we can base our critical region on large values of

i 2 m-2
"nm-2 T me‘z Balx) T dF, (x;)
i=1
m-2 2 m-2
= me_2 nlF (xp,eeenxy )= T FL(x)1° T AF, (x;) , m(fixed) > 6, (3.9)
i=1 i=1
where Fn(xl,...,xm_z) is the empirical distribution function of Xj = (le,...,
ij~2)’ j=1,...,n , of Proposition 2, and Fi (i =1,...,m-2) are Student distri-
bution functions with i = 1,...,m-2 degrees of freedom respectively. By (1.19)
i,m-2 ——Q—~? fIm_z Bz(y)dy , m > 6 , and significance points of the latter random

variables are tabulated in Tables 1 and 2 of Cotterill and Csbrgd (1980).

The nature of the transformations (3.3) and (3.4) is similar to the briefly men-
tioned T transformation of the first paragraph of this section in that, and in
Theorem D too, we are randomizing, since the original Yi can be taken in any order
to form the zi, and then the latter can again be taken in any order to form the

Xi . This is clearly a drawback of our suggested test for normality in terms of

w% me2 * On the other hand, if the very nature of our problem is such that it di-

v

rectly fits the formulation of HO of (3.7), i.e., if we have a large number of in-

dependent small samples of size m > 6, then Wi n=2 of (3.9) appears to be quite
’

an economical way of assessing normality in the presence of unknown parameters.
We may also have one very large set of data which we may wish to summarize somehow
for the sake of testing for normality. We can then subdivide the original set of

data into a large number of small sets of size m > 6, and then test for normality
2

n,m-2
we have a very large number of observations instead of that of having too few, now

of the original set via W of (3.9). Thus,when our problem is that inherently

that we have Tables 1 and 2 of Cotterill and Csbrgé (1980) available, our suggested

wﬁ -2 procedure might come in handy at least as an omnibus, preliminary test for
’

normality.
Now we turn to a multivariate two-sample problem. Let Xj = (le,...,de ) (3=
1,...,n), Yj = (le,...,de) (3 =1,...,m) Dbe two independent random samples with

respective distribution functions F and G in F. Let F; and Gy be the marginal
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distribution function of the ith component of Xj resp. that of the ith component
of Yj. We wish to test the composite null hypothesis

H ¢ F =G and F(x) € Fo , for all x = (xl,...,xd) B (3.10)

without knowing what that common distribution function F is.

First we consider the statistic W2 of (2.1}, for which Proposition 1 holds

nm,d
under Hy of (3.10), and hence our Table 1 and 2 in Cotterill and Csérgb (1980) are
again available. Burke (1977) showed that the test for Ho which is based on large

values of Wim is consistent against the following two alternatives :

,d

H, : F(x ) # G(x_) for some x_ ¢ Rd and F(x) e F for all x ¢ Rd (3.11)

1° [e] o fo) 4 o ’ B

d d d

H, : F(x ) # G(x)) for some x € R, and F(x ) # ilei(xoi)for some x € R .
(3.12)
However, in general, the Wﬁm a test is not consistent against the alternative:

r
d d

Hy : F = Gand F(x ) # iElFi(xoi) for some x_ € R . (3.13)

Hl' H2 and H3 exhaust all the possible alternatives to Ho of (3.10). In order
to handle H3, Burke (1977) proposed to consider the following two-sample empirical
process:

/2[F (x)+G_(x)-2 g F_.(x,)] X = (x X.) (3.14)
n m ni i ! 1rtttrtal :

2z, (x) = [om/(ntm) ]t
i=1

where Fni(xi) is the marginal empirical distribution function of the ith component
of Xj (3 =1,...,n). We have (cf. Theorem 2 in Burke (1977) and Theorem 5 in
Cs8rgo (1979)) the following (2.5) type version of (1.8):

Given Ho of (3.10), there exists a sequence of Brownian bridges Bm S° that

for any u > 0 there is a C > 0 such that for each n and m

P{osup |2 (00=B_ (F)(x)), .0 Fylxg) | > Clryg@ Ve m)Izm ™), (3.15)
x € R

where rld(-) is as in (1.22). Whence

sup |20 () B (P (xq) ool Fg(x)) | 325 Olry4(n) Vr  (m), d > 1, (3.16)
and so
2 d D 2
fRd z; (x) T dF, (x,) >wy . a>1, (3.17)
’ i=1
2

where for W§ we refer to (1.19).
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We note also that (3.15) and (3.16) type versions of (1.11) and (1.13) and those
of (1.15) and (1.16) can be written down very easily for an(x).
Let

2
Mg = Jga 2o 00 as o (x) (3.18)

nm,

: _ 2 . .
with Sn+m(x) = (nFn(x)+me(x))/(n+m) , and let wd(n,m) of (2.10) be defined in
terms of the sequence of Brownian bridges of (3.15). Given Ho of (3.10), then
Corollaries 1 and 2 as well as Proposition 1 hold for Mim a’ and hence we have

r
(cf. (2.9))

lim p(M> _<u} =p»{ [  Bi(yday<u} =V, (w ,u>0(@>1. (3.19)
nm,d — d - 4 - -
n,m > I
Thus a test of Ho of (3.10) can also be based on large values of Mim a and
r

Tables 1 and 2 of Cotterill and Csbrgd (198)) can again be used. Burke (1977) showed
that the test for Ho of (3.10) is consistent against the alternative of (3.13).

. . . } 2
When proving the consistency and asymptotic power properties of the W (cf.

nm,d

(2.1)) test against the alternatives H and H and that of the Mnm test again-

st the alternative‘H3, Burke (1977) useé a theorim A type strong approéimation theo-
rem of Csdrgd and Révész(l975b) for the empirical process Bn(x) of (1.6). The latter
strong invariance principle for Bn(x) of (1.6) with F ¢ F, i.e., with F not
necessarily in Fo , was only one available at that time and, consequently, Burke
(1977) in his proofs assumed the extra conditions on F € F of Theorem 1 in Csérgg
and Révész (1975b) . These extra conditions on F ¢ F were proved to be superfluous
by Philipp and Pinzur (1979), who also dropped the condition that Fe F .

Théy proved

Theorem E (Philipp and Pinzur (1979)). Let Xyreen Xy (n =1,2,...) be independ-
ent random vectors in R3 with an arbitrary common distribution function F. Then
without changing the distribution of the empirical process{Bn(x);x € Rd, n > 1}
of xl,...,Xn i n>1 defined as in (1.6), we can redefine Bn(x) on a richer

probability space on which there exists an F-Kiefer process {KF(x,t) ; X € Rd '

t 3_0} with mean zero and covariance function

(t] A £) ( Flxp o X)) = F(x)IF(x))) (3.20)
such that
sup  sup. k2 B (%) = K (x| a:s 5(pl/2 76 (3.21)

1<k<n xeR

-1
for any 6 < (18 + 16d) (@ > 1), where x; %, = (xll/\x2l""’xld’“x2d) .
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As to the F-Kiefer process KF(-,-) of (3.21) compared to the Kiefer process
of D3. of Section 1, we should observe, of course, that the former lives on R% x
[0,#) instead of I° x [0,%) and that instead of the Lebesgue measure A(-)in the
covariance function of K(:,:) of D3. we now have the F(-) measure playing that

role for KF(-,-) .

We are going to close this section by mentioning a possiblé application of Pro-
position 2 in the field of statistical climatology.

Suppose that we wish to test the hypothesis that, say, the temperature readings
of a central location, Lo , sufficiently represent the temperature readings for
the neighboring locations Ll’ L2,...,Lm .. Let Tjo(j =1,2,...,n) be n independent
temperature readings for each one of the locations Li (i=1,2,...,m ). Let

Y, = (Y

4 jl""'ij)' with in =T..-T. , J=1,...,n; 1i=1,...,m) . (3.22)

ji “Jjo
Then, if it were to be true that readings for the central location Lo sufficiently
represented also the readings at the neighboring locations Ll""’Lm , then in of
(3.22) should essentially represent only independent errors of measurement rather

than real differences in temperature. Whence, on the latter hypothesis it would be
then reasonable to assume that Yj = (le,...,ij) of (3.22) are n i.i.d. m-vectors

m i.i.d. N(x;u,02) rv with some unknown mean u and variance o2 > 0. Thus the

above climatological assumptions may be summarized via stating the composite goodness-—
of-fit hypothesis of (3.7), which,in turn, can then be tested via the equivalent
simple goodness-of-fit hypothesis of (3.8), provided of course that m > 6, i.e.,

that we have at least six neighboring locations Li to be compared to the central

one Lo .
The critical region for the latter simple hypothesis can be based on large valus
2 e s
of W -2 of (3.9) or, equivalently, on large values of its modified version
14
~2 m-2 5
W2 T me-z n[Fn(xl,...,xm_2)-i21Fi(xi)] aF (x,s...,%x__,), m(fixed)>6, (3.23)

where everything is defined as for (3.9). By Proposition 1 we have, just like for
We p Of (3.9), that W e ~2 > 2 82ay . m> 6, and, as mentioned
already, significance points of the latter random variables are tabulated in Tables
1 and 2 in Cotterill and Csdrgo (1980).

Non-rejection of Hé of (3.8) in the present case would mean that temperature
readings at locations Ll""’Lm and temperature forecasts for the latter may rea-
sonably well be made accordingly. Rejection of Hé of (3.8) would of course mean

that at least one on the m locations might differ significantly from L, -
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THE BEHAVIOUR OF BAYES DECISION FOR NORMAL MEAN UNDER NONSTANDARD PRIOR: UNKNOWN
PRECISION

A.K.BANSAL

Dept. Math. Stat., Univ. of Delhi, Delhi (India)

ABSTRACT

Bansal,A.K., The behaviour of Bayes decision for normal mean under nonstandard prior.
Proc. l-st Intern. Conf. on Stat. Climat., held in Tokyo, Nov.29-Dec.l, 1979

In Bayesian inference, formulation and assessment of the prior distribution of
unknown parameters has been considered since the time of Bayes. In the absence of
the 'true' prior, the author advocated investigation of inference robustness of
a Bayes decision with respect to the prior distribution.

In this paper, the Edgeworth-Gamma prior is employed to study the effect of non-
normality on marginal posterior densities and Bayes estimators for the unknown mean
and precision of a normal population. The zone of sensitivity to non-normality in
the prior is also obtained for the Bayes analogue of the test of significance for
the unknown mean. Some interesting cases and numerical illustrations are also dis-
cussed to bring out their behaviour when the 'true' prior of the unknown parameters
is not the conventional normal-gamma distribution.

The derived expressions are directly applicable to an investigation of, the robust-
ness of the Bayes forecast to non-normality in the assumed prior of the unknown
mean when the time series is adequately described by a constant process model in
which 'noise' is normal with mean zero but variance unknown.

1. MOTIVATION

In normal theory Bayes decision problems, a random sample is assumed to be drawn
from a normal population and then the conjugate prior is chosen for ‘mathematical
convenience to obtain appropriate decision rules. Following Box and Tiao (1962),
researchers employed the class of symmetric exponential power distributions to inves-
tigate inference robustness to non-normality of Bayes decisions concerning the unknown
mean. Edwards et. al. (1963) considered robustness with respect to the prior when
the prior belonged to the family of natural conjugates. Recently, Rubin (1977) studied
robustness of the Bayes estimator for the mean of a normal population (variance
known) with normal, double exponential, logistic, and cauchy priors.

Quite often, situations arise when the investigator cannot assume exact normality
and, therefore, he must choose a distribution belonging to a family of moderately
non-normal distributions. Critical examination by Wallace (1958) revealed the fact
that the Edgeworth populétion approach is conceptually more relevant to robustness

problems than the asymptotic expansion in the sample size. It has enabled a fairly
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accurate estimation of the error involved in use of the normal theory procedure

for moderatély non-normal variates. Further, when non-normality parameters A3 (= /EI)
and A4 (= 82 - 3) lie within the Barton Dennis (1952) region (BDR), the theoretical
specification of the population by an Edgeworth series distribution (ESD) covers

a variety of moderately non-normal populations. Singh (1967) showed that the ESD
with A§ = 0.5 can be regarded as an effectively unimodal and proper density and

that in some cases the errors in numerical terms are not serious even if A§ exceeds
0.5. Thus the representation may cover a wider class of non-normal populations.

The author (see Bansal (1978a,b) and (1979)) utilized the Edgeworth approach to
study the effects of skewness and kurtosis in the parent population and the conven-
tional prior for the unknown mean on the Bayes estimator and on tests of significance
in Jeffreys' framework. The precision of the parent normal population was assumed

to be known in these papers.

2. MAIN ASSUMPTIONS AND POSTERIOR DISTRIBUTIONS

Let X = (Xl, X cees Xn) be a random sample drawn from a normal population with

2l
unknown mean M and precision R. The value of the likelihood function when M = m,

R = r, and Xi =x; (i=1, 2, ..., n) is given by:

n/2 xr n 2
£ (x|m, r) = (x|2m exp [-3> I (x; -m7].
n - 2, i
i=1
Assume that the prior joint distribution of M and R is as follows:
(i) The conditional density of M when R = r (> 0) is represented by the first four

terms of the ESD, that is:

EmIR = 1) = [1+ 205000 (m - w} + 55 A1 (AT @=-w}

1
+ =22 (/ir (m - w (rr/Zﬂ)]'/2 exp [~ L tr(m - u)2], (1)
72 36 2
where Hk(.) denotes the Hermite polynomial of degree k, Ai = Bl’ A4 = 82 - 3 such

that pe(-», ), T > 0, and (X k4) lie within the BDR.

3’
(ii) The marginal distribution of R is a gamma with parameters

g = 8% r* L e ry; a >0, 8> 0. )

The prior joint density of M and R is

E(m,x) = Em|R = 1) £(x). , (3)
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Writing
n
A=ai-was)Y e ¥ 8 ox,
n . 1
i=1
n
B'= B + % z (xi - ;52 + n(x - u)2/21';
i=1 :
@, = (2 + n)/2, t'=71+n, 7= /1" =1, u'= (tu + nx)/t',
and
'T=1+£>\Ar(u + 0.5 { (o +0.5)A2+ 31, }/T{a,)
6 "3 1 : 1 1 1
1 4 2 2
+ 51 A4(al(al +1)a° + 6a, T, + 317}

1.2 6 4
+ == >\3{al(al + 1) (ml + 2)A 15(11((11 + 1)1,A

+ 450 728° + 15ri}, (@)

2
11

the marginal density of X with respect to the prior given in (3) is given by:

n
g0 = [ e/ntexp -5 ¢ (x, - m?] £(m,x) dndr
£= - 250 1
= e ™% 1760 % (e et /r@), (5)

and the joint posterior density of M and R can be shown to be:

a, a,-1
Ex(m,r) = (rr‘/2'rr)l/2 B") L r 1 exp [~r{t'(m - p')2/2 +.B'}] x
1+ % X3H3{/?? (m - wy} + 53 A4H4{/?; (m - u)}
+ =220 (/Ar (m - wh/T (6)
72 "3 H C

Let the three-parameter t-density have location parameter u', have precision

T'(a' + k)/28', and have (o' + k) degrees of freedom denoted by gk (k=0,1, «c., 6).

The marginal posterior density (MPD) of the unknown M is then obtained by integrating
out r from the expression given in (6). After simplification, the MPD of M may be

written as:

1 2
Em =gy *+ g A;72 B{B"(a' + 1)g; - 39} (a; + 0.5)/T(a,)

.
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1 , 4 2
+ 57 A4{a (a' + 2)B 9, 60'B g, + 3g0}
_l_ 2 ' [ ] 6 - [ T 4
+ 73 A3{a (a' + 2) (o' + 4)B 95 15a' (a' + 2)B 9,
+ asu'B’g, - 159 11/T; (7

where a' = 20 + n, B = (m - u)/(1/28')l/2

R is obtained by integrating (6) with respect to m over the range -~ to «. It can

. Similarly, the MPD of the unknown precision

be shown to be:

Ei(r) = [hy + %-A3A{(al + 0.5)‘1\2111.5 + 3rlho.5}r(al + 0.5)/T(a,)
+ f; Ao (@, + 0.5)a%, + 6alT1A2h1 + 3Tiho}
+ 25 22{a (o) + 0.5) (a) + l)A6h3 + 150 (o + 0.5)7,a%,
+ 45alTiA2hl + lSTiho}]/T, (8)

where hk (k =0, 1/2, 1, ..., 3) denotes the gamma density with (a' + k) degrees

of freedom and scale parameter B'.

3. BAYES ESTIMATOR FOR M AND R

Let the estimated values of the unknown parameters M and R be denoted by m and

r, respectively. Consider the quadratic loss function:
A2 A2
L(m,r) = (m-m)"~ + (r - xr)".
It is well known (see De Groot, 1970) that the Bayes estimator of M and R are the
means of their respective marginal posterior densities. Thus the Bayes estimator

for the unknown mean M when the precision R is unknown is:

Gﬁ(x)

S m £, (m) an

u' o+ [%—AB(TB')I/Z T(a, - 0.5){(a; - 0.5)a% - T T @)}

+ 1) (p' - u)(2a1A2 + 6T, + 3)

+ = A (1 1

12 "4°'1

1,2 .o, 4 2 2 _
+ )\3(11 + 1) (u g){2al(al + 1)A" + ZOaITlA + 30T1 15}1/T, (9)
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and' that, for the unknown precision R, is given by:

™
*
8% (x) Iy rEzs(r) ar
! 1 4 2
=5 1+ X4((al 1) (a; +2)A° + 6t, (o, + 1)A
2 1 2 6
+ =
311} + 55 A3{(ul + 1)(a1 + 3)A
+ 157, (o, + 1) (a, + 2)A% + 4512 (@, + 1A% + 15033 /m
1'71 1 171 1
1 2 '
+ g A3A{(al + 1.5)A" + 3T1}F(ul +1.5)/{' T T(al)}. (10)
However, the Bayes risk p* of the unknown parameter vector (M,R) against the
ESD - Gamma type prior & is the sum of the variances of M and R of their respective

MPD when the sample x has been observed by the decision maker. These variances are

as follows:

var | = | {m - 6% mam
= 287 (1 + £ 2. a{a®(a, - 0.5) + 91, + 6}T(a, - 0.5)/
63 170 1 17 %
T(o, - 1) + {a, (@, - 1)A4 + 6(a, - 1) (3T, + 2)A2
1 24 "4'%1 (% 1 1
1,2 2 6
+ 37, (51 + 4)} + 75 A3la (e - DA
4 2
+ lSal(al - l)(311 + 2)A° + 45r1(5'r1 + 4)(al - 1)a
+ 1502 (7, + O H/AT (0 AT - (8560 - w2, (11)
and

var®|x) = [T {r - s 1% (r1ax

_ ' 1 4 2
= o (o + DL+ 3 A4rl{(al +2)(a, + 3)A” + 6(a; + 2)A7 + 3Tl}

1l .2 6 4
+ g5 A3{(a1 + 2)((1l + 3)((1l + 4)A" + 1511((:1 + 2)(a1 + 3)A

2 2 3 2 1 . 2
+ 4517 (a; + 2)2° + 15r1}1/{8 T} + % >\3A{(al + Z'S)A,

+ 37,1l (a) + 2.5)/{TB'2F(u1)} - 6§2 (x). (12)
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4. BEHAVIOUR OF THE BAYES ESTIMATOR

The normal distribution is a member of ESD family of moderately non-normal distri-
butions. It can be easily checked that for A3 = A4 = 0 the derived expressions for
the joint and the marginal posterior distributions in Section 2, and also the Bayes
estimator for the unknown mean M and precision R along with their associated risks
against the prior when the sample of size n has been observed in Section 3, collapse
to the corresponding normal theory expressions. Moreover, if the assumed conditional
ESD prior is vague (T + 0) it is once again, as expected, found that the MPD for
each of M and R tend to normal theory marginal posterior densities.

The discrepancy in the prior information and the observed sample may be assigned
to: misconception in the decision maker's ‘prior attitude, inadequacy in the probabil-
ity model, or bias in the data itself. Strong inconsistency between data and prior
information may even lead to misleading decisions. In order to avoid such unpleasant
situations, empirical bayesians are known to employ the sample to obtain suitable
values for the parameters of their prior distribution. An interesting situation
may arise when the investigator decides to revise the values of the prior mean in
the light of the observed sample and takes p = X. In this case u' (= (tp + nx)/T")
reduces to the sample mean x. If one employs the notations,

1 3 -2 1
v = - = = —
BO B+ 3 i (xi x)~, and TO 1+ 8 11A4 + 57 T1A3'

the Bayes estimator for M, given in ({9), simplifies to

=_1 v 1/2 .

x 3 A3(BOT) rlF(al 0.5) /{1 TOT(ul)}. (13)
Therefore, as in the known precision case (see Bansal, 1978a), a decision to revise
one's opinion about the prior mean will not make the Bayes estimator free from the
non~-normality in the prior for any finite value of n. However, the Bayes estimator
for R reduces to the normal theory estimator:

(20 + n)/Bé.

The Bayes risk of M, given in (11), reduces to:

' 1 5,22
280[1 + §-x4rl(511 + 4) + 37 A3Tl(7rl + 6)1/[(1" Td(u' - 1]
1,2, 22 _ , 2
-2 A3BOTTIF (al 0.5) /[t F(ul)TO] . (14)

which tends to
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10 -2
T E (xi - xX)°/(n - 3)

1

1

as T > O. As before, the Bayes risk of R remains unaffected by the non-normality
and we obtain the normal theory value u1/862.

In order to illustrate the effect of non-normality in the 'true' prior distribu-
tion, the GAUSS subroutine was employed to draw samples of size 5 and 10 from standard
normal populations. A number of ESD priors with p-= 0 and T = 1, but with varying
amounts of skewness and kurtosis, along with four gamma priors as marginals for
R were employed to obtain Bayes estimates for M and R.

The Bayes estimate of M (see Table 1) is seen to be affected by the non-normality
as well as by the shape of the gamma prior of R. It is interesting to observe that
the effect due to skewness counterbalanced, to some extent, that due to kurtosis
in the conditional prior of M. Increasing the sample size to ten did not show any
reduction in the effect. Further, the actual observed sample is seen to affect the
Bayes estimate of M. In contrast to this, the Bayes estimate of the unknown precision
R does not seem to be affected by non-normality of the conditional prior of M. But
it is certainly affected by the shape of the chosen gamma prior to R. As expected,
the Bayes estimate of the unknown precision of the normal population is significantly
high (see Table II ) for vague marginal prior of R. As B increases from 2.0 to 3.0,
Bayes estimates of R tend to be larger for samples of size 10 priors, the estimate

may behave in an unreasonable way.

TABLE I

Bayes estimate of the mean based on samples of size 5 and 10 (underlined) drawn
from N(0,1) with ESD-Gamma prior having non-normality parameter (AB, A4), u =0,
T = 1, and Gamma with parameter (a, B).

Gamma Parameter Non-normality Parameter
(0, 0) (0.3, 0.5) (0.4, 1.5) (0.5, 2.4)
0.0548 0.0555 0.0436 0.0349
(-0.5, 0) 0.1728 0.1718 0.1500 0.1342
0.0548 0.0629 0.0530 0.0466
(1.0, 1.0) 0.1728 0.1728 0.1516 0.1364
0.0548 0.0677 0.0425 0.0538
(1.0, 2.0) 0.1728 0.1743 0.1538 0.1394
0.0548 0.0776 0.0714 0.0683

(1.0, 5.0) 0.1728 Q.1779 0.1585 0.1453
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TABLE II

Bayes estimate of the precision based on samples of size 5 and 10 (underlined) drawn
from N{0,1) with ESD-Gamma prior having non-normality parameter (Aj, A4), u=20,
T = 1, and parameters (a,B) of marginal prior Gamma of R.

Gamma Parameter Non-normality Parameter
(0, 0) (0.3, 0.5) (0.4, 1.5) (0.5, 2.4)

23.9245 23.8474 24.0606 24.2091

(-0.5, 0) 4.0631 4.0771 4.1596 4.2201

: 3.2300 3.2265 3.2298 3.2320

(1.0, 1.0) 2.8469 2.8544 2.8943 2.9293
1.6798 1.6783 30.2943 1.6795

(1.0, 2.0) 1.9308 1.9332 1.9510 1.9637
0.6885 0.6881 0.6881 0.6882

(1.0, 5.0) 0.9824 0.9825 0.9868 0.9899

The Bayes risk associated with the computed estimate of the unknown mean M is
presented in Table II. For a fixed conditional ESD type prior of M, the risk is
seen to increase with an increase in the value of the shape parameter of the gamma

prior. The effect of non-normality, in general, is not significant on the Bayes

risk. An exceptional case occurs for n = 5 when (A3, A4) = (0.4, 1.5) and (o, B)
= (1.0, 2.0).
TABLE II

Bayes risk associated with the Bayes estimate of the mean with respect to ESD~Gamma
prior having non-normality parameter (A3, A4) , parameters of Gamma prior (a,B),
and 4 = 0, 1T = 1 for samples of size 5 and 10 (underlined) from N(O,1l).

Gamma Parameter Non-normality Parameter

(0, 0) (0.3, 0.5) (0.4, 1.5) (0.5, 2.4)
0.0093 0.0093 0.0088 0.0082
(-0.5, 0) 0.0252 0.0253 0.0242 0.0228
0.0602 0.0592 0.0562 0.0539
(1.0, 1.0) 0.0348 0.0348 0.0335 0.0320
0.1158 0.1136 0.0065 0.1036
(1.0, 2.0) 0.0514 0.0512 0.0495 0.0478
0.2824 0.2767 0.2624 0.2519

(1.0, 5.0) 0.1010 0.1004 0.0974 0.0948
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5. TEST OF SIGNIFICANCE FOR THE UNKNOWN MEAN

Consider the problem of testing a null hypothesis HO: m = m, against the alterna-
tive Hl: m # mo as a binary decision problem in which decision di_amounts to accept-
ance of the hypothesis Hi (i =0,1). Let Li(m,r) denote the loss incurred in taking

decision di when M = m and R = r. Li(m,r) is assumed such that:
2

Ll(m,r) =arm-m)"; me (-», @), a >0,

and

Lz(m,r) - {O for m # My

b otherwise; b > 0. . (15)

Following Jeffreys (1961), let the joint prior distribution of M and R be specified
in two parts. Assume that a prior discrete probability p (> 0) is located at M = o,
and the rest of the probability (1 - p) is distributed in the remaining space of
M x R such that the conditional prior densities of R are gamma with the same parame-
ters o and B irrespective of whether or not the null hypothesis is correct. Further-
more, as in Section 2, assume that the conditional distribution of M, when R = r,
is ESD given in (1). Thus, in this case, the conditional prior joint density of
M and R, when M # My is Edgeworth-Gamma.

The Bayes risk in taking decision do is given by:

p.=a(l - p) E[RE{(M - mo)2lR = r}|M # m,}

_ - 0 poo _ 2 -
= a(l - p) Io [ xm - m) gi}mlR ) gﬁ}r)dmdr
= al{l - p) yg f?m r{m - m0)2 Ex(m,r)dmdr

2 1
=a(l - p)[al(u' - mo) /B + ;.(u' - mo)[%>A3(1|B‘)1/2(alA2 + 1T (e + 0.5)/F(al)

1

*E

1,2 . 4
iz A3a11(u u){(al + 1)(al + 2)A

2
LI
A4r(u u){ul(al + 1)a° + 311} +
+ 100, + 1)T.AZ + 1572}/8'] + [L + = A.al(a, + 0.5)A% + 3(31, + 2)}T(a, + 0.5)/
1 1 1 6 '3 1 ° 1 1 .
T(a,) + L Ao, (o, + 1)A4 + 60. (31, + 2)A2 + 31,(51, + 4)} + L A2{a (o, + 1)
1 T 2r MMt 1T 1T 72 “3'% %

6 4 2
+
x (o, + 2)A lSal(al + 1)(31l + 2)A" + 45a1~rl(511 + 4)A

1

3 2 .
+ 15(7Tl + 61] - 6T, - 6)}1/t'1/T
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= . 16
C, +Cp (16)

Since the likelihood function when the null hypothesis is true is:

fn(iIM = mo) J': g(r]M = mo)fn(_y_c_lmo,r)dr

n o
= 8% @p/ten™r@is + 3 5 & - n)? an
i=1

the Bayes risk in taking decision d1 is seen to be

Pp=bpf xM=mn)/lp £ (x[M=m) + 1 -p £)]

£
=bp/lp+ (1 - p)C,1, (18)
where
n
c, =T/t + 5 x, -DZ4nx-m Y2}/
3 =1t 0
n o
{28+ ¢ (x5 - 0%+ ™(x - u)2/T'}] L

i=1

The Bayes decision function (BDF) for the binary decision problem will suggest to

the investigator that he accept the null hypothesis Ho whenever o is less than

P,y
' The risk curve in the p-plane, as in the case of known precision (see Bansal,
1979), for decision do is a line segment with (1,0) as the right-hand end-point,

whereas, that for decision dl is a segment of a rectangular hyperbola with end-points
(0,0) and (1,b). These two curves intersect (see Fig.) for p = p*, where p* is the

positive root (< 1) of the quadratic equation:

C(C, - 1)p?+ (b +cC
2'73

5 - 2C2C3)p +C,Cy = 0 (19)

which is given by:
2
* = - - - - -
P [(2c,cy - b-c)) - /{(b+ c,) apc,c }1/12¢, (¢ - 1)].
Now the BDF for the hypothesis testing problem may be modified as follows:

do if p > p*

D{x) dl otherwise. (20)
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Let p6 denote the corresponding normal theory critical value of the probability

p and write:

P, = min(pa, p*) and p, = max(PS: p*).

(21)

The effect of non-normality on the BDF for the testing problem may be clearly

observed in the shift of the intersection point of the risk curves for decisions

d. and d,. The author (see Bansal, 1979) called the interval (pl, pz), defined by

0 1

the shift in intersection point, "Zone of Sensitivity to non-normality". The decision

maker may err and accept a wrong hypothesis if his chosen prior probability p happens

to fall in the zone of sensitivity.  This incorrect decision will be due to the wrong

assumption that the true conditional prior distribution of M (# mo) is normal.

Normal Theory Risk Curves
— — — Non-normal Risk Curves

P(1,b)

//”/’
-~

4 ////
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~ 1

— N

0 P TP 1 P

one of Sensitivity

As before, in order to illustrate the behaviour of the BDF to non-normality in

the prior, consider the samples and priors of Section 4 witha=b =1, m = 0.

0

Table IV, for example, indicates that if the true prior was defined by (o, B) =

‘ Fig. ZONE OF SENSITIVITY
H
|
!
|
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(1, 2) and (A3,A4) = (0.4, 1.5) and the sample of size 5 fro&bthe standard normal
population happened to be x = (1.9619, -1.6159, 2.1711, ~1.4922, 2.2688) then the
decision maker must choose his discrete probability p in favour of Ho: m = 0 such
that it does not fall in the zone of sensitivity (0.0728, 0.1239). Further, his

decision will not be affected by the non-normality in the prior if he decides to

choose p in the region 'given by:
{p: p € (0, 0.0728) ¥ (0.1239, 1)}.

In Jeffrey'’s frame-work, any change in the extent of the zone of sensitivity
reflects the effect of non-normality in the same way as in Criterion robustness
of the t-test where one is interested in the effect of non-normality on the size
of the test. Thus a decision maker should compute the zone of sensitivity for the
worst departure from normality, i.e., choose extreme values of A3 and A4 along with

those of o and B8, and then choose the probability p which lies outside this interval.

TABLE IV

Critical value of the probability p in favour of the null hypothesis Hp: m = O against
the alternative Hy: m # 0, when a = b = 1, non-normality parameter (X3, Ay), marginal
Gamma prior parameter (a,B), u = O, T = 1 and samples of size 5 and 10 (underlined)
from N(O,1).

Gamma Parameter Non-normality Parameter
(0, 0) (0.3, 0.5) (0.4, 1.5) (0.5, 2.4)
0.1178 0.1128 0.1107 0.1091
(-0.5, 0) 0.1150 0.1165 0.1192 0.1233
0.0757 0.0746 0.0747 0.0751
(1.0, 1.0) 0.0834 0.0868 0.0910 0.0968
0.0728 0.0723 0.1239 0.0732
(1.0, 2.0) 0.0623 0.0658 0.0699 0.0754
0.0709 0.0709 0.0715 0.0722
(1.0, 5.0) 0.0439 0.0476 0.0516 0.0567
—

6. CONCLUDING REMARKS

In many forecasting problems, subjective considerations are often required to
make an initial forecast which is to be later revised in the light of the observed
sample. Bayesian procedures are now in vogue to estimate parameters of the forecasting
model. Most of the time the climatologist's interest lies with future rainfall,

humidity, etc. If the observations are random samples from the same population and
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if its mean does not change with time, then one may use a constant process model

X, =m + u, where

X, = rainfall in period t;

m = the unknown process mean or mean of rainfall;

u = the random component ox 'noise' in the process which is N(0,1/r).

Thus the rainfall X s in any period t, is normally distributed with mean m and preci-

sion r. Bansal (1978b) investigated the effect of non-normality on the Bayes forecast
when (i) the noise is moderately non-normal and (ii) the prior distribution of the
unknown mean M is not the conventional normal distribution. In both of these problems,
precision of the noise was assumed to be known. Derived expressions and conclusions
in the earlier sections imply that the Bayes forecast will depend heavily on future
observations and also be affected by the non-normality in the assumed conditional
prior of the unknown mean.

Bayesian techniques have not yet found their due place in climatological studies.
For better weather forecasts and understanding of other meteorological phenomena
future statistical climatologists will not only use relevant prior information but
also check robustness of their Bayes forecasts to the underlying statistical assump-

tions.
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SOME RESULTS ON EXCHANGEABILITY AND MAJORIZATION IN STATISTICS

A.M.ABOUAMMOH

Dept. Stat., Univ. of Riyadh, Riyadh (Saudi Arabia)

ABSTRACT

Abouammoh,A.M., Some results on exchangeability and majorization in statistics.
Proc. l-st Intern.Conf. on Stat.Climat.,held in Tokyo, Nov.29-Dec.l1,1979

There are some properties and characteristics of distributions in statistics
which can be easily identified and have been shown to be very interesting. In this
paper, we shall investigate two of such characteristics, exchangeability and majori-
zation. The random variables Xj,...,Xn are exchangeable if all the n! permutations
of the X's have the same multivariate distribution. Also, the definition of Schur-
distribution functions are presented through the concept of majorization of random
vectors.

In addition,we have introduced the concept of related exchangeability which is
more general than exchangeability and is motivated by a practical viewpoint. Further,
some results on the behaviour of classes of distributions having the above structures
are established under most commonly occurring functional operations such as closure
under convolution, passage to a limit weakly, reversal, mixing and convolutional
mixing. It is realized that exchangeability, Schur-functions and other related sub-
classes cover, surprisingly, large families of distributions.

Moreover, some examples and applications have been pointed out to elucidate the
main results of this paper.

1. INTRODUCTION AND BASIC RESULTS

Exchangeability or symmetric dependence is observed as a natural generalization
of the random sample concept, see Ahmad (1975) and references cited therein. In
fact the simplest example of exchangeability may be considered as follows: Let us
have n matched pairs (Xi,Yi), i=1,...,n, with a bivariate distribution F(x,y).
If we consider X as control and Y as 'treatment' response, then F(x,y) = F(y,x)
is equivalent to the assumption that there is no treatment effect. The extension
to the k response situation is straightforward. Moreover, a sequence of random
variables (r.vs.) is exchangeable if for any finite number k , say, there is one
k~dimensional distribution for all the k! possible permutations, that is,F(xl,...,xk)
= F(w(xl,...,xk)), where m 1is an element of Sk , the permutation group of integers
{1,...,k} . For more examples and characterizations of exchangeable processes one

can see Feller (1971) and De Fenitti(1975). The sequence of r.vs. {Xn , N 3_1]
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is said to be spherical exchangeable if there exists a function g on the positive
real line such that for each finite set {il,...,ik} of natural numbers, the joint
characteristic function (ch.f.) £ of Xi PR Xi satisfies

’ 1 k

k , 2
casy = i . X, = z. X . 1.
f(tl, tk) E exp(i thxlj) g( j=ltj ) (1.1)
Clearly each spherical exchangeable process is exchangeable.

It was established by Hardy et al (1952,p.49), see also Berge(1953,p.184) that
an n-dimensional vector X is said to be majorized by an n-dimensional vector
Y if by rearrangement of the components to obtain x. > x, > ... z_xn 'Yy 2_y2

1 2 —

> .. z_yn one has

zjzlxj < ijl ¥y ¢ k= 1,2,...m-1, and zjgl x5 = zjzlyj . (1.2)
and denote this by g.: Y if relation (1.2) is satisfied. A function for which
X : Y implies f(é) > ( < )f(y) 4is called Schur-concave (convex) function or
simply Schur-function, and such function is permutation-symmetric, that is,invari-
ant under permutations of its components. Therefore f(x) is Schur-function implies
that the r.vs. Xl,...,xn are exchangeable. jhus a differentiable function f£(x)
of exchangeable r.vs. is Schur-concave (convex) if and only if -

(x) A (x)
(

ox - axj AC T SV (>)0, for i#3j, (1.3)

see Schur (1923) and Ostrowski (1952). The case 3_: Y can be expressed by

X = DY for some doubly stochastic matrix D . A matrix'is called doubly stochastic
if it is square in shape, its elements are real nonnegative numbers and the sum of
each row and of each column is equal to one, Mirsky (1963). It is pointed out, see

Marshall and Olkin (1974), that for any vector X = (xl,...,xn)

(Ex/n) (1,...,1) : (Xyreeerx)) o

and therefore whenever Ei:l Xy is fixed, Schur-concave (convex) function attains
a maximum (minimum) point when the components are equal. In addition, we can see
that exchangeability (complete permutation-symmetry) may not be realistic assumption
in some practical situations. For example in Ahmad and Peterson (1978) the distribu-
tion of the generic data point does not lead to a reasonable hypothesis class. Rather
an assumption of partial permutation-symmetry would be natural and necessary in

some practical situations. Therefore, we shall introduce here the concept of

partial exchangeability . For example, one may consider an n-dimensional r.v. to-
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represent the situation of physical and mental responses of a patient under some
experimental stress. In such case one would allow permutation to take place between
components which represent a particular response.

Let Xl""’xk be k r.vs. such that the random vector (r.vec.) X = (xl,...,xk)
represents some experimental data of s different responses or characteristics.
Such responses could have different measurement units or different attitude of

evaluations. Let sn be the permutation symmetric group of ng r.vs., we may

. i s _
write X =( xl,...,xn R N +1,...,xn PR Xn P xn ) where I i=1ni =k,
1 1 2 s-1 s
then the distribution F of X is said to be partially exchangeable if and only
if F(x) = F(m(x)) for all = in the direct group S XS X...XS such that
1 2 s

1 < s £ k . The above defined r.vec. is called partially exchangeable.

In the following, we give the definitions of the main functional operations
which are to be investigated in the next section. A sequence of distribution func-
tions (4.fs.) Fm(x) , say, is said to donverge weakly to a limit d.f. F(x) if
%;g Fm(x) = F(x) at all continuity points of F(x). If Fl(x) and F2(x) are two

©
d.fs., then F(x) = {w Fl(x—y)dF2(y) is a distribution function and is called
the convolution of F and F_, . Also we define F(x) = Zi:

1 2 1
finite sequence F(x,ei) for which o, > 0 for all i = 1,...,n and I

o,F(x,0.) for some
i i

"y
i=1"1
as the mixture of the sequence of d.fs. F(x,ei } . Another form of this is the

=1,

continuous mixture that is F(x) = [F(x,0)dG(8), where G(0) is some d.f. of 6 .
In a similar way one may define the convolutional mixing of sequence of r.vs.

{x.,} ,i=1,...,n, as the d.f. of the r.v. X = £.® 0.X, where o, >0 and
i . i=1 i1 i

2. THE MAIN RESULTS

In this section we shall establish some results concerning the behaviour of
classes of distributions having the structure of exchangeability and Schur-functions
under some functional operations. Further some related results are also discussed.

For exchangeable r.vs. X

_l,...,X

" with probability of the form

B{ (X=6;,...,%-6,) €A } = P{Xea+d) . (2.1)

6cCo <% , is a parameter vector, often exhibit a monotonicity property in values
of partially ordered according to majorization. Now the next lemma which is due
to Marshall and Olkin (1974) shows that P(X € A+0 ) is Schur-concave function of

8 whenever A has a Schur-concave indicator function.

Lemma 2.1 Let £(x) be a Schur-concave function and consider a Lebesgue measurable
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set A< R” such that

*
YyeA and x <y implies x € A . (2.2)

Then P( X e A+ ) = f . f(x)dx is Schur-concave function of @ where § is

A+

some parametric vector. -

In fact condition (2.2) can be satisfied for every convex set A of exchangeable
r.vecs.,since x : y implies x = Dy for some doubly stochastic matrix (nxn} D,
and since the set of such doubly stochastic matrices is the convex hull of the set
of nxn permutation matrices (Birkoff's theorem, Mirsky (1963)). However condition
(2.2) implies neither measurability nor convexity of A. Moreover, Mudholkar (1966)
established lemma 2.1 where he generalized a result of Anderson (1955), concerning
the unimodality of functions, but with an additional requirement on the set A, that
is, A and the set { y: £(y) < c} is convex for some fixed number c, i.e., £(y)
is Anderson unimodal (AU) and f(y) is exchangeable, then condition (2.2) holds.

Now we give the following interesting result.

Theorem 2.1 The class of Schur-concave (convex) functions is closed under

reversal, passage to a limit weakly, mixing and convolution.

Proof. We shall give the proof for Schur-concave functions, whereas a similar
argumentation can be carried out for the Schur-convex case. Clearly, the reversal
property is valid, that is if f£(x) is Schur-concave function then so is f(-x).

Now let { fk} be a sequence of Schur-concave functions. Then we have for any
set A satisfying lemma 2.1, that /fk/ < h for each k, where h is integrable
function on A + 6 . Next, let fk converge weakly to a function f£. Then by
Lebesgue Dominated Convergence Theorem and lemma 2.1, one get f is Schur-concave.

The mixture of finite number of Schur-concave functions is Schur-concave, which
can be easily seen by applying relation (1.3).

Finally, to show that the class of Schur-concave functions is closed under convo-
lution, let f1 and f2 be two Schur-concave functions. Then £(-x) is also

Schur-concave and we need to show that

£ = -
(8 J £, (8-x) ax (2.3)
R
for some parameter @ is Schur-concave in 6 . But by lemma 2.1, fA+ef2(—§)d§ =
s M I, (-x)f,(0-x) dx is Schur-concave in § . Now approximate fl(g) by an increa-
sing sequence of simple functions hk = EaiIAi , where Eai = 1 and the sets Ai

satisfy lemma 2.1. Hence by using Lebesgue Monotone Convergence Theorem the required

result follows.

Now, we consider the case when the underlying r.vs. are independent and identically
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distributed and each has a common density g , say. Thus the joint density of X
is f(x) = Hi:1 g(x;) and in this case f is Schur-concave (convex) if and only
if log g is concave (convex). Therefore, in such circumstances the function f(x)

= Higlg(xi) is AU and g 1is log-concave.

Corollary 2.1 Let £(x) and ¢(y) be two Schur-concave (convex) functions
n

and assume g(8) = [ £(x) ¢(8-x) ey

du(xi) is well defined. Then g is Schur-

concave (convex) .

In the above corollary both £ and ¢ are Borel measurable functions and u
denotes the Lebesgue ( or counting ) measure. Further, in the next result a general-
ization, in some sense, of corollary 2.1 is given by taking the function to be
totally positive of order two ( TPZ) and satisfying the semigroup property that is
(i) for any *y < X, and Al< AZ . ¢(A1,xl)¢(kz,x2) - ¢(A1,x2)¢(A2,xl) > 0, and
(ii) for any Lebesgue measure u on [0,®) or counting measure on {0,1,2,...} and

in this case A €[0,») or A €{0,1,2,...}, x €[0,®) one has
¢(A;*A2,x) =7 ¢ x-y)o(A,,y) duly) .

Thus g(8) in corollary 2.1 may be considered as mixture of the density ¢(68,x) .
The proof of the following theorem can be carried out in similar manner to a

result in Proschan and Sethuxaman (1977).

Theorem 2.2 Let f(x) be Schur-concave (convex) function and consider the
TP, function ¢(8,x) which is defined on R: x R: and satisfies the semigroup
property. Thus, if

n
g(8) = IRE £(x) 6(8,x) T2, dulx)
exists, thén g(f) is Schur-concave (convex) function.

It can be realized that theorem 2.2 above is more general than lemma 2.1, because
f(x) = Hi:1 f(xi) is Schur-concave if f(x+y) is TP2 . Further, one may generalize
the nonnegative (Lebesqgue measurable) Schur-concave function as follows: Let G be
a closed subgroup of nxn orthogonal matrices taking values in R and GG be a
convex hull of the G-orbits, { gx ; g € G} of X. Assume that the group G has partial
ordering § on R such that y § x if and only if y ¢ GGk§) . A real valued
function f : R® + R" is called G-monotone if Yy § X implies f(y) > f(x)

A G-monotone function is g-invariant. Let TG be the class of all G-monotone
functions £: R® + R which are Lebesgue integrable over R?. It was shown (see

Eaton and Perlman (1977)) that TG is closed under cotvolution. If G is permutation
group, then g is exactly the majorization ordering: < , and TG. is the class

of nonnegative Schur-concave functions. Obviously, Schur-convex functions have
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similar structure and can be easily established.
In the next theorem we summarize the behaviour of the class of exchangeable

probability distributions under some functional operations.

Theorem 2.3 The class of exchangeable d.fs. is closed under reversal, passage
to a limit weakly, convolution and mixing of density functions (den.fs.), but is
not closed under the convolutional mixing, that is the mixing of r.vs. in the general

case.
Ny

Proof. It is obvious that if F(x) is exchangeable d.f., then the d.f. of

the r.v. -X ia slso exchangeable.

Let Y = (X X reeerX }) be r.vec. where m=1,2,... and n is a fixed
-m 1,m""2,m n,m
number greater than or equal to two. Then ljm Fm(z) = F(y) 1is exchangeable
if Y is exchangeable for every m,where each { X, m} , i=1,...,n forms a
'

convergent sequence of r.vs., and this proves the closure under the weak convergence.
Let X and Y be two r.vecs. with d.fs. F,(x) and F,(y) , then the d.f.
of the r.v. 2 = X + Y which is F(z) = S Fl(§jz) sz(Z) is also exchangeable.
Consider the finite sequence of exchangeable den.fs. {f;(x)}, i=1,...,n, and
i:1 ai = 1, then the mixture of such sequence f(x) =
Zi:1 aifi(i) is also a den.f. and is exchangeable, because f(x) does not vary
for all possible permutations of the components of the underlying r.vec. X . How-

some ai > 0 where I

ever, the case is different when we consider the convolutional mixing which is
of the form Y = 2131 uiXi . Here, the den.f. of the r.vec. Y can not be exchang-

eable unless al = a2 = ... =0 = 1/n, that is, if one gives equal weights for

all r.vecs. which does not exist in most of the real life situations .

3. FURTHER RESULTS ON EXCHANGEABILITY

We have already introduced the definition of partial exchangeability at the end
of section 1. Thus, one can easily see that the r.vec. X = (xl,...,Xk) is exchang-
eable if s = 1, and non-exchangeable (non- permutational symmetric ) if s = k.

In particular, nonexchangeability means there are no two components of the under-

lying r.vec. which are interchangeable. In addition, if we denote by Qpi' Qi ,

Qs . Qse the classes of sequences of r.vecs. (or their probability distribu-
tions, or their densities if they exist ) which are partially independent, stochas-
tically independent, partially exchangeable and spherical exchangeable, respectively,

where 1 = sl< e <Si< ... <8, = k , clearly one has

. Q C e CRA.C e 2 8 ; Q.o .c Q ; R = Q
i sy s; Sy i pi s 1
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This kind of structure and implications are motivated from a practical viewpoint,
therefore we introduce some other structures which might appear as well.

In the above set up, consider the case when the density £(x) of the r.vec. X
is unchanged when the same permutation is applied to each of the ni's components,
i =1,2,...,s. However, f(x) increases or decreases when a certain permutation is
applied to some but not all of the ni‘s. The r.vec. X is called related exchang-
eable (REX). It is also called increasing in exchangeability (IEX) if the defined
REX leads to an increasing f(x), and decreasing in exchangeability (DEX) if it
leads to a decreasing f(x) .

Now let 6 = ( 8

and X = (X Xk) be parameter vector and r.vec.

l,--.,Bk) Qe
respectively. A function f£(x,8) is said to be decreasing in transposition (DT)

if for 6.< 6, < ... <8, (i) f is unchanged when the same permutation is applied

1 2 — k
to 8 and to x , and (ii) f£(x,08) > f({',ﬁ) whenever x and x' differ in two
coordinates only, say i and J , such that (xi—x.)(i—j) > 0 and xi‘ = xj and
xj' =x; . Clearly f£(x,8) is defined from R°xR® to R™ . This latter case has

been investigated by Hollander et al (1977).

Further, there is another related concept of exchangeability which has been
brought up recently, that is the concept of positive dependence by mixture (PDM).
The probability d.f. F(x) is called PDM if it can be represented by a mixture
of d.fs. of exchangeable and independent r.vs. (see Shaked (1977)). In other words,
the r.vec. X with d.f.  Flxj,...,x) = I F(x;,8) dG(0) ', where 8 ¢ 06 € R,
G is a d.f. on O and the r.vs. Xl""'xn are independent and identically distri-
buted, is called PDM. Such mixture may be said to have conditionally independence
structure.

It is expected from the structﬁre of the above classes that the classes of distri-
butions with IEX, DEX, DT or PDM form of structure are closed under most of the

functional operations studied earlier and some other kernel-type transformations.
4., CONCLUDING REMARKS AND APPLICATIONS

It is aimed in this section to discuss briefly some of the main applications
where the concepts of exchangeability and majorization have played very interesting
roles.

(i) Exchangeability is used by Ahmad and Abouammoh (1979) to establish the
classes of infinitely A-divisible distributions where A refers to different
forms of symmetric dependence instead of the stochastic independence of the under-
lying r.vs. in the class of infinitely divisible distributions.

(ii) In branching processes, namely population genetics in biology and other
growth phenomena, the individuals of nonoverlapping generations are not distinguish-

able and the effects of individuals in the whole process are considered to be
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exchangeable. See Kingman (1978) for the developement of such problem.

(iii) In time series analysis of various aspects of climatic changes the r.vs.
involved are, in fact, r.vecs. of exchangeable variables which are approximated
by the resultant of their effects for the simplicity of studied model.

(iv) The concepts of exchangeability and its related classes are used in choos-
ing prior probabilities in Bayesian statistics and subjective probability : see
Hamaker (1977). In Ahmad (1975) it was found that for exchangeable hypotheses all
distribution-free statistics are based on permutation-rank statistics.

(v) It was shown by Hollander et al (1977) that many d.fs. such as the multi-
nomial, negative multinomial, multivariate hypergeometric, Dirichlet, multivariate
normal, multivariate F, multivariate logarithmic series and some other d.fs. are
all DT.

(vi) In Marshall and Olkin (1974) it was pointed out that if A = [aij] is a

positive definite matrix with a = ...=a and a,., = for i # j, then

11 nn ij aji
f(x) = g{(xAx') is Schur-concave , where g is an increasing function. In addition,
the multivariate beta, F and chi-square are all Schur-concave distributions.

(vii) The structure of the concepts of exchangeability, its related classes
and Schur-concavity (convexity) remain unchanged for the survival probability
(or reliability) EXE) =1 - F(x) as it is for the probability distribution F(x).

In particular, let us consider the following example.

Let X(t) = (Y(t),z(t)) be some bivariate variable of some climatic factors
such as temperature, precipitation, relative humidity etc., where Y(t) and Z(t)
are first order stationary autoregressive, AR(l), with transfer function of the
linear filter 1 - ¢D and 1 + ¢D where D is the backward shift operator such
that DX(t) = X(t-1), then X(t) is exchangeable bivariate r.v.. Further X(t) is
also exchangeable if one considers Y(t) and 2Z(t) to be first order stationary
autoregressive moving average, ARMA(1l,l) with transfer functions of the linear
filter 1 - ¢D, 1 - ¢D and 1 + ¢D, 1 + ¢D. We may investigate this problem in
some detail in future publication, specifically, its generalization, relation with

REX and some of its applications.
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PREDICTION OF A FUTURE ORDERED OBSERVATION BASED ON A SAMPLE FROM THE EXPONENTIAL
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ABSTRACT

Gan,E.H., Hak,M.S. and Ali,M.M., Prediction of a future ordered observation based
on a sample from the exponential population. Proc. l-st Intern. Conf. on Stat.
Climat., held in Tokyo, Nov.29-Dec.l, 1979

The paper derives the prediction distribution of the smallest, the i-th and a
set of m future ordered responses based on a sample arising from an exponential
model with location parameter u (>0) and scale parameter O (>0). For the deriva-
tions, the structural relations between the responses and the error variables associ-
ated with the responses have been utilized. Here, because of the restriction u >0,
Fraser's (1968) general result on the structural model could not be used.

1. INTRODUCTION

Given a set of data from an experiment the distribution of a future response
from the same experiment or similar experiment is called the prediction distribu-~
tion. The methods for deriving the prediction distribution involve either the
distribution of a pivotal quantity based on the present and the future response
or an integration over the parameter space of the joint density of the parameter
and the future response given the parameter. The integration formula for the predic-

tion density is
plylx) = [ p8lx)£(y|erae (1.1)

where p(elx) represents the structural or posterior density of § given the data
x and f(y|9) represents the density of the future response y for given 6. The
works of Aitchison and Dunsmore (1975), Fisher (1959), Fraser and Hag (1969,70),
Geisser (1965), Hora and Buehler (1967), Lindley (1972), and Zellner and Chetty
(1965) may be mentioned in this respect.

In this paper we have used the integration formula to derive the prediction
distribution of data from an exponential life testing model with location parameter

u > 0, and the scale parameter ¢ > 0. We have utilized the structural relations
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between the observations and the errors associated with the observations to obtain
the distribution of the parameters. Because of the restriction that u > 0, we could
not use the Fraser's general results (1968) on the structural model. However, since
structural relations have been used to obtain the distribution of parameters, we
have denoted the distribﬁtion of the parameters as the structural distribution.

In section 2, we describe the model; in section 3, we derive the structural
distribution of W and o ; in section 4 we derive the prediction distribution for
the émallest, the i~th, and a set of m future responses; in section 5 we obtain
the point prediction of a future response for u > 0 and for - <y < « ysing

mean square error criterion ; and in section 6, we give an example.

2. THE MODEL

Let X be a random variable representing the operating time to failure (life

length) of a device with the following exponential probability density function:

f(x: i
(x:1,0) otherwise.

_r(l/o)expl-(x-u)/0) , x> u, H>0, o>0;
={ (2.1)

O r
Here u , the location parameter is recognized as the guarantee time or the minimum
life of the device and is, therefore, assumed to be positive ; and ¢ is the scale
parameter.

Let xl,xz,...,xn be a set of observed responses from the above model. The

responses could be expressed as

X, = U + cel, X, = U + oe

1 X =4y + oe (2.2)

2 A 1

where ejr€yi...e are the error variables associated with the responses Xl’xz'
cenrX respectively. eys€yr-..,e  are not known, but their joint probability
distribution is given by

n n

expl - X e, 11 deu . e >0, a=1,...,n. (2.3)
a=1 a=1

The responses are obtained from the error variables by a location-scale transfor-
mation. But due to the restriction on u , the transformations do not form a groupA;
therefore, the general results of a structural model (Fraser,1968, p.4l) are not
applicable for deriving the structural distribution of u and ¢ . With such restric-
tion on the location parameter, Hog, Ali and Templeton (1974) derived the structural
distribution of u and o for a generalized life testing model through a series of

transformations. We have used a simple transformation to obtain the distribution
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of 4 and ¢ and utilized the structural distribution to obtain the prediction dist-
ribution.

Prediction problems for data from exponential models have been studied by various
authors, namely, Bury and Bernholtz (1971), Dunsmore(1974), Faulkenberg (1973),
Kaminsky (1977a,1977b), Kaminsky and Rhodin (1978), Lawless (1977), Likes (1974),
Lingappaiah (1978), Nelson (1970), and Schafer and Agnes (1977) . It is to be noted

that none of the studies considered the case when the location parameter is positive.

3. THE STRUCTURAL DISTRIBUTION OF u AND O

Consider the model described in section 2. Let X

v IEERY t
1) x(z) x(n) be the
order statistics with x < x < ... < x . Then from (2.2) we have
(1) (2) (n)
= + = ce . .
X(4) Y oe(a) , o=1,2, , n (3.1)

Also the error distribution (2.3) changes to

n n
n! expl-2Z e ] T de , e, e <...<e . (3.2)
a=1 (o) o=1 (@) (1) (2) (n)
Consider the following transformation from e(l), e(z),..., e(n) to e(l), s(e),
d3,...,dn :
n e ~-e .

B _ 1 B 2 ,1/2 - () (1) _
e(l)— e(l) , s(e) = [ o1 0tiz(e(m) e(l)) ] f da -———:;Ggy—— , 0=3,...,n. (3.3)
Then

n

_ _ v 2.1/2 - _

ey ey’ 82 T e<1)+ [{n-1) 0L£3dm] s(gp,e(q) e(leaS(S) , 0= 3,...,n,.

It is readily seen that the transformations (3.3)are one to one and the Jacobian

of the transformation is

n
/3 = s@" % [ m-n-t a2 1Y
= o
a=3
Therefore the joint density function of e(l), s(e), d3""’dn is given by
n n ' " on
n! exp[-ne - s(e){ [(n-1)- 2 d2]1/2+2 a N s@" 2 [{n-1)- % d2]l{2 (3.4)
(1) = o . a ~
=3 a=3 a=3

It is to be noted that 4 = (e(a)—e(l))/s(g) = (x(u)—x(l))/s(gj 0 = 3,...,0n 4

are known. Therefore we obtain the conditional probability density function of
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e(l) and s(e) , for the given values of d3,...,dn as

f(e

D212 0 n-2
(1),s(g)|d3,...,dn) = k(@) expl-ne ,,-s(e){ln-1- £ 4 17"+ £ d Ns(e) (3.5)

o=3 a=3

where k(d) is the normalizing constant. Now from (3.1) we have

x = U + ce >u >0, s(x)=os(e) . ,(3.6)

(1) v *

The relations (3.6) are obtained from the structural relations (2.2) between the
observations and the error variables. For the given set of responses, these rela-
tions along with the conditional probability element of e(l) and s(e) are used
to make probability statements about w and ¢ :

n

g(u,0|x)dudo= ¥(x) expl- % Z(x W] o~ ™) 4140 (3.7)
a=1
where
S BT ¢ 9 10 _ -(n+1)
Y T (x) = fo fo expl p 0‘ﬁl(x(m) vw)lo dudo
n n
I'(n-1) ~ -(n-1) _ -(n-1)
—/ 1 ail(x(u) X(1y) ] [ailx(a)] 1, (3.8)

and 0 <p < x , and o > 0. This result differs from that of Fraser (1968,p.41)

(1)
since the derivation takes into account the restriction on u . Hog, Ali and Templeton
(1974) obtained the same result through a series of transformations. The present
derivation, however, avoids the series of transformations.

For a given set of data the probability statements aboutp and ¢ form the basis

of inference about u and 0 . The marginal distribution of # is obtained as
n -n
[ z (x( -u) ] du
a=1 *)
g9, (]x) aw = n(n-1) (3.9)
n n
-{n- -(n-1
L2 rgxq 1 P0 2 x 170
a=1 a=1

for O < u< x , and the marginal distribution of o is obtained as

(1)

n n
-_9 _1 - _ 2L
q2(0|§)dc = Ty texel- 5 ail(x(“) X)) - expl- ¢ 0Lilx(m)]} do (3.10)

for 0 <o <o
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4. THE PREDICTION DISTRIBUTION

4.1 Prediction Distribution of the Smallest Future Response

Let Yyr¥Yqreeer¥o be m future observations from the statistical model described

in section 2. Let y(l) be the smallest future response. Then the probability

density of Y1) for given u and 0 is

m m
g expl- T (yqy= w1 B Yy . (4.1

Therefore, using the formula (1.1) and the expressions (3.8) and (4.1) the

prediction distribution of y(l) is obtained as

© min(x 'Y ) n
_ mnx 1y Y 1)) _ns2) _1 e M -
plyp, 10 =¥ [ [ mo expl qul(x(“) W= 2y gy~ dudo
voo TEO 0 T ok ) 4 mly x0T (T x +my . 1™
= min a=1 (a) (L) [SS RSS! ) 1) !
= a=1
- oYy Xy
n n (4.2)
ml (n) _ -n _ -n .
Y@ S I e M CIx@* ™! Tt Yy S Xy

where Y¥(x) is given by (3.8).

4.2 The Prediction Distribution of the i-th Future Response

Let Y(i) , i=1,2,...,m , be the i-th order statistic for a set of m future
responses from the statistical model described in section 2. Then the probability

density function of y(i) for given u and ¢ is

i-j-1 i-1, 1 1, . _
(j ) 5 exp [ c(m J)(Y(i) Wl . (4.3)

Ry the integration formula (1.1), the prediction distribution of Y1y for the

given data x , is obtained as

. i-1
o min(x 'Yoiy) _ fod-1 i~
ply . 0 = ¥ M) TET my = m42) gy im3t1 Al
(i) i 3=0 3
1 1 ?
x exp[- G(m—J)(Y(i)-u) -5 il(x(q)—u) 1 dudo
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i-1 n

. M i~j-1,i-1, T(n) . -n . -n
Y(x)i(,) z (-1) (7. =——=A1 Z X,  =(n-3)y . 1 -1 I x, +(m-j)y,.. ] }
= i 520 j ‘m+n-j o=l (o) (i) a=1 (a) (i)
_ for y(i)< X(l) ’
(4.4)
(01" m 3 () iTil i l)——iﬂl{[ Ex, +med)y, . (mined)x .
x)i )j=0 mn-t L E %) DY (4 Nx g,

n
. -n .
TR Ty ] for iy gy> x,

From (4.4) one could easily obtain the prediction distribution of y(l), the smallest

future response, or y(m), the largest future response.

4.3 The Prediction of m Ordered Future Responses

The joint probability distribution of m ordered future responses (for given

v and o ) from the statistical model described in section 2 is

m
-m 1
m!c- exp[-gjil(y(j)— w1l dy(l)---dy(m) in < Yy < y(2)< el < y(m)< , (4.5)
where y(j), j=1,2,...,m, is the j-th order statistic. Then as before we obtain
the prediction density of y(l),...,y(m) as
min (x 'Y ) n
_ (1) ~(n+2) 1 N
PO (qyreme ¥y l0) =¥ f f mto PG I Fa™
L m
- = L (y,sy-u) 1 dudo
9 4o )
m!T (m+n-1) n - (m+n-1)
¥(x) Ty {[azlx( )+ Z y(J) (m+n)x(l)]
n m
_ - (m+n-1)
- PRAUMIRLCIY bofor vyt ®gy
(4.6)
m! Tl {m+n-1) n n _ - (m+n-1)
¥x) — — {1 E Xyt E Y (i) (m+n)y(1)]
a=1 =
n m
_ ~(m+n-1)
0" ) PEE Y ) Xy

This result could easily be extended to the case when k (< m) out of m future

responses are smaller than x(l)
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5. POINT PREDICTION OF A FUTURE RESPONSE

The predicted value of a future response given the set of data is called the
point predictor. Using the mean square error criterion, the point predictor of the

smallest future response Y for a future sample of size m is obtained as follows:

(1)

n

n
o -(n-1) _ -(n-1),-1 -(n-1)
nem (0 E 0 (g)72qy))] € 25! R O C L
( n2—m2n+m2 no. m n
X X 4 —— [ L (x, ,=-x,.\)] + —5 L x
(l{ mnz(n—2) a=1 (o) (1) 02 o=1 (o)
2 2 n n
n_-m n~1 -({n-2)
-2 (x, x0T 0Ix, ] ). (5.1)
n“m(n-2) a=1 () (1) a=1 (@)

If one is interested in the predicted value of a future response Y, it is obtained

as follows :

¥ = B(Y|x) = [yp(y|may
ooy “agl‘mr’%l)”_m_l)‘ [arﬁllx(a)"("'” " ‘f_l(x(m %yt
* * * i;::_i) fﬁl(x(ar*m” ¥ n% aglw
) jz%) [agl(x(ﬂ) 'xm”n_l [aglx(“)]-(n—m) : -2

It is readily seen that (5.2) can easily be obtaiyed from (5.1) by putting m = 1.
For the exponential model with unrestricted location parameter the structural
distribution of u and o can be obtained by using Fraser's general result(1968,p.41).
Then the prediction distribution of the smallest }ﬁtdre response from a sample of
size m can be obtained by the integration formula (1.1) and then the point pre-

dictor of the smallest future response Y?l) can be obtained as follows :

n-m n
[ 2 (x

Y4, = E(y?l)@ = X0y * I3y Z . (5.3)

=X

(a) 7(1)

Again the point predictor of a future response for the unrestricted location para-

meter case is obtained as follows



116

n

~ | n-1
= B0 = x, + o (2 *w™ w1 (5-4)

It should be noted that the point predictor is valid only when n > 2. It is further
noted that if n is large relative to m , the predictors are approximately the

same for both cases.

6. AN EXAMPLE

We use the data studied by Grubbs(1971) on mileages at which 19 military carri-

ers failed :

162, 200, 271, 302, 393, 508, 539, 629,706, 777, 884
1008, 1101, 1182, 1463, 1603, 1984, 2355, 2880 .
From data it can be seen that

19
n =19, x = 162, and I (x

1) ) = 15,869 .
a=1

X

(@~ T ()

For u > 0, the prediction distribution of a future response Y is

-3 y-162 .-19_ _ 18947+y .-19
1.12379x10 - {[1+ 15865 | [ SZgee ! } , for y > 162
plylx) =
-3 19(162-y),-19_ (18947+y -19
1.12379x10 ~ {[1+ sago " ! “Tig69 ! }, for y < 162 ,

and the value of the point predictor is Y = 1045.93 . For - < py < @ , the

prediction distribution of Y* is

3 y-162 _-19

. - >
1.07757x107" [1+ Y222 ) , for y > 162 ,
ply*|x) =

1.07757x107 > (14 124162-9) 4719 0 o ¢ 162,

15696

and the value of the point predictor is Y* = 1046.34 .

7. DISCUSSION

It can easily be shown that the probability that the smallest future response
is greater than the present smallest response is n/(n+m), which, for large n, is
close to one. Therefore, for large n , we could consider only the case when y(l)
is greater than x .

g (1)

It is observed that if instead of the mean square error criterion, the mode of
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the prediction distribution is used to obtain the point predictor, it would be
x(l> for both cases.
The prediction distributions obtained here, are based on the exponential model
and the assumption that 1y is positive. These distributions could be used for obtain-

ing suitable prediction intervals or regions for future responses.
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TESTING HOMOGENEITY OF VARIANCES OF A SERIES OF LINEAR MODELS

Y.P.CHAUBEY

Math. Dept., Concordia Univ., Montreal, Quebec (Canada)

ABSTRACT

Chaubey,Y.P., Testing homogeneity of variances of a series of linear models. Proc.
1-st Intern. Conf. on Stat. Climat., held in Tokyo, Nov.29-Dec.l, 1979

Several test procedures have been developed, recently, to be able to detect hetero-
scedasticity of observations in a linear model. All these procedures divide the
observations into two groups and the resulting test statistic is equivalent to testing
the equality of variances of two homoscedastic linear models. In practice, however,
several observations may be lumped together to have the same variance. Hence, we
should be able to get some alternative tests which will have more power than the
above procedures if the alternative is more informative, namely, that some of the
observations have the same variance. This, in turn, reduces to the testing of the
equality of a series of regression models when the regression parameter is the same.
This problem has been investigated in this paper.

1. INTRODUCTION
Consider a series of linear models given by

Yi = XiS + €4 i=1, ..., k, (1.1)

t2
E(ai) = 0, V(ei) =0,
of observations, Xi is a known (pxl) matrix and €y is random disturbance for
the i-th model of order n,. Testing the null hypothesis HO: ci = .. = ci has
been considered by many authors (see Chaubey (1978) and Harrison and McCabe (1979)

E. . = i 3 . 1 =~
In-’ cov ( 1’53), 0, 1i# 3j, where Yl is an n; vector

and references therein). Almost all the papers considered the alternative hypothesis
in some specified form, however, in some generality (e.g. multiplicative hetero-
scedasticity or increasing variances) so that the tests may be applicable to a wide
variety of situations. No test, however, considered a general composite hypothesis.
In this paper we propose a test based on ordinary least square residuals (which

form a set of maximal invariant under-translation change) similar to a likelihood
ratio test. The present test criterion is simpler than the likelihood ratio test
because it does not require computation of maximum likelihood estimates of ci, ceny

oi which may be a formidable task (see Harville (1977)). A two moment approximation
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in terms of a chi square variable is also suggested, which facilitates the use of
the present test. Extensive numerical studies are planned for the power comparisons
of the present test with various other tests. The present test is expected to be
more powerful in comparison to tests of Goldfeld and Quandt (1965), Theil's BLUS
test (1971, pp. 214-218) and the test of Harvey & Phillips (1974) because it takes
into account the additional structure that ni-observations have the same variance
and does not require deletion of any residuals.

The test is described in section 2 and the approximation to its null distribution
is given in section 3. Section 4 gives the details of computations for a simple

model considered in Chaubey (1978).

2. THE TEST CRITERION

The form of the likelihood ratio test in the present context is given by

n/2

(8?)“1/2 /(8% (2.1)

i=1

where A 1is the likelihood ratio, ai is the maximum likelihood estimate of oi

and s2 is the maximum likelihood estimate of 02, the common value of ci under

HO. Since ai 's are difficult to compute we will substitute
2 =Lear e (2.2)
i n, i 7i
i
(see Rao and Chaubey (1978) for a justification) where e, =¥, - Xié and B is

the ordinary least squares estimator of B by considering all the k models as

Y =XB + ¢ (2.3)
where Y = [Yi; . EYi]' , X = [Xis e Exil' and € = [Eif ves EEi] , namely,
2 = ' -1,

B = (X'X) "X'Y. (2.4)

It is to be noted that the above test is analogous to Bartlett's test of homoge-
neity of variances when all the means are equal and it depends on a set of maximal
invariants (eiel/e'e, ey eiek/e'e where e = Y - Xé) under location change
and orthogonal transformations. If 82 could be assumed to be close to the corre-
sponding maximum likelihood estimator, then, =2 log A could be approximated by
a chi-square random variable. However, much care is needed in the present case.

Note that 52 = n-le’e and since
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-2 A= - ' ' .
in I n, ln(eje,/e'e) + I ng In(n;/n) (2.5)
we consider the test statistic
P — ) 1
T z n, ln(eiei/e e) (2.6)

Large values of T lead to rejection of HO. A 2-moment chi-square approximation

is given in the next section.

3. APPROXIMATION FOR THE DISTRIBUTION OF T

We may approximate T by a multiple of chi-square variable, because eiei/e'e
behaves like a beta variable and the negative loéarithm of a beta variable behaves
like a chi-square variable in the light of the observation made by Wise (1950).

Thus letting T ~ axi we get
a = V(T)/2E(T), v = 2[E(M) 1%V (T) - (3.1)

To find E(T) and V(T) we consider the joint raw moments uét of Zi = ln{ri/mi)
= = 4 ' = i
Zj 1n(rj/mj) where ry eiei/e e and m; E[ri]. We approximately have

-] -3
- - +
w'o= 1 5 a (s) a (t) m (2r+s) n (2k+t) E(le s 2k+t) (3.2)
st r k 1 2 1 2
r=0 k=0
where ar(s) =s5(s - 1) **° (s - r + 1)/r! and ao(s) =1 for all s. From (3.2)
we obtain
A I & v - =3 1]
ulo mi m30 + ce. , u01 mj m03 + eee
-2 _ij . -2 _ij
L= 1, = m, + ... .
W0 T M My * v Vo2 Ty Mo ’ (3.3)
-1 -1 _ij
! =
M, =Wy mj m3 + ...
ij s t ;
where mi = E[(ri - mi) (rj - mj) 1. From (3.3) and known relations between raw
and central moments we get
E{ln r.] = lnm, + m_3 mij +
noxry PR T T B
-2 gl
Viln ri] =m" myg + ... (3.4)
-1 -1 _ij

Cov(ln ri, in rj) = mi mj m11 + ...
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Thus, approximately,

E(T) = - L n, 1n m,
i i
(3.5)
_ 2 -2 ii -1 =1 ij
v(T) = L ni m, m,, + .Z. n, nj mi mj mll
i#j
ii

Hence, a and v in (3.1) can be approximately obtained, once we know mi, m20

and mii. These, under the null hypothesis can be obtained easily by known results

about the mean, variance and covariance of quadratic forms under normal variables

and Geary's (1933) result that x, is independent of its denominator. We obtain

m, = tr Qii/(n - p)

ii _ 2 -1 2 _ _
my, = 2[tr Qij (n = p) "(tr Q. )7}/ (n - p)(n - p + 2) (3.6)
ij _ _ - ) %(n -
myy = -2tr Q; tr ij/(n p) (n - p + 2)
h =1 - x, xx) ik
where Qi3 = Iy, ~ % it

4. A PARTICULAR MODEL

Consider the case of comparing 2 normal populations with common mean. Suppose

s . . 2
that independent samples of size n, and n, are obtained from N(yu, ci), N(u, 02),

. 2 _ 2 2 2 .
then for testing HO. cl = 02 vs. Hl. cl # 02, T takes form
=2 = 2
T=-Zn; InZk (Yi. - +nlngs (Yi. -Y) (4.1)
i j J i J
where Yij is the j-th observation from i-th population (i =1, 2, j =1, ..., ni)

and Y is the usual sample mean. Using the method of section 3 we obtain that
2
E(T) = - I n, 1n(ni/n), V(T) = 2(n - 3)nln2/(n = 1)(n + 1) (4.2)

The case of k normal populations can be similarily carried out. It would be

interesting to see the behavior of T as compared to the Bartlett's test statistic.

5. SOME APPLICATIONS

A well known problem in which the present method could be applied is in assessing

the accuracy of k instruments or assuming that all the instruments are equally
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precise, in assessing the accuracy of k observers. The present paper could also
be used in testing the effectiveness of various psychometric tests which are supposed
to be standardized.

An important area, in which the test mentioned in this paper applies, is time
series cross section data. This particular aspect may be utilized in climatologicél

studies to compare the heterogeneity of various variables over a given set of strata.
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T.D. DWIVEDI:,L J.M.LOWERRE2and V.K.SRIVASTAVA3

1. Dept. Math., Concordia Univ., Montreal, Quebec (Canada)
2. Clarkson Coll. Tech.,Potsdam, New York
3. Dept. Math., Banaras Hindu Univ. (India)

ABSTRACT

Dwivedi,T.D., Lowerre,J.M. and Srivastava,V.K. Some properties of generalized
ridge estimators in linear regression models. Proc. l-st Intern. Conf. on Stat.
Climat., held in Tokyo, Nov.29-Dec.l, 1979

A number of properties and criticisms of biased estimators are detailed in this
paper. The ridge estimators are compared with other biased estimators which have
been proposed to counter the effects of an ill-conditioned X'X matrix.

In addition some new estimators are proposed and their properties are studied
in detail.

1. INTRODUCTION

Consider the linear regression model
Y = XB+u (1.1)

where Y is a n x 1 vector of observations on the variable to be explained, X is
a n x p matrix, with full column rank, of n observations on p explanatory var-
iables, B is a p x 1 vector of p unknown coefficients associated with them and
u isa n x 1 vector of n unobservable disturbances with E(u) = 0 and E{uu')
= 0?1 .

It is well known that the best linear unbiased estimator of B is

b = x'x Ix'y (1.2)
and
E(b-8) "' (b-B) = 0% tr(x'x) = o2 1.0 1/, (1.3)

where Al,kz,...,lp are the eigen values of X'X.

Obviously, when some of the Xi's are small, the quantity defined by (1.3) is
large - a situation with unpleasant prospects if the effect of an erroneous estimate
is costly. To tackle this problem, Hoerl and Kennard (1970) advocated the method
of ridge reg;ession estimation. Adopting their philosophy, Dwivedi (1974) and
Goldstein and Smith (1974) proposed a class of estimators characterized by a pair

of scalars. The objective of this paper is to analyze the properties of this class



126

of estimators. The expressions for bias and total mean squared error are derived
and studied. The concept of primary component is introduced and its relevance is
examined. Then the results of a simple Monte Carlo experiment are reported and final-

ly some remarks are placed.

2. ESTIMATORS AND THEIR PROPERTIES

For estimating B in (1.1), Dwivedi (1974) and Goldstein and Smith (1974) proposed
a class of biased estimators:

éq = [k1p+(x'x)q]'l(x'x)q'lx'y (2.1)

where %k and g are scalars characterizing the estimator.
When g = 1, we obtain the estimator suggested by Hoerl and Kennard (1970).

N
We can express Bq as

sq = Cb (2.2)
where

-q,-1
c = [ Ip + k(X'X) 7] . (2.3)

It is easy to see that

E(B_ - =(c-1 . -4
(Bq B) ( p)B (2.4)
Similarly, the total mean squared error (TMSE) of éq is

TMSE(Bq) = E(Sq—B)'(Sq~B)

= E(b-B)'C'C(b-B) + B'(C-Ip)'(C-Ip)B

(2.5)
= o? tr(x'x) Lc? + 8'(c-1p)28
= 02 tr(x'x) "t [Tk (x'%) “9)72 k2 [k1p+(x'x)q]"2s
where we have used the relation
4t (2.6)

C = I_ - k[kI_+ (X'X
b kL, + (X'X)

Let P be an orthogonal matrix which diagonilizes X'x. Since C is symmetric and

commutes with X'X, the same orthogonal matrix, P , will diagonalize (X'X)_lC2 .
Thus from (2.5) we find
2
~ p 1 P os
MSE(B) = o I ———— +x? 3 = (2.7

: k .2
i=1 Ai(1+—i§0

2
i q
i=1 (Ai + k)
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= 02 g Xéq-l + k g fffi:gfig:il
=l (k) i=1 (A2
wheré o = PR = (ul, Onreeny up)'. Using the relation
L .
T_ T = o9 > 0 for k > 0 (2.8)
i i'thi

it follows from (2.7) that
23971
P (ka,~0“A7 )

R o il S 2.9
i

P
TMSE(éq) < o271 5
= i=1 (A‘i3+k)

i=1
Hence, from (1.3) we get

TMSE(éq) < E(b-B) ' (b-B) = TMSE(b) (2.10)

if k> 0 and

P (kai-ozxg-l) )

I —————— < o , (g>1). (2.11)

i=1 (>\‘il+k)2 :

The inequality (2.11) holds if

kol < oAt L (g>1:ii=1,2,...,p) (2.12)

which will be satisfied as long as.

2371
k < o2 —z——a‘“m , (g>1) (2.13)
max
where
Amin = minimum { Al’ A2,..., AP), amax = maximum ( Ogr Coreeny ap). (2.14)
Thus we have the following result:
Theorem I . For any given k such that
o in
0 < k < — (g>1), (2.15)
umax

the estimator éq given by (2.1) is better than the least square estimator b

according to total mean squares error criterion.

Setting q =1 in (2.15) yields the result obtained by Hoerl and Kennard (1970).

It is interesting to note that as g increases the range of k specified by
(2.15) narrows. It may be pointed out that our derivation of the condition (2.15)
does not require X'X to be necessarily in the form of a correlation matrix as assum-
ed by Hoerl and Kennard.

From (1.3) and (2.7), we observe that the TMSE of each of the estimators b and
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éq is primarily affected by smallness of eigenvalues of X'X. It, therefore, appears
to be reasonable to concentrate on that part of the TMSE, while comparing two esti-
mators, which is most affected. We do it by choosing a cut-off number depending upon
the magnitude of the eigenvalues. Let it be 1 . Although we recognize that this
choice is arbitrary and one could very well take a number less than 1 , yet, such

a choice includes, with certainty, all the terms that are likely to have a larger
impact on TMSE owing to the smallness of Ai's. For this purpose we define the pri-
mary component of an estimator as the part of the mean squared error that,involves
terms in which the eigenvalues are equal to or less than 1. Thus in order to compare
two biased estimators, we may confine our attention to the comparison of their primary
components.

Let us assume now that the eigen values of X'X have been ordered such that

0 <A S A2 e SA 21 <A < uee <A (2.16)

2 P

t t+1

Thus from (2.7) the primary component (PC) of éq is given by

A ! 2t 9
PC(B) = o025, ——— + Xk .z (2.17)
a4 109 42 EL a9 402
i i
For two estimators Bq and Sq+1 , it is observed that
PC(Bq+1) < PC(Bq) (2.18)
when
t Aiq+l Aiq_l 2 o 1 1
02 3 T3 - 5| + k7 1 o T 5| < 0. (2.19)
i=1 | 03 ) (2 4x) i=1 a3 i) 3 4x)
i i i i
Consider the following quantity
a2l 20
52 i _ i + k2a2 1 _ 1
g+l 2 q 2 i g+l 2 q 2
(Ai +k) (Ai +k) (Xi +k) (Xi +k)
A2 a-ax 2
- i 1 [ 21,2 q 2. O 29 2
= 205k” + AT{1+AL) (aé- /Mk - 2A; % o (2.20)
(A? +k)2(xg+l+k)2 i i i i Ai i
i i
which is negative for 1 - Ai >0 and k > 0 when
k < 9; . (2.21)
where
q-1 ) 29,2 2.,29-2 2 2_.,2¢2
A; T RA) Oyay-0?) Ao (1) T (ya-0?) 7| 172
g, = - + (2.22)

i 2 4
4ai 16ai
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Thus the inequality (2.19) will be satisfied when
0<k<g, foralli (i=1,2,...,8) . (2.23)

Writing Ipin = minimum (g;, gyre--s gt) , the conditions (2.23) will hold so long
as

0 <k < Iin® (2.24)
This leads to the following result:

Theorem II. The contribution of primary component of Bq+l will be smaller than

that of éq (0 > 1) when k satisfies the condition (2.24).

From Theorem II, it follows that larger the value of g, smaller the contribution
of the primary component to TMSE provided k satisfies the condition (2.24). Further,
the value of Imin tends to zero as g increases. In other words, the value of
k will be very close to zero and then the estimator éq will tend to b = (x'x)'lx'y,

the least squares estimator .

3. A MONTE CARLO STUDY

From the previous section, it may be observed that the choice of k and gq

2 . We have therefore carried out a Monte

depends upon unknown parameters 8 and o
Carlo experiment in order to examine the behaviour of é . Por simplicity sake, only
two cases @1 and éz are considered.

Let us write

SV(Bq) = E[Bq - E(Bq)] [Bq - E(Bq)]

2y = 2y - ' Ay - (3.1)
SSB(Bq) = [E(Bq) 8l [E(Bq) 8]
so that
TMSE(Bq) = sv(Bq) + SSB(Bq) . (3.2)

From (2.8), we see that SV(éq) < 8V(b) for k > O whatever be the values of

8 and ¢2. Since b is unbiased, SSB(b) = O and hence TMSE(éq) could be larger than

TMSE (b) = SV(b) for some B . In fact, TMSE(éq) will be largest for that B which
maximizes SSB(Bq). CoTsidering the extreme case for simulation purpose, we choose
8 that maximizes SSB(Bq) subject to B'B = 1.

Now, we have from Theorem I

TMSE(B,) < TMSE(p) if 0 <k < 02/ a2

rax K, (say) (3.3)

3 : 2 2 _
TMSE(B2) < TMSE(b) if O <k <O mein/ Ok T K2 (say) . (3.4)

X

Lowerre (1974) demonstrated that the mean squared error of él will be component-

wisely less than that of b when
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2P
0<k< min { &= . (5. 1% #0, 1.
(im z.Pp. g i J
! 3=173m"3

where pim is the (i,m)-element of the orthogonal matrix P that diagonalizes

P =
1 PmBy # 0} =Ky (say) (3.5)

X'X.
Further, from Theorem II we observe that PC(é2) < PC(él) if 0 < k < K4 where

K4 is given by

2
(142;) (A ja2-02) [4)\21a§oz+(l+ki) 2 (g2 ;-02) }1/2

K, = min - (3.6)

i | 402 160}

In practice, Ki's cannot be calculated since they require the knowledge of
o = PR and ¢2. As an approximation, one may replace these quantities by their un-
biased estimators & = Pb and 02 based on least squares estimator b of 8
and obtain ﬁi 's. It is possible that the probability of ﬁi exceeding Ki may
be quite significant in some cases. A somewhat conservative method for estimating
Ki's could be as follows. Since aéax <a'e = B'SB so that 1/aéax > 1/B'B , we
may take ﬁl = g2/ é'é and ﬁ2 =62Amin / S'§ which will have a fairly high proba-
and K

bility of not exceeding K respectively, and at the same time are easily

1 2
computable from the data. Clearly, 82/8'3 provides an estimate of the ratio ¢2/8'B
which determines the extent of the bias that the system can tolerate without increa-
sing the mean squared error. Similarly, we propose to replace ui in Ky by §'é

to obtain K since K is a decreasing function of a% . However, such a treatment

4 4
cannot be given to K3 owing to the structure of its formula. It is, therefére, sugg-

ested to replace unknowns in K, by their estimates using the normal equations in

3
order to obtain K,.

3

We have chosen two set of numerical values for the matrix X with n =5 and
P = 3 such that for one set X'X has two eigen values less than 1 while for the
other set it has all the three eigenvalues less than 1. The method of singular
valued decomposition has been employed to construct X which comrises expressing
X as X = UAD where the columns of nxp matrix U are orthogonal, A is a pxp
diagonal matrix and D is a pXp orthogonal matrix. The eigenvalues of X'X are
thus the square of the elements on the diagonal of A . We can then select three non-
collinear vectors and orthogonalize them to form the matrix U. The matrix A can be

appropriately selected to yield the desired eigen values.

The following four models are considered ( for detailed specification see Table

1, I - IV ):

No.of eigen values less than 1 value of o2
Model I 2 4.00
Model II 3 4.00
Model III 2 0.04
Model IV 3 0.04
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For each X, we draw a sample of size 100 from a multivariate normal population
N(XB,GZIn) for each specific value of 02 where B is determined such that X'XB =
Amin B . Next, K,'s are computed from (3.3), (3.4), (3.5) and (3.6). For each
model, the average total mean squared error (ATMSE) and component-wise average mean
squared error (CAMSE), the average being taken over 100 data vectors, of él and
32 are computed for various values of k ranging between O and Ki (i=12,
3,4). A part of the results are shown in Table 2,I-IV. Then we set k = Ki in Bq
(g =1,2) and calculate ATMSE and CAMSE for each model. These values have also been
put on the lower line of each plot in the corresponding tables. The values of ATMSE
and CAMSE for b are given in Table 1, I-IV.

An observation emerging from a study of the resultsis that ATMSE for both él and
éz is smaller than that of b over the range 0 <k <Ky (i=1,2,3,4). The same
remains true even when Ki's are estimated from the data. Similar is the case when
a component-wise comparison is made of él and §2 with b. Further, it is observed
that when all the eigen values of X'X aie less than 1, ATMSE of éz is smaller
than that of él over the admissible range of k. This is expected because TMSE is
then identical with PC. A component-~wise comparison also reveals that éz is better
than él . However when only two eigen values are less than 1, ATMSE of éz is
smaller than that of él only if k 1is close to zero rather than to its upper bound.
Substantial reduction is observed in all cases when the eigen values of X'X are near

to zero.

TABLE 1 , I (Model I)

.26546871 .20709179 .09294127

.08699376 -.38552773 .46523600

X = .31881716 .18759224 .16563288
-.27648435 -.29604647 -.28391225
.14186256 .30173927 -.25698986

Eigen values of X'X : ( .57122921, .46219351, .01166019)
p/= ( .67998685, -.53883530, -.48726693)
K, = 5.47716, K, = .06386, K, = .00374, K, = 3.74455

1 2 3 4
b CAMSE
First component 158.58493484
Second component 96.51692759 ATMSE (b) = 343.03600337
Third component 87.93414093
TABLE 1 , II (Model II)
.54472612 .18926693 .14683747
.75709678 -.15259512 .08371406
X = .53424734 -.22413191 .42268861
.65087249 -.44727052 .31428611
.52563128 .22005858 .41257239

Eigen values of X'X : ( 2.27291581, .30016923, .11622626)
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B' = ( -.42067037, -.05008295, .90583008 )
Kl = 6.93132, K, = .79498, Ky = .02424, K, = 5.33420
b CAMSE
First component 8.43040920
Second component 16.19485845 ATMSE (b) = 55.39227965
Third component 30.76701200
TABLE 1, III ( Model III)
.24891380 -.24301846 —-.04039797
.04540124 .03156843 . 02590564
X = .11213618 -.10427252 .01877457
-.00895034 .15426231 -.02009906
-.13908174 .14568880 .12652889
Eigen values of X'X : ( .20513791, .01487921, .01102023)
B' = ( .59804198, .36309580, .71449789)
Kl = .04869, K, = .00054, K3 = .01016 , K4 = ,01731
b CAMSE
First component 1.92408687
Second component 1.44546292 ATMSE (bJ] = 6.72598076
Third component 3.35640960
TABLE 1, IV ( Model 1V )
.34864813 -.30884291 .10150767
.50455832 -.82061450 -.63925233
X = " .37677604 -.14154010 .03074313
.35251767 -.56615090 .13622661
1.32720439 -.43233421 .40706782
Eigen values of X'X : ( 2.02143737, .58988911, .05854955)
B' = ( .78579218, .60556401, -.12578904)
Kl =.07268, K2 = .00426, K3 = .00057, K4 = ,01247
b CAMSE
First component .50219166
Secon component .27130605 ATMSE (b) = .84678850
Third component .07329076
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K1=5.4Z716494 K,=.06386478 K3=.003§403l K4=3.7%454611

( K1 ) C K ) ( X3 ) ( Xy )

Bl 1.12507957 22.25003168 203.58135974 1.25247583

ATMSE | (202.83289433) (338.27084401) (342.70376957) (277.18249100)
82 1.04046600 12.52573313 18.61359031 1.08275258
(57.66869892) (204.64599871) (331.13841616) (92.99364875

1st .48293412 8.10960925 93.34650021 .51297601

comp.| (53.75170440) (156.25272976) (158.56647805) (126.803283 )

8 2nd .37252900 7.05485667 57.11754356 .43626463

1| comp.| (19.30884587) (95.22779159) (96.27751121) (78.53659289)

3rd .26960747 7.08556577 53.12730798 .30323519

comp.| (91.41249101) (86.79032265) (87.85978030) (71.84261502)

CAMSE 1st. .46449035 3.59010085 5.52104852 .47198581
comp. (5.49654940) (92.01487526) (154.09040397) (38.31262694)

é 2nd .32783245 4.88990263 6.59183694 .35570136

2| comp. (6.93780132) (58.20168148) (92.12401033) (26.06664074)

3rd .24814320 4.04562965 6.50070485 .25506541

comp. (6.87449515) (54.42944197) (84.92400186) (28.61438109)

TABLE 2, II (Model II)

X,=6.83131924

K,=.79397870

K,=.02423727

K,=5.33419626

2 3
C ¥ ) ( K,) ( X5 ) C x )
By 1.12247945 3.61098149 41.30518691 1.18706403
ATMSE | ~ (39.31714106) (51.77196672) (55.25744975) (48.74156370)
By 1.33498227 2.50944747 17.12596213 1.43834198
{19.8829523 ) (41.5613962 ) (54.5065404 ) (39.6558570 )
Tst .23170805 .97014942 6.23108849 .26438087
comp. (6.13600249) (7.90088887 ) (8.40269320) (7.41130945)
2nd .03990220 1.30423146 13.89199369 .06072269
g {comp. (11.67527136) (15.24787101) (16.15755545) (14.12752927)
1|3rd .85086820 1.33660060 21.18210473 .86196047
comp.| (21.50586721) (28.62320684) {30.69720110) (27.20272949)
CAMSE ist .38705160 1.13934081 2.39570072 .46067084
comp. (3.20079369) (6.26221833) (8.23101463) (6.04552801)
2nd .01905048 .24686063 10.14086614 .02507132
~ lcomp (7.91272041) (13.75332149) (16.06886835) (12.21896890)
B2 l3ra .92888188 1.1232460 4.58939526 .95259982
L comp. (8.76941112) (21.54585640) (30.20665746) (21.39136015)

TABLE 2, III (Model III)

Kl=.04§69449 K2=.00953662 K3=.01915889 K4=.Olz31486

¥ ) C XK, ) (X3 ) (K, )

Bl 1.14009929 6.21895382 2.52337218 1.81137911

ATMSE | (4.55645767) (6.66878235) (1.99530175) (6.22491024})
62 1.03869239 1.29361439 1.11167468 1.09801626
(1.46702207) (4.73091244) (1.06957139) (3.86639216)

1st .37497688 1.77799825 .74115616 . 54978491

comp. | (1.38045513) (1.91058115) (.59063595) (1.92176302)

él 2nd .24613978 1.34747835 .58859981 .42517389

comp, | (1.01472415) (1.43423951) (.40347954) (1.33010360)

CAMSE 3rd .51898271 3.09347733 1.19361621 .83642031
comp, | (2.16127839) (3.32396169) (1.00119626) (3.07304361)
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TABLE 2, III (cont'd)

1st .35694737 .41764947 .37724036 .37022506
. | comp. (.49732713) (1.41424850) (.36932507) (1.09008069)

BZ 2nd .16616535 .31205135 .21920089 -20199587
comp. (.28762345) (1.07384657) (.18742376) (.82106256)

3rd .51557967 .56391356 .5152334 .5167943
comp. (.68207129) (2.24281738) (.5128225 ) (1.9552489 )

TABLE 2, IV (Model IV)
K,=.07207756 K,=.00425524 K,=.00065733 K,=.01247174
1 2 3 4

) ( K, ) ( K, ) )

5 .57957099 . 76370943 .84316009 -66062924
ATMSE B1 (.82959764) (.83094092) (.78689404) (.79508745)
a .98629497 .59404971 .69118144 .76773622
B2 (.76649574) (.77931162) (.76001745) (.78408929)
1st .34123943 .95098703 .49489009 -38743250
comp . (.46180563) (.49319188) (.47829969) (.47546367)
él 2nd .17601998 .24086543 .26667591 .20321432
comp . (.24411326) (.26577177) (.24440164) (.25527115)

3rd -06231158 -07194697 .07309409 .06998241
CAMSE comp . (.06067685) (.07197727) (.06419272) (.06485263)
1st .59561077 .34288262 .40513744 -45038870
. |comp. (.50487290) (.46232007) (.46723988) (.47131889)

82 2nd .32546166 .17621887 -21455004 .23980572
comp . (.2641137 ) (.24433088) (.22804595) (.24829852)
3rd .06522255 .07494882 .07249396 .07754180
comp . (.06061157) (.07266068) (.06473162) (.06447188)

4. SOME REMARKS

We have considered a class 'of biased estimators for B characterized by a pair of

scalars

k

and

q . It is demonstrated that for

q>1

and k > 0, we can always

pick up an estimator from this class which will be better than the least squares

estimator according to total mean squared error (TMSE) criterion. It is seen that

the range of k over which éq will be better, narrows as q increases. The concept
of the primary component (PC) of an estimator is introduced which actually refers

to that part of TMSE that is attributable to small eigen values of X'X. Effect of
change in q on the PC is examined and it is found that as q grows large, PC of
the corresponding estimator decreases over a specific range of k. Again, it is ob-
served that the upper bound of Xk moves to zero as q increases. However, a very
value of g may not be desirable from computation point of view, for then the compu-
ter may be out of its bits. These considerations pose an interesting problem pertain-
ing to the optimum choice of k and g. One simple solution could be to choose that
value of k and g for which the quantity (éq—b)’(éq—b) is maximum. Few other

proposals can be forwarded but their performance is yet to be investigated.
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We have carried out a simple Monte Carlo experiment. A more extensive study is
required with other values of n and p, and better methods need be evolved to
estimate Ki's - the bounds. The scalar g should be assigned values greater than
2. Investigations incorporating these suggestions will probably throw more light
on the properties of the biased estimators. This is an area which requires a further

careful expolation.
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SELECTION OF THE NUMBER OF REGRESSION PARAMETERS IN SMALL SAMPLE CASES

R.SHIBATA

Dept. Math., Tokyo Inst. of Technology, Tokyo (Japan)

ABSTRACT

Shibata,R., Selection of the number of regression parameters in small sample cases.
Proc. l-st Intern. Conf. on Stat. Climat., held in Tokyo, Nov.29-Dec.l, 1979

The author proposes an asymptotically optimal selection of the number of parameters
in autoregressive process and in multiple linear regression. The method is asymp-
totically equivalent to BAkaike's Information Criterion and Mallows' Cp method.

In this paper, we report how the asymptotics hold true in relatively small sample
cases. Many results by computer simulation are shown.

" INTRODUCTION

As a first step to statistical model fitting, the selection of the number of
parameters plays an important role in many practical situations. If the structure
of the population is @ell known a priori and it remains only to know the value of
some parameters, there might be no need of the selection. Otherwise, the selection
of the number of parameters may imprové the efficiency of an estimation or a predic-
tion. Various methods of the selection have been proposed and investigated (allen,
1971; Akaike, 1973; Mallows, 1973; Hocking, 1976; Box & Jenkins, 1976; Bhansali
& Downham, 1977; Schwarz, 1978). Also for the meteorological or c¢limatological data,
some of them have been applied to the case of fitting a Markov chain or a time series
model or a multiple regression (Gites & Tong, 1976; Box & Jenkins, 1976; Ozaki,
1977). But it seems that the statistical optimality has not been so clear.

In the recent paper the author, while introducing the concept of efficient selec-
tion, proposed an asymptotically efficient selection for the case of an autoregressive
model fitting in time series analysis (Shibata, 1980). The result also applies to
the multiple regression analysis (Shibata, 1979). Furthermore it may also apply
to the Markov chain. The purpose of the present paper is to show how the results
hold true in small sample cases and to suggest some finite corrections in practical
applications. As the results are very analogous, to simplify discussions we will
restrict our attention to the selection in multiple regression. We first sketch
the asymptotics, and will see the behavior of small sample cases from the results

of computor simulations.
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Let f(x) be a regression function, then the observational equation is

y = £(x) + ¢,

where € 1s a sampling error or measurement error. Assume that f£(x) can be written

as
£x) = (x, B)

where £(x) is determined by a vector x at the sampling point x and by the
vector of parameters 8, both in the Hilbert space 12 of sequences of real numbers
with the inner product ( , ) and the norm II. “. The above representation can

be justified if one considers, for example, a polynomial regression or a finite
Fourier approximation to a smooth function £(x). Given samples Yy eeer ¥ at

n sampling points Xyr cees X, We can obtain the least squares estimates B(k)

= (él(k), cees ék(k), 0, ...) and az(k) by fitting a model with k regression

parameters,

2
Yy = (Eu' B()) + €7 €y N(0O, 0°), a=1l, ..., n,

where B8(k) belongs to a subspace V(k) = ((Bl(k), <eer B(K), 0, ...} and

x, = (xal' Xt ...)'. We will see what selection is optimal for estimating regres-
sion parameters or predicting future observations.

ASYMPTOTICS
Loss function

Consider the prediction of future observations y* = (yi, ceey y;Y at the same

sampling points where Yyr «eer ¥, were taken. An estimated predictor is then given

by
gK) = X B(k)

where

I% o0 |X

= 2

is @ n x » matrix, which is also considered as a bounded linear operator on Z2.
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If expectation is taken with respect to future observations, the mean squared error
of prediction is

E*Iliﬁk) - Xf‘|2 = || x8 - X_EE_(k)”2 + no°.

Because the last term of the right hand side is independent of the number Xk, we

adopt as a loss function
- - ~ 2
L (8, Bx)) = |[x8 - xBk) |7 .

This loss function is also the squared error of the estimated mean vector. Letting
8 (n)

(k) be the vector which minimizes || X8 - XB8(k)|| in V(k), we can rewrite

the loss function as

s n 2 n - 2
L& B0y = [Ixe - xe™ a0l + [xe™ 00 - xBoo|®.
The first term on the right hand side signifies the bias of the parameter estimation
and the last represents the dispersion. For fixed n, the first term is a decreasing
function of k, and the last is an increasing function. Therefore, the best selection
is the one which balances those two terms. We note here that our main concern is

not about the number k itself but about whether the loss Ln(EJ E}k)) is a minimum.

or not (See Schwarz, 1978).

Assumptions

Let a range of selection 1 N k < Kn be given a priori. We need the following
assumptions foxr K. and Ln(k) = E(Ln(g, B(k))).
(1) For any k in 1<k < Kn’ the principal submatrix M(k) of the information
matrix M = X'X has full rank and Kn/n goes to zero as n > .
(A2) For any 0 < 8§ <1,

K
n Ln(k)

lim I ¢ = 0.
n¥o k=1

The assumption (Al) is the one usually taken for assuring the uniqueness and the
efficiency of the least squares estimate Ejk). The assumption (A2) is satisfied

when {Kn} is a divergent sequence and

Il xe - x6™ o ||
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diverges to infinity for any fixed k > 0 as n - «». In many cases these conditions
hold true if B has infinitely many nonzero elements. For a detailed result see

Shibata, 1979.

A lower bound for the loss

We will present the following Proposition and Theorem without proof (see Shibata,
1979).
Proposition

Under Assumptions (Al) and (A2),

L (g, BOK)
p~lim —————— =1,
n->e Ln(k)

uniformly in 1 < k hy Kn'
This proposition shows that the behavior of Ln(gf B(k)) is asymptotically equiv-
alent to that of Ln(k). Therefore, putting k; the number Yhich minimizes Ln(k)
in 1<k < K . we obtain a lower bound for the loss Ln(gf 8((k)).
Theorem
Under Assumptions (Al) and (A2), for any selection 1 < % < Kn, possibly depending

on the given samples yl, ceer Yoo and for any € > 0O,

lim Pr(
nre L (k*)

Accordingly, k; is asymptotically optimal as the number of parameters. Because
it depends on the value of parameters, it is necessary to find the other selection
which behaves as k; but does not depend on the value of parameters. Define the

N
pathwise efficiency of a selection k by

Iy ()
p.eff. = —
L (B, B(x))

N
We call a selection k asymptotically pathwise efficient if the above efficiency

converges to 1 in probability as n + w«,

Methods

N
We will compare the following six methods. Each selection k is defined as that
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k which minimizes the corresponding statistic in 1 <k ¢ Kn.

S1 = 82(k) exp( k/n ) (mean squared error) (i)
_ a2 2k . "

Cp =c¢ (k) (1 + = ) (Mallows, 1973; Shibata, 1979) (ii)
~2 2k . PN

AIC (= 52) = g~ (k) exp( ry ) (Akaike, 1973) (iii)
~2 3k X <

83 = ¢° (k) exp( = ) (see Bhansali & Downham, 1977) (iv)

_ 22 4k

5, = 6° (k) exp( %) )
_ a2 (log n)k . .

BIC = ¢ (k) exp( o ) (Schwarz, 1978; Akaike, 1978) (vi)

The result in Shibata, 1979, shows that among these six methods, (ii) and (iii)

are asymptotically pathwise efficient under Assumptions (Al) and (A2). The BIC behaves

as S3 when n = 20, and as S4 when n = 50.

TABLE I
n log n
20 2.9950
30 3.4012
50 3.9120
100 4.6517
200 5.2983
400 5.9915

COMPARISONS IN SMALL SAMPLE CASES

We will examine how the optimality derived in the preceding section holds true

in relatively small samples. As a typical example of a regression function, we take
f(x) = - log(l - x), 0<x <1

which is a rather rapidly increasing function, or a unimodal function

f(x) = exp( -10(x - 0.5)2 ), 0<x< 1.

Each of them has an infinite Taylor series expansion or a Fourier series expansion.

We generate n samples yl, ceey yn at



X = ( —=) 8§, eo=1, ..., n,

and we fit one of the following models and select the number k by the methods
(i) to (vi).

a) Polynomial regression

k-1 1
ya = ZEO xa BZ+1 + ea, E(ea) =0, =1, ..., n.

b) Finite Fourier series regression

- k;l cosnl ( xq/8 ) 8 te
1=0 1+1 1+1 a’

E(eu) =0, a=1, ..., n.
Here, Assumptions (Al) and (A2) are satisfied if 6 < 1 and Kn diverges to infinity

so as Kn/n + 0 (see Theorem 3.1 in Shibata, 1979).
Choice of K
———"n

The lower bound Ln(k;) depends on the choice of Kn’ because it is the minimum
in 1 k< Kn of Ln(k). It becomes high as the lower Kn is chosen. So, Kn
should be chosen large enough for Ln(k;) to be the lowest bound. On the other
hand, for a good asymptotic approximation, it is required that Kn increase as
slowly as possible, and that k; be moderately large. Therefore, we may choose

K so that these requirements are balanced. By some experiments, we have a choice

0.8 . . . . ~
Kn =n 5. If Kn is chosen larger than this, the asymptotic behavior of 02(k)
is often unsatisfactory. On the contrary, if Kn is chosen smaller, for example,
0.6 L. A .
as K =n 5, each efficiency of the methods is improved at the cost of an increase

n
of the value of the loss itself, but the order of the efficiencies of the six methods

changes very little.
Other conditions

We put 6 = 0.99 for boundedness of f(x) = - log(l - x). We take o = 0,01

or 0.02 for avoiding the case k; = Kn. Otherwise the differencé of the methods

does not become so clear. Here 02 = E(e2) is the variance of the error variable €.
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Computations

We can obtain the least squares estimates é(k) and 82(k) and can estimate the
value of the loss Ln(g, é(k)) at a time for all k by applying the Householder
transform (Kitagawa & Akaike, 1978). We have performed 200 repetitions for n = 20
to 200, and 100 repetitions for n = 400, generating sequences of pseudo normal

random numbers.

Pathwise Efficiency

From the result of asymptotic approximation, the pathwise efficiency does not
exceed 1 for sufficiently large n. However, it can be seen in Table IV or V, that
n < 400 is not entirely sufficient for such asymptotics in our case. Therefore,
we will compare methods by calculating the mean efficiency instead of the pathwise

efficiency.

Mean Efficiency

N
Mean efficiency of a selection k is defined by

L (k*)
m. eff, = ———————
E(L (B, B(X)) -7

Using a proof similar to the proof of pathwise efficiency, we can show that the

mean efficiency does not exceed 1 for sufficiently large n, and it converges to
1 for (ii) or (iii). In the following tables the efficiency of k; is shown for
reference, although k; does not apply in practice. The underline indicates the

maximum of the six efficiencies.
TABLE II

Mean Efficiency (Polynomial Regression)

£(x) o n Kn k; I&Jk;) Sl CP AIC S3 S4 BIC k;
-log(1l-x) 0.01 20 13 9 .00095 .768 .767 .808 .836 0.843 0.836 1.003
30 18 10 .00114 .690 .691 .753 .830 0.882 0.864 1.039
50 28 13 .00137 .506 .515 .646 .786 0.831 0.833 0.986
100 50 16 .00170 .364 .396 .699 .888 0.888 0.865 1.043
200 90 18 .00200 .227 .283 .792 .890 0.858 0.815 0.995
400 163 21 .00226 .140 .288 .830 .885 0.841 0.764 0.968
0.02 20 13 8 .00343 .696 .695 .745 .793 0.805 0.793 1.012
30 18 9 .00406 .617 .619 .695 .799 0.848 0.840 1.059
50 28 11 .00488 .453 .463 .607 .783 0.819 0.821 1.003
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TABLE II (Continued)

* * *
£(x) [+ n K kn 135kn) s1 cP AIC s, S, BIC kn
100 50 14 .00605 .325 .357 .678 .880 0.870 0.842 1.052
200 90 16 .00710 .201 .264 .760 .871 0.844 0.777 1.002
2 400 163 21 .00806 .124 .277 .827 .897 0.866 0.756 0.983
exp(-10(x-0.5)7) 0.01 20 13 .00084 .685 .685 .746 .813 0.858 0.813 1.012

30 18 .00090 .557 .558 .662 .833 0.926 0.878 1.067
50 28 .00090 .339 .350 .520 .746 0.845 0.842 1.017
100 50 .00091 .196 .236 .538 .828 0.818 0.787 1.066
200 90 .00092 .104 .158 .647 .858 0.823 0.730 0.997

.00294 .604 .605 .662 .731 0.746 0.731 1.014
.00300 .464 .469 .581 .756 0.887 0.816 1.074
.00313 .294 .306 .476 .783 0.917 0.915 1.014
.00343 .187 .232 .548 .992 0.988 1.008 1.052
.00362 .102 .158 .651 .843 0.843 0.856 0.997
.00364 .058 .207 .732 .804 0.767 0.726 1.038

7
9
9
9
9 ——
400 163 9 .00094 .061 .215 .833 .991 1.043 0.934 1.098
7
7
7
7
9
9

The methods sl and Cp are inferior to all others. The efficiency of AIC becomes
high as n increases. In most cases, the highest efficiency is attained by S3

when n < 100, and by S4 when n < 50. The efficiency of BIC is the highest in
the three cases, but there is not so much difference from that of S4. An interesting
result is the case f£(x) = -log(l - x), ¢ = 0.02 and n = 50. As seen in Table I
the multiplier of BIC stands between those of 53 and S, when n = 50. The high

4
efficiency of BIC indicates that the optimal multiplier is between 3 to 4.

TABLE IO

Mean Efficiency (Finite Fourier Series Regression)

*
£ (x) o] n K kn I&#k;) s1 C AIC S, s4 BIC k;
-log{(1-x) 0.01 20 13 13 .00289 1.019 1.019 0.985 0.968 0.944 0.968 1.006

30 18 18 .00365 1.021 1.021 1.021 1.009 1.000 1.006 1.021

50 28 28 .00493 0.993 0.993 0.989 0.974 0.946 0.948 0.995

100 50 50 .00729 1.001 1.001 0.995 0.977 0.938 0.905 1.005

200 90 90 .01069 0.997 0.997 0.990 0.964 0.899 0.765 1.000

400 163 130 .01583 0.906 0.907 0.920 0.929 0.862 0.695 0.989

0.02 20 13 13 .00697 1.003 1.004 0.986 0.967 0.932 0.967 1.012

30 18 18 .00905 1.026 1.028 1.009 0.978 0.937 0.966 1.035

50 28 28 .01333 0.987 0.987 0.975 0.952 0.909 0.911 0.993

100 50 48 .02215 0.998 0.998 0.986 0.955 0.891 0.822 1.009

200 90 70 .03417 0.910 0.910 0.924 0.919 0.844 0.734 1.007

5 400 163 96 .04839 0.727 0.736 0.847 0.916 0.831 0.663 0.988
exp(~10(x~-0.5)") 0.01 20 13 9 .00122 0.874 0.873 0.848 0.764 0.647 0.746 1.032
: 30 18 9 .00157 0.742 0.740 0.780 0.758 0.609 0.697 1.028

50 28 11 .00147 0.531 0.633 0.744 0.720 0.725 0.997

100 50 13 .00173 0.362 380 0.660 0.840 0.801 0.768 1.041

200 90 15 .00206 0.237 0.308 0.758 0.823 0.768 0.716 1.005

400 163 19 .00246 0.152 0.239 0.851 0.867 0.821 0.706 1.018

0.02 20 13 3 .00299 0.580 0.583 0.660 0.765 0.864 0.763 1.011

o

[eNeNeNeNeoNoNoNo Nl
w
>
N
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TABLE II (Continued)

£(x) [+ n Kn k; Iu#k;) s1 cp AIC 53 S, BIC k;
30 18 7 .00360 0.533 0.540 0.624 0.788 0.879 0.843 1.057
50 28 7 .00406 0.372 0.393 0.528 0.704 0.719 0.411 1.008
100 50 9 .00483 0.256 0.284 0.592 0.750 0.653 0.605 1.038
200 90 11 .00578 0.167 0.246 0.760 0.841 0.770 0.623 0.995
400 163 13 .00691 0.108 0.213 0.809 0.832 0.744 0.653 1.039

1
are not so significant. Interesting is the case

When Kn = k; or nearly so, S, or CP is most efficient, but the differences
from the other AIC, S3 or S4
f(x) = exp(-10(x - 0.5)2), o = 0.01 and n = 20. Although k; is different from

Kn’ Sl is the most efficient. We can interpret this result by the graph of Ln(k)
in Figure 1. The Ln(k) does not increase so much with k > k;, and is similar to
the case Kn = k;. It automatically follows that the selection of a value near Kn
has high efficiency when the increase of Ln(k) in k > k; is very small.

Otherwise the results are similar to those of Table I .

133 189
Ln(k) e
0.002}
0.001}
N N N " i N N N N i — "
o 1 2 3 4 5 6 7 8 9 10 11 12 13
k* K
n n
Fig. 1.

Standard Deviations

The standard deviations of Ln(§J é}ﬁ))/Ln(k;) are shown in Tables IV and V.
The mean efficiency is the reciprocal of the expectation of this variable. The under-
line indicates where thé standard deviation is a minimum. The place is almost the
same where the maximum efficiency is attained. The value for k; shows that standard

deviation of the normalized prediction error decreases as n increases when the
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TABLE IV

~ N : 3
Standard Deviation of Ln(Ef §jk))/Ln(k;) (Polynomial Regression)

£(x) [ n Kn k; S1 Cp AIC 53 54 BIC k;
-log(1-x) 0.01 20 13 9 0.517 0.517 0.526 0.540 0.536 0.540 0.459
30 18 10 0.499 0.500 0.517 0.481 0.408 0.454 0.360
50 28 13 0.561 0.566 0.631 0.468 0.411 0.409 0.342
100 50 16 0.681 0.922 0.834 0.407 0.355 0.388 0.317
200 90 18 0.888 1.751 0.717 0.308 0.315 0.315 0.279
400 163 21 0.870 3.120 0.398 0.317 0.323 0.383 0.298
0.02 20 13 8 0.579 0.578 0.586 0.570 0.571 0.570 0.489
30 18 9 0.562 0.567 0.607 0.531 0.466 0.479 0.369
50 28 11 0.641 0.681 0.751 0.529 0.455 0.457 0.326
100 50 14 0.799 1.082 0.936 0.382 0.371 0.394 0.323
200 90 16 1.006 2.129 0.833 0.357 0.372 0.422 0.293
400 163 21 0.981 3.551 0.433 0.308 0.301 0.379 0.309

exp(—lO(x—O.S)z) 0.01 20 13 7 0.597 0.596 0.606 0.601 0.580 0.601 0.435
30 18 9 0.651 0.657 0.735 0.565 0.494 0.516 0.414

50 28 9 0.899 0.979 1.096 0.696 0.445 0.448 0.400

100 50 9 1.380 2.200 1.593 0.509 0.462 0.440 0.424

200 90 9 1.978 4.721 1.575 0.594 0.634 0.672 0.421

400 163 9 3.125 7.050 0.683 0.493 0.488 0.721 0.470

0.02 20 13 7 0.692 0.693 0.720 0.770 0.818 0.770 0.495
30 18 7 0.791 0.812 0.933 0.754 0.659 0.697 0.426

50 28 7 1.054 1.184 1.338 0.788 0.522 0.522 0.433

100 50 7 1.543 2.457 1.683 0.500 0.428 0.428 0.385

200 90 9 2.008 4.823 1.529 0.471 0.425 0.390 0.428

400 163 9 2.395 7.089 0.747 0.487 0.488 0.435 0.398

TABLE V

P
Standard Deviation of Ln(§J ﬁjk))/Ln(kg) (Finite Fourier Series Regression)

£ (x) g n K k* s C AIC S S BIC k*
n n P 3 4 n
-log (1-x) 0.01 20 13 13 0.177 0.177 0.191 0.199 0.206 0.199 0.170
30 18 18 0.147 0.147 0.147 0.160 0.168 0.160 0.146
50 28 28 0.148 0.148 0.148 0.153 0.176 0.172 0.147
100 50 50 0.141 0.141 0.142 0.152 0.176 0.184 0.139
200 90 90 0.125 0.125 0.123 0.125 0.176 0.253 0.126
400 163 130 0.129 0.129 0.131 0.119 0.150 0.221 0.110

0.02 20 13 13 0.293 0.293 0.298 0.306 0.333 0.306 0.290

30 18 18 0.236 0.236 0.238 0.256 0.282 0.262 0.235

50 28 28 0.217 0.217 0.219 0.227 0.246 0.240 0.217

100 50 48 0.181 0.181 0.180 0.175 0.216 0.277 0.175

200 90 70 0.158 0.158 0.159 0.154 0.210 0.273 0.143

2 400 163 96 0.173 0.190 0.207 0.133 0.169 0.213 0.136
exp(-10(x-0.5)") 0.01 20 13 9 0.402 0.402 0.403 0.435 0.393 0.435 0.352
30 18 9 0.409 0.410 0.425 0.481 0.554 0.528 0.293

50 28 11 0.535 0.555 0.602 0.499 0.574 0.565 0.295

100 50 13 0.719 0.855 0.819 0.363 0.345 0.361 0.278

200 90 15 0.855 1.694 0.709 0.308 0.300 0.380 0.250

400 163 19 1.161 3.039 0.336 0.269 0.263 0.344 0.225

0.02 20 13 3 0.671 0.675 0.705 0.668 0.507 0.671 0.317

30 18 7 0.620 0.633 0.664 0.505 0.328 0.399 0.349
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£ * BIC k*
(x) o n Kn kn s1 cp AIC s3 s4 *
50 28 7 0.800 0.912 1.004 0.560 0.318 0.318 0.328
100 50 9 1.117 1.491 1.193 0.526 0.533 0.530 0.331
200 90 11 1.307 2.718 0.870 0.325 0.418 0.708 0.276
400 163 13 1.857 4.471 0.423 0.361 0.441 0.426 0.244

optimal number k; is applied.

~
The mean of the selected number k

The selected number itself is not our main

We show a part of the results when n 400.

TABLE VI

concern, but is included for reference.

The mean of the selected number ﬁ (Polynomial regression)
*
£(x) g Kn kn Sl Cp AIC S3 S BIC
-log (1-x) 0.01 163 21 156.84 68.36 21.43 19.55 18.66 17.68
2 0.02 163 18 156.84 62.41 19.07 17.02 16.27 15.27
exp(-10(x-0.5)") 0.01 163 9 152.71 38.89 10.14 9.26 9.10 8:94
0.02 163 9 154.38 36.96 9.89 8.47 7.95 7.41
TABLE VII
N
The mean of the selected number k (Finite Fourier series regression)
*
£(x) a Kn kn Sl Cp AIC 53 S4 BIC
-log(1l-x) 0.01 163 130 160.87 160.35 147.34 123.32 105.78 89.64
2 0.02 163 96 158.67 154.87 119.74 86.83 74.50 62.06
exp(-10(x-0.5)") 0.01 163 19 154.82 89.81 19.89 15.60 13.93 12.39
0.02 163 12 153.22 69.46 14.18 11.18 9.51 8.24
It can be seen that the selection whose mean is very near to k; is not always

the most efficient one. The best selection is

A Conclusion

Although the AIC or

so well if the sample size is less than or equal to 400. Especially Cp

rather biased towards the lower number.

Cp method is asymptotically efficient, it does not behave

is inferior

in our cases, because the difference between their multipliers significantly affects

the behavior, although which is negligible in

large samples.
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It is necessary to apply some finite corrections. If the sample size is from

100 to 400, the use of S3 is recommended, and if it is 50, S4. If it is less than

or equal to 30, in many cases, s4 is superior, but in certain circumstances AIC

is superior.
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ABSTRACT

Billard,L. and Meshkani,M.R., Modelling weather data as a Markov chain. Proc.
1-st Intern. Conf. on Stat. and Climat., held in Tokyo, Nov.29-Dec.l, 1979

Weather data is taken and by classifying the various degrees of wetness and dry-
ness, it can be modelled as a Markov chain. Data are recorded over several years.
Estimates for the transition probabilities are obtained which utilize the experience
(data) of previous years giving so-called empirical Bayes estimates. These contrast
with the maximum likelihood estimates which use the data for the year under discus-
sion alone.

1. INTRODUCTION

Some time ago Gabriel and Neuman (1962) showed how weather could be modelled as
a Markov chain. They modelled days as either dry or wet (correspondint to chain with
states O or 1). Obviously it is possible to subclassify the wet days into (s-1)
classes designating the degree of wetness as measured by the amounts of rainfall
actually received. This then gives a Markov chain with s states. As is well known
once the appropriate transition probabilities of the chain are known together with
the initial distribution everything is completely known about the Markov process.

In this case then we are able to ascertain the transition probabilities of moving
from one weather classification type to another in any given number of days. We can
determine the long run probabilities of certain weather types and so forth.

In the Gabriel and Neuman work, estimates for the transition probabilities were
determined via maximum likelihood techniques. However, it would be advantageous to
be able to obtain estimates which incorporate the available data from previous years
as well. Thus, in the following sections we first outline a theoretical approach
which allows a researcher to utilize past experience represented by previous data
when estimating these transition probabilities yielding so called empirical Bayes
estimates. This approach is quite general and therefore it is presented within a
general framework.

Then, in Sections 5-7 we apply these techniques to some weather data from Talla~-

hassee, Florida. For each of computation we take the classes of the Markov chain
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to be simply "dry" and "wet". Exactly the same techniques apply to the cases of a
larger number of classes (that is, s > 2) as well as to data from broader regions
such as other cities, states, localities, or whatever. It should be remarked that
some underlying assumptions are made about the process such as stationarity of the
chain, independence of the transition probabilities from year to year, etc. Quite
clearly, the techniques discussed here can only be used for data sets for which such
assumptions hold true. With weather data there will be some regions fog which these
assumptions are invalid. Thus, in Section 6, verification of these assumptions for

the Tallahassee data is carried out.

2. THE PROBABILITY MODEL

2.1. Preliminaries

For the sake of brevity, we shall not repeat the well-known results pertaining
to single Markov chains. These are found in,e.g., Feller (1968).

Suppose {Xt, t e TO} is a Markov chain with values in the finite state space
S ={1,...,s} where T = {1,...,T} and TO = {0} VT . Wwe assume the chain is simple,
i.e., its order of dependency is 1. Furthermore, it is stationary and has an irre-
ducible t.p.m. A with elements Ajk s 3k €S, Let the initial distribution be §
with element Gj, j e S.

The data are outcomes of (n+l) repeated experiments. In such experiment, we ob-
serve and record the states visited by the chain during a fixed period of time,
T > 1. The outcomes of the first n experiments will be referred to as the "past data".
Let a realization of an experiment be x_ = (XO'xl""'xT)' where the subscripts

_II'
refer to the order in which the observationa were taken and not to their values.

Definition 2.1 Let F be an s X s matrix whose (j,k)-th element ij is the number

of times that the state k has followed the state j in a sequence of states visited
by a Markov chain {Xt, te To}. That is, ij is the number of times the event

{x 3, X, = k; t € Tthas occurred. For each fixed T > 1, F is called the fre-

t-1"
quency count matrix (f.c.m.) of the chain up to time T.

Then, the probability of observing a particular ordered sequence of states is

F.
y =8 mAJK (2.1)

P(Xg= U, X=X ,000X0= X)) = P(Xp= w) I P(X=x|Xt_l=xt_1 o 5k
3, keS

teT
where eu € O with © = {8: ej >0, je8, jgsej =1} , and Ajk € Qs with
Q= {A: Ajki 0, 3,k =1,...,8, £ A.

1, j € S}, and where X, = u is the
keS 7

X =
initial state of the chain.
It is clear that F is a sufficient statistic for A and 9 . In the sequel, we

deal mainly with F.
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Before observing the outcome En s the integer XO and the matrix F are random
quantities. The conditional distribution of F given the initial state is u and
the t.p.m. is A_,,was first derived by Whittle (1955). This and some other related

distributions have been discussed in detail by Martin (1967).

2.2. Conditional distributions.

We are interested in the unconditional distribution of F given X0 =y, and in
the posterior distribution of A given F. We shall derive these distributions util~
izing Martin's results on conditional distributions.

Let x4 = u, Xp = V. Then by the definition of F,

F. -F, . = .- . + 3 , 2.2
3+ + éju ij jeS : ( )
where

F = IF , F = I F .

I+ keS jk +k jeS ik

For a given F and a fixed u, the equations (2.2) uniquely determine v, and vice

versa. The restriction on F is essentially the defining characteristic of the space

of values of F. . -
Let M be the set of positive integers and MO = M U{o0}. For fixed u, u e §,

A e Qs and T ¢ M , we define the following sets:

= : F. ' = ., -F, =8, -8, , F. =0 i =0, 3j, (2.
¢_(u,v,T,4) = {E F]keTO, L'FL =T, Fy, -F aju 6]v Fy =0 if A =0r 3 keS}, (2.3)
o (u,T,A) = erfS o (uv, TN, ueS, TeM Aeq , . (2.4)
ox(T,0) = Ug e (wm), TeM, Aea, T (2.9)
o (T, = {E: E e 0f(T, ), Fy, =F 4. Je S}, (2.6)
and
* = * - *
0%, (T, ) = 9X(T,A) - &% (T, D). (2.7)
For each f.c.m. F , we define F* = (ng) where, for Jj,k ¢ S,

Sk 7 Faw/Fye v Fip > O
= s F.. =0 (2.8)

ik i+ =0
The (v,u)-th cofactor of F* will be denoted by F?vu) .

The conditional p.m.f. of F given u and A , known as the Whittle distribu-

tion, is

|

F.
= (s _ jk
PE[w,A) 2 27 (E[u, T, = FEAE) ; Ees Aj + Eed Th (2.9)
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where Vv 1is the uniqgue solution of (2.2) and

A(F) = T (F. !/ T F, 1),
jeS keS

. 0 .
Here and elsewhere, the convention 0 =1 will be observed.

J+ jk
The joint distribution of F and XO which is called the Whittle-1 distribu-
tion, is

() (g, u|T,1,8) = 6, P(Elu,)) , ueS, Feod (urh. (2.10)

P, (E,u[A,0) = B) [}

The marginal distribution of U for a given probability vector 8 = (61,...,65) is
a multinomial distribution, Ms(l,g) . The marginal distribution of F for a given j

is given as follows.

There are exactly s pairs of integers (x,y) = (u,u), u ¢ S, which satisfy the
‘equations
- .= ..o~ 6. } .11
Fip m By 59 "85y 0 3 €S (2.11)
if Fe Q;l(T,A). There is a unique solution (x,y) = (u,v), u # v, to these equa-

tions if F e ®;2(T,A), see Martin (1967,Lemma 6.1.5). Then, the marginal distribu-

tion of F for a given t.p.m. known as the Whittle-2 distribution, is
F

ik
A(F)( Z 6.F*. ) T A2 , Fe 0% (T,A),
jes 3 G375 xeg I sl
v (E| 0,8 =2 (E|r.A0) = (2.12)
] P
A(F) O F* o A + E e 0%, (T.A),

(vu) j,k$£ jk
where (u,v) is the unique solution to (2.11) when F e Q;z(T,A).

2.3. Unconditional distributions.

We shall assume the "natural conjugate priors" for 8 and A to be independent of
each other. The "natural conjugate prior" for § is a Dirichlet distribution and
for A is a matrix beta distribution. We denote these distributions by D(a) and
MB(p), respectively. The resultant unconditional distribution will be named the
Beta-Whittle distribution.

To specify the space of values of F, we define the following sets:

o (u,v,T) = Y ¢_(u,v,T,A), (2.13)
s EL .
AeQ
=g "
¢ _(u,T) = ¢ (uIT!A)I . (2.14)
S AeQ s

- s

@;(T) = U ¢;(T,A), (2.15)

AeQ
—="s
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¢;l(T) = U @;I(T,A), (2.16)
Aef
="s

and

Q;Z(T) = @;(T) - ¢§l(T) . (2.17)

Now, we derive the unconditional distributions by integrating the conditional
ones w.r.t. ql(g) and g(A), the prior distributions of 8 and A, respectively. That
is,

a.-1
9@ =g ne’ . geco
jeS

with the parameter a = (aj), oy >0, je8, and

9(@ = Tla)/ T I(a),

jeS
and o, = jés“j ; and
Py, ~1
k
a(h) = clp) Ay L Aheq
3 keS 7
where the parameter p = (pjk) , pjk >0, i,k € S, and

C() = 0 {T'(p, )/ M T(. )},
jes I kes K
and pj+ = kgspjk, j € 8. Thus, from (2.9), the Beta-Whittle distribution for a

MB(p) prior and known u is

I

F.
jk - .
P (F|a) F?W)A(E)fns(j iasAjk Yaha() = F¥-AEB(E), Fe o (u,T), (2.18)

where v is the unique solution to (2.2) and where

I

B(p,F)

. . . . T(p.
jIéS{[r(pj+ * SO LTy 4 E3p) /T (o50])

Similarly, from (2.10) when assuming a D(a) prior for 6 , we obtain the Beta-Whittle-

1 distribution,

P, (F,u) =f@fﬂseuql(@P(giu,yq(mc_i(md(_e_).

= A(E)-B(_p_,g‘_)-C(F"Evu) @, wel , Fed (un, (2.19)
where
.g!ffvu),g) = [P(a+)/jn F(aj)]-[F?vu)-F(au+1)kEsF(uk)/P(u++1)].

k#u

Finally, the Beta-Whittle-2 distribution is derived from (2.12). Thus,
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P, (F) = IOIQSPZ(EIA.Q)ql(Q)q(A)d(A_)d(_Q)
ij
A (L 6.F%.. )q (0)A@®) /(T T A2Hama), E e ox (1),
=0 jes I (G 'L ﬂsjes keg Ik sl

F.
. - Jk *
¥ ow) A(R)fg8,a(8)a(®) fﬂs(jgs kgs!\jk Ja(ba), F e of (T,

where (u,v) is the unique solution to (2.11) when F € Q;Z(T). Therefore, the distri-

bution is

A(F) *B(p,F) -C(F*,a), Fe ¢;1(T),

P, (E) = [ (2.20)
A(E)'B(QJE)'C(FTVU),Q) , F e ¢;2(T)r

where A(F), B(p,F) and C(Ffvu),g) have been defined in (2.9), (2.18) and (2.19),

respectively, and where

C(F*,0) = [Tla,)/ T r(aj”-[-isF?jj’

T'(o.+l) II'(a, )/T(a,+1)7.
jeS j T kes k *

k#3

When u is known, P(Xo=u|§) = eu = 1. Then, (2.19) reduces to (2.18). In the sequel,

we shall consider both cases and treat them simultaneously.

3. BAYES ESTIMATE OF A

3.1. Posterior distribution of A .

We assume squared error loss. Hence, the loss function associated with the esti-
mation of A by 4 = (djk)’ j,k € 8, is given by, from DeGroot (1970),
L(A,d) = I (d,, - A 0" .
. j,keS Jjk jk

It can be easily shown that the minimum risk is achieved when each A j, ke S,

ik’
has least possible risk. Thus, the Bayes estimate of A is found by finding the Bayes
estimate for each Ajk . J.k € 8. This in turn is given by the posterior mean of A

for given F.

Theorem 3.1. Let F be the f.c.m. of a single stationary Markov chain up to time
T. Let A Dbe the t.p.m. of the chain. Assume A has a MB(p) prior distribution. Then,
the posterior distribution of A given F is a MB(p+F). Furthermore, the conclusion

is true whether the initial state X0 = u is known or unknown.

Proof. FPirst, we suppose u is not known. Then, from (2.10) and (2.20), we have

Qa a -1 F. +p.. -1
a*(A,0) = K(F,a,p)0 * T o 1 ¥ ,8e0,he0,
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where K(-) is free of ej and Ajk' j,k € S. Then,

ij+pjk—l
it A.k
jikeS ?
It is obvious that (3.1) is a MB(p+F).

q* () = J a*(h,0)de = Aea . (3.1

- s

When wu is known, we have eu =1, u € S, and the above derivation more easily

gives (3.1). This proves the theorem.

Theorem 3.2. Let F be khe f.c.m. of a single stationary Markov chain up to time T.
Let A have a prior distribution MB(p). Then, the Bayes estimate of A relative to
the squared error loss function, whether the initial state XO = u is known or un-
known, is

hy = Ag(Eop) = (A ) (3.2)

—B B;jk
where
AB;jk = (ij + pjk)/(Fj+ + pj+), j:keS .

Proof. It is enough to find the Bayes estimate of Ajk‘ For the squared error loss

function, the posterior mean is the Bayes estimate. Thus,

Mok = o by WA = (Ft0 0/ 5y os,)

This completes the proof.

The maximum likelihood estimate (MLE) of A based on F, which will be denoted by

Ay, = 5007 38
AML;jk = ij/Fj+ , d.keS .
(See Bartlett (1951) or Billingsley (1961)). Note that AB-jk is a convex combination
of AML;jk and E(AB;jk) = pjk/pj+ .
4, EMPIRICAL BAYES ESTIMATE OF A
4.1. Preliminaries.
In this section, we shall estimate pjk from the “past data". Then, we shall

substitute these values in (3.2). The resultant value will be called an EB estimate
of A .

Let N = {1,...,n}. Here, the "past data" refers to the set F. i e N which are
independent of F = En+l which represents the "current data", but they are identi-
cally distributed as F.

We have seen in (2.19) that the pair (F,u) is distributed according to a Beta-
Whittle-1 distribution. The marginal distribution of U is identical to a Dirichlet-

Multinomial distribution. The EB procedure for estimation of parameters of this



156

distribution has been considered in Billard and Meshkani (1978).

Now, we address ourselves to the estimation of P3k from {F; , i¢ N}. The mar-
ginal distribution of F was given in (2.20) which contains s(s+l) parameters g
and p. We can readily estimate s parameters a by methods proposed in Billard and
Meshkani (1978). Therefore, in the rest of this section, we concentrate only on the

estimation of p.

4.2. Method of moments estimate of p.

Exact formulae for moments of F are too complicated to be useful in estimating
p - Using some results of Martin (1967), we have

T-1 [t]
E(ij) = Ez[El(ij)] = tZO E, (A, ]k)' keS8,

where the subscript 1 (2) indicates the expectations have been taken for a given
A (w.r.t the distribution of A). We also have
ngékhE(ij), T=1,
T-1

(2-1-6) 1
E(FF)=66E(F)+ZE{A A.ZAA
jk"gh 19 kh =1 ik oo K9 9h
t-1
[T-1-t] .
hag Agn EOAh]AJk} ¢ T>2, 3,k,gheS .

Evaluation of the expectations in the above equations will lead to polynomials
of degree (T - 1) in pjk’ j,k €S .. When T > 3 , the resultant equations will be
almost intractable. Since for single chains, T is usually far greater than 3 ,
setting T < 3 above to obtain solvable equations, would be a waste of available
information. Moreover, the estimates would not be very efficient.

We shall seek some functions of F which render simpler expressions for their

moments. One of these functions is

.. = F. . 3, S . .
MJk ij/}?‘]+ , J.k € (4.1)
Since A is assumed to be irreducible, Aj+ #0 , for all j € S. Thus, from the
condition (2.2), for T large enough, Fj+> 0, j eS. We assume Fj+ >0, 3¢S,
so that we can use Mjk to estimate pjk'
Whittle (1955), under the assumption that Fj+ >0, 3 ¢8, gave

- 3/2
El(Mjk]u) = A (T ag)/T 4 o(r "% , (4.2)
and
_ ~ . -1 -3/2
Covy My My ) = 85 (8 = Ay Ay eE (o w) + o) (4.3)

where ajk is the (j,k)-th element of the matrix of right eigenvectors. By appropri-
ate normalization of a, we can make 0 f-ajk < 1.
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Now, using (4.2) and (4.3) and a., = 1, we shall find the unconditional expect-

jk

ations and covariances relative to the MB(p) prior for A . In the sequel, we shall
assume T is large enough so that we can ignore O(T-B/z). Thus
E (M. = . 3 4.

( %) = LT+ /7] PPy r Ik € S, (4.4)
and

= - 2 3 .

Cov(Mjk'Mgh) wjﬁjgpjk(ékhpj+ pjh)/pj+ , J.kgh eS8 , (4.5)
where
w, = {p. E[F—]'] + [(T+1)/T]2} /(ps, + 1Y jeS (4.6)
3J j+ I+ i+ ! )

The result (4.5) indicates that different rows of the matrix M= (Mjk) are un-
correlated. Since M1 = 1, we shall delete its last column to avoid singularity
in the covariance matrix of M. The covariance matrix of the first (s-1) columns of
M will be denoted by IZ*. Then, I* 1is a block diagonal matrix of order s(s-1)

) of

s(s-1). That is, ZI* = Diag{E;j} , where the elements = COV(Mjk,M

ok . .
jk,3h jh
E;j are defined in (4.5).

We observe that for each j € 8, the relations (4.4) give (s-1) linearly independ-
ent equations in s unknowns Ojk , k € S. We need one more equation. This is estab-
lished as follows.

From {4.5), we may write
Cov(Mjk,Mjh) = ij(Mjk)[Gkh - E(Mjh)], k,heS .

In matrix form, we have

¥, = w., E.. j e S 4.7
25 7% 250 ) ’ (4.7

)
where we define the elements of Zﬁj to be ij,jh = E(Mjk)[ékh—E(Mjh)], k,h ¢ S.

We can solve (4.7) for mj to obtain

_ 1/(s-1) .
wy = { Egjl / |ij|} . JeS.

Therefore, substituting for wj in (4.6) and solving for pj+ , we have

_ 2 _ -1
pj+ = {[(T+1)/T] mj} / [mj E(Fj+)] , je8. (4.8)

This, together with (4.4) which is rearranged into
o5k = ij+E(Mjk)/(T+l)’ jikeS
allows us to solve for Py j,k e S.

The equations (4.4) and (4.8) give the parameters in terms of the moments of

-1 , s
Mjk and Fj+ . Now, we substitute the sample moments obtained from the "past data"

in (4.4) and (4.8) to obtain the method of moments estimates of pjk , J.k € S.
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These estimates will be denoted by rjk , .k e 8.

For each j € S and k,h ¢ 8, let us define the sample means M = (ﬁsk) and

§ = (65) , and sampie covariances g;j = (ng,jh) and iij = (Sjk,jh) where the
elements are respectively defined by
— -1
M. =n L (F, ../F. ..) . (4.9)

jk ieS i; jk’ i g+
G. =a1z F;l+ . (4.10)

3 ieS il

-7 1 o M) M, .- M), (4.11)
jk,jh . i;jk jk’ *-i;jh jh
ieS
and
Gy ., =M. (& - M, ) . 4.12
%k,5n = Mk Ckn T M) (4.12)
Then, the estimates of wj, pj+ and pjk respectively are
a 2 1/(s=-1) .

.= ¥ Z.. e S 4.13)

C] {I_jjl/l_j]|} v ] 1] (
2 . _

L= T+1)/T1" - c, c. - G. i eS 4.14
r]+ {1¢ )/T] J} /1 5 3] ] ' ( )
and
rjk = Trj+Mjk / (r+1) , j,ke S . (4.15)
Consequently,
rjs = Ty, - kis Ty = rj+(TMjs+1)/(T+l) , 3 e8.

Therefore,. from (3.2), the EB estimate of A , denoted by AEB , is obtained by re-

placing p.

3k by r. .

jk

Definition 4.1. The EB estimate of A obtained by the method of moments is the matrix

AEB whose elements AEB;jk are given by

AEB;jk = (ij+ rjk)/(Fj++ rj+) , J,keS.

5. OUR PROBLEM

Our interest is to apply the theoretical results of the previous section to some
rainfall data complied from the government publication Local Climatographical Data
(1961-1977) . Summer days (June through August) with a measurable amount of precipi-
tation (that is, at least 0.0l inches) at Tallahassee were counted for the years
1961 through 1977 inclusive. A day with measurable precipitation is called a wet
day. The sequence of wet and dry days is assumed to form a two-state stationary

simple Markov chain. The frequency count matrix for each year is given in Table l.
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We assume there is independence between the different years.

TABLE 1.

Frequency count matrix of summer days precipitation at Tallahassee 1961-1977.

1961 1962 1963
t+1 t+1 t+1
t .
/ 1 2 Fj+ t/ 1 2 Fj+ t/ 1 2 FJ+
1 28 19 47 1 28 17| 45 1 28 18 | 46
2 18 26| 44 2 18 28| 46 2 17 28| 45
F+j 46 45| 91 F+j 46 45| 91 F+j 45 46| 91
1964 1965 1966
t+1 t+1 t+1
2
t/ 1 2 Fj+ t/ 1 2 Fj+ t/ 1 Fj+
1 27 13} 40 1 30 16 | 46 1 41 17 | 58
2 14 37| 51 2 15 30| 45 2 15 18 | 33
F+j 41 50| 91 F+j 45 46 | 91 F+j 56 35| 91
1967 1968 1969
t+1 t+l £+l
t/ 1 2 Fj+ t/ 1 2 Fj+ t/ 1 2 Fj+
1 22 19| 41 1 33 18| 51 1 30 20| 50
2 20 30| 50 2 18 22| 40 2 19 22| 49
F+j 42 49| 91 F+j S1 40| 91 F+j 49 42| 91
1970 1971 1972
t+1 t+1 t+1
t/ 1 2 Fji t/ 1 2 Fj+ t/ 12 Fﬁ+
1 28 17 | 45 1 17 17 | 34 1 41 16 | 57
2 18 28 | 46 2 16 41 | 57 2 15 19| 34
F+j 46 45| 91 F+j 33 58| 91 F+j 56 35| 91
1973 1974 1975
£+l t+1 t+1
t/ 1 2 Fji t/ 1 2 €j+ t/ 1 2 Fi+
1 26 19| 45 1 31 20| 51 1 17 20| 37
2 19 27 | 46 2 19 21| 40 2 20 34| 54
F+j 45 46| 91 F+j 50 41 ] 91 F+j 37 541 91
1976 1977
t+1 t+1
t/ 1 2 fii t/ 1 2 Fj+
1 37 17 | 54 1 30 18 | 48
2 17 20| 37 2 18 25| 43
F+j 54 37| 91 F+j 48 43 | 91

Since we have a two-state Markov chain, it is completely specified by just two

parameters Al and A2 , say, where

A= A = RIxellx (=1} and Ay = Ay, = PIX=1[x =2} .



Our objective is to estimate A1 and A2 for the year 1977, say, using the past
data (years 1961-1976) and the current data (year 1977) according to the empirical

Bayes procedure.

6. VERIFICATION OF THE ASSUMPTIONS

A crucial assumption is that the Ai , 1=1,...,n+tl, are_independent and identi-
cally distributed, where in our case n = 16. In this example, it may appear that
this assumption does not hold. However in personal communications, meteorologists
Gleeson and Stuart at the Florida State University believe that due to shower activ-
ity in summer in the Tallahassee area, the degree of gependence between the Ai ,
i=1,...,ntl, from year to year is very small, if any.

To substanciate this belief of independence we applied a Runs Test. If there is
not a pattern of variation among the Ai’ i=1,...,ntl, they should fluctuate around
their mean or median in a random manner. We first consider the signs of Al(i)— Ki.
They are =~ + - +++ - + -~ + - 4+ ——— ++. Thus tha sample size is n= 17, the number
of runs is u = 12, the number of minuses is n., = 8, and the number of pluses is

1

5 = 9. The null hypothesis HO is that the signs are randomly arranged. For these

observations P(U §'l2]HO) = 0.939 and P(U Z.9|H0) = 0.157. Therefore, H, can

not be rejected. Similarly, for A2(i) - K? , we have + ~=-== + = 4+ —— +++ - ++,

n

In this case, n =17, u =9, n, = 9, n, = 8 and hence P(U 5_9]H0) = 0.50. Thus

1 2

again, Ho cannot be rejected. Therefore, Ai’

i=1,...,n+l, can be regarded as
independent random variables.

In addition to the Runs Test we determined the maximum likelihood estimate ﬁl(i)
and Kz(i) for each year i = 1,...,n+l, and plotted ﬁl(i—l) against. ﬂl(i), as
well as A2(i—l) against Az(i). These are shown in Fig. 1. There does not appear
to be any detectable relationship between consecutive Ai' Thus, these plots also
suggest the assumption of independence of A for different years is valid.

Another assumption was that the Markov chain was stationary. To avoid lengthy
computations we chose one year at random, 1967, to test for stationarity. The chain
contained 92 observations and was broken into 6 consecutive pieces each of 15 days
with the final 2 observations being ignored. The resulting frequency count matrices

were obtained. The null hypothesis H is that the chain is stationary, that is,

0

A(t) = A, t=1,...,6. From Anderson and Goodman (1957), if H. is true the test

o}
statistic
6 2 ~ R
0 = T L OF, (t) In A, /A, (%)
£=1 §,k=1 ik ik’ ik
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Fig.1(a). Plot of Rl(i) against A (i-1).
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Fig.1(b). Plot of Rz(i) against Kz(i—l).

is asymptotically chi-square distributed with 4 = (T-1)s(s-1) = 5x2x(2-1) = 10
degrees of freedom. Our observed value of @ upon substituting becomes 9.8934
while the tabulated value at the 5% level of significance is 18.307. Thus,HO can

not be rejected and the chain is stationary.
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Finally we test the assumption that the Markov chain is simple, that is, the order
of dependency is one. We first test the null hypothesis HO that the chain is of
order zero, that is, {Xt}, t=1...,T, are independent and identically distributed
binomial variables against the alternative that the order of the chain is not zero.

A chi-square statistic

17
0 = 1

i=1
is used where x% is the chi-square value within the i-th year and where Q has
a chi-square distribution with 17 degrees of freedom. The observed value for Q is
78.77 while the tabulated value for the 5% 1level of significance is 27159. Thus,

HO is rejected and the chain has an order of dependence greater than or equal to
one.

We now test the null hypothesis Hy that the order of the chain is one against
the alternative hypothesis that it is two. The transition probabilitiy matrix for

the second order chain can be expressed as

States at time t-1, t

11 12 21 22
States at time 11 Alll A112 0 0 .
t-2, t-1 12| o 0 A A
121 122
21 A211 A212 0 0
22 0 0 A221 A222

The test statistic based on the likelihood ratio is

17 2

0 = = £ F, .. Ilnk, . /A
i=1 3k, =1 MiIKE K

i;ike
where Q is chi-square distributed with l7s(s-l? = 34 degrees of freedom. The
observed value of Q is 34.55 while the tabulated value at the 5% level of signi-

ficance is 48.57. Thus, H cannot be rejected, that is, we can assume safely we

0
have a first order Markov chain.

7. THE ESTIMATES

Once the basic assumptions have been verified, it is a simple matter to substitute
the data values into the formulae of section 4. Thus, we obtain

~

474794 x 1078, 353397 x 10°°

* = o* =

fll _8 21 -8
oll = 122905 x 10 ’ 021 = 553235 x 10 ,
Gl = 0.02186, G, = 0.02307
¢, = 3.8635, ¢, = 0.6388,

and
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rll = 8.9633 , rlz = 0.
Th £ = 0. ’ = 0. . is,
erefore, AEB;l 0.622 AEB:Z 0.419 That is
[.622 .378
hep. = | .40 .sen):
We could compare this empirical Bayes estimate with the maximum likelihood esti-
t i i = = = 0. , i
mate for 1977 which is AML;l 30/48 0.625, AML;2 0.419 that is
.625 .375
he, = |10 Lse1)

The advantage of the empirical Bayes estimate is that all the data from previous
years is being used, that is, we are benefiting from the past experience whereas the

maximum likelihcod estimate is found by using the data of 1977 alone.

8. CONCLUSION

Once i , the estimate of A , has been obtained there are many applications and
quantities of interest that can be further estimated. One such example relates to
the work of Gabriel and Neuman (1962) in which they used ﬁ_ to determine the dis-
tribution of weather cycles. For this purpose a wet(dry) spell of k days is defined
as a sequence of k wet(dry) days preceded and followed by a dry(wet) day. Let W
denote the length of a wet spell. Then,

k-1

P(W=%k) =K, (1 - ﬁz) , k=1,2,... .

2

A weather cycle is defined as combinations of a wet spell and an adjacent dry spell.

Let C denote the length of a weather cycle. Then

~ m~1  sm-1

P(C=m) = mAZ(l - AZ)/(l - Al - Az)(l - A2) - Al y = 1,2,... .

We refer the reader to the paper cited for more applications of this type.
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ON RED NOISE AND QUASI-PERIODICITY IN THE TIME SERIES OF ATMOSPHERIC TEMPERATURE

0.M.ESSENWANGER

DRSMI-TRA (R&D) ,Tech.Lab.MICOM, and Univ. of Alabama in Huntsville, Alabama

ABSTRACT

Essenwanger,0.M., On red noise and quasi-periodicity in time series of atmospheric
temperature. Proc. l-st Intern. Conf. on Stat. Climat., held in Tokyo, Nov.29-
Dec.1l, 1979

The author has developed a methodology which permits the separation of the time
series into three components: cycles, quasi-cycles, and red (or white) noise. The
method utilizes power spectrum and Fourier analysis which is economically feasible
for large amount of data if one uses the algorithm of the Fast Fourier Transform.
The process which is based on the utilization of statistical significance criteria
for testing the amplitudes of the Fourier series is described in detail.

After separation into the three components, the red noise is based on a modified
first lag correlation. The method is illustrated with six-hourly observations of
the temperature for five consecutive years at four stations from typical climatic
regimes. While the red noise share is largest in the tropics, the quasi-cycles con-
tribute more to the variance in the subtropical and temperature zones than in the
polar or tropical regiohs.

1. INTRODUCTION

Various tools are available for the statistical modelling of atmospheric time
series. E.g., the derivation of autoregressive, moving average of mixed models
(if applicable) is one alternative for an analytical representation. In atmospheric
science spectral analysis is in widespread use. In the latter, however, one is soon
confronted wth the reality of meteorological quasi-cycles which is an intricate
and complex problem. The problem has not been solved in the past (e.g., Bartels
(1943), Brier et al. (1964), Craddock (1965), Shapiro (1975) ; etc.) and may elude
an easy answer, at least in part, in the near future.

The author has attacked the problem in spectral énalysis by examining the noise.
We may consider the atmospheric time series as consisting of three components: cycles,
quasi-cycles, and noise (white or red). It is not difficult to recognize true cycles
in statistical significance testing. If we were able to deduce the noise we could
separate the three components because the quasi-cycles would emerge as the remainder
after cycles and noise have been identified. Thus, this article serves two purposes.

First, a methodology is developed to separate cycles, quasi-cycles and noise
based, on statistical significance testing. After elimination of cycles and quasi-
cycles the residual variance is noise (red or white) which is predictable only in

statistical terms. Quasi-cycles also may not be predictable in a strict sense but
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the knowledge of their existence may be useful.

Second, the methodology is illustrated with an analysis of the temperature time
series in four typical climatic zones. Some quasi-cycles in the periodogram withstand
regorous statistical testing and can be explained as being associated with synoptic
scale phenomena. Other high amplitudes of statistical significance may be related
to the asymmetry of meteorological cycles, the seasonal variation of the amplitude

of cycles, or side lobes.

2. SPECTRUM ANALYSIS

Usually different statistical techniques are available for spectral analysis :
Fourier series, power spectrum and periodogram. Cycles are expressed in terms of
sine waves although they may not be precisely sine curves. Deviations will lead
to more than one sine wave for one cycle.

The Fourier series for a set of data yt , t=1,...,N, is defined by
yt -y =1I Aj51n(3at+ wj) . (la)
where usually j =1,...,N/2 and

ap = 2 mt/L (1b)

where L designates the basic period, generally comprising all data N so that

L = N. 6 = 27j/L is the angular frequency, X = 27/6 the wave length, Aj the
amplitude, and ¢j the phase angle. While the Fourier series and the power spectrum
are usually plotted against the angular frequency 6 or the wave number j, the
periodogram is based on the wave length X . The ordinates reflect the variability

2 . These ordinates may be utilized either in

of A or the squared amplitude A
their original or in standardized form by division with 202 (power spectrum) .

Although in the past Fourier series and the periodogram required elaborate calcu-
lations, the computational effort has been reduced today by the Fast Fourier Trans-
form (see e.g., Cooley and Tukey (1965), Bloomfield (1976), etc.) and the availabi-
lity of electronic data processing systems. More details can be found in the lite-
rature, such as Kendall and Stuart (1966), Taubenheim (1969), Kendall (1973),Bloom-
field (1976), etc. In the subsequent method of separating temperature data into
three components, power spectra and Fourier analyses are utilized.

In the spectral analysis of atmospheric cycles the daily or annual cycles can
be spotted easily in most cases although the precise mathematical formulation in
terms of the Fourier series is not always simple. Consideration must be given to
"leakage", side lobes, asymmetry and the modulation of the amplitude during the
seasons. E.q., let us assume a daily cycle (subscript d):

Ve = Ajsin(jdut + wd) (2a)
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with a seasonal fluctuation. Then the amplitude varies, e.g.,

A. = B, + D.sin(j 2
5 BJ D351n(35ut + ws) (2b)

with £ (egn.(1b)), t = 1,...,N. This type of "modulation" of the amplitude is

reflected in the spectrum. We can combine (2a) and (2b):
v, = Bjsln(jdut + wd) + Dj51n(3dut + wd) 51n(jsat + ws) . (3)

While the first term is a sine wave with periodicity p = 2 jd/N’ the second term

in egn. (3) resembles:
2 sin(A + B)cos(A - B) = sin(2A) + sin(2B) . (4)

Consequently, at wave number only the amplitude B (or 82) will appear in the

Ja

spectrum. Depending on is the amplitude D2/4 will occur at t'js (see e.g.,

3
d
Table 1 ). Under these circumstances the total contribution of the daily cycle to
the variance would be B2 + D2/2 but at the exact wavelength of the daily cycle

only the fraction

al = 82/(82 + p?/2) (5)
can be found. Thus, a modulation of the amplitude (e.g., during the seasons) is
simulated in the Fourier series by amplitudes at several waves. It is especially
important to remember these peculiarities of the mathematical tools for the quasi-
cycles, which may be classified as cycles that last for a few repetitions and/or
show modulated amplitudes and then disappear. When they reoccur later with a diffe-
rent phase angle ¢ the amplitude is reduced, too. Since tﬁe power spectrum is
independent of the phase angle, quasi-cycles may be reflected better in the power
spectrum than in the Fourier analysis or periodogram unless the data series is
broken into subparts. Furthermore, meteorological cycles may not produce a plain
sine wave but may display asymmetry which adds to the complexity of the analysis
and separation problems because several terms of the Fourier series areneeded to

provide a mathematical approximation (representation) of the cycle.

TABLE 1.

Example of spectral amplitude for daily cycle of the form of equation (1) and (2),
jq = 360, jg =2, N = 1440, B = 3, D = 3.

: 2
j Aj %
358 | 2.25 | 16.7
359 | 0.00 | 00.0
360 | 9.00 | 66.7
361 | 0.00 | 00.0
362 | 2.25 | 16.7

I 13.50
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3. RESIDUAL ERROR

Under the assumption that cycles (Cj) and/or quasi-cycles (Qj) are present
in atmospheric time series we can formulate the data series Yoo t=1,...,N by
the mathematical expression

ny ny

yt-§ = 3§ C.(8) + I Q.(8) +¢
j=l J j=n1+l

£ - (6)

Usually the number of cycles (nl) and quasi-cycles (n2—nl), ny ﬁ_nz , is not known
a priori and € is a product of random errors which may or may not include random
instrumental errors. For modelling purposes this error €, may be negligible in
many cases, but its consideration is non-negligible in atmospheric time series al-
though the error may prove statistically significant. Furthermore, it is assumed
that the time series is stationary.

As mentioned before, Cj(e) and Qj(e) can be expressed in terms of a Fourier
series while €e would be formulated either as white or red noise. White noise
requires that all amplitudes in the spectrum be of equal size and the phase angles
follow a rectangular distribution. Red noise shows some typical pattern in the dist-
ribution of the amplitudes (see, e.g., later egn. (7)). Thus, the residual error
€ would disclose one of these patterns. )

The most common red noise in meteorology follows a plain exponential sequence

in the autocorrelation series:

Py = exp (~-bt) (7)

with t > 0, b > 0. This exponential series is identical with the first Markov chain

(see e.g., Box and Jenkins (1970), etc.):
k
= p (8)

and = p , where is the first lag correlation. Thus, b = Lnp = anl,pl>0.

P p

1 1
The power spectrum for the exponential red noise can be written (e.g., see
Gilman et al. (1963)):
Ly = [(1-p)/(1+p2-2 coskm/m)]/m (9)
where m is the number of lags. In turn,

m

p, = Z L, cos (tkn/m) . (10)

t k=1 k

Since atmospheric time series may comprise a mixture of cycles, quasi-cycles and
a remaining error, the autocorrelation function can be considered to be a composite

of several terms such as
n-1
+ W p (11)
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where the weights ij =1, and Pe is the correlation of the residual error com-
t

ponent. The summation term in egn. (11) is composed of the cycles or quasi-cycles

in accordance with the Fourier transform (e.g.,/see Kendall (1973)) of the correla-

tion coefficient

oy = ZCj exp(-itJ) (12)

with i = /-1 . The validity.of egn. (11) can be demonstrated (see Essenwanger
(1977,1979)).

4. TESTING FOR STATISTICAL SIGNIFICANCE

If the reality of cycles or quasi-cycles were known 4 priori no test for statis-
tical significance would be necessary. Unfortunately, random processes in meteoro-
logical time series can also produce large amplitudes in the spectrum without phy-
sical reality. E.g., Kendall and Stuart (1966) assume that the distribution of the
squared amplitudes follows an exponential law. Consequently, the probability that

a threshold Aﬁh is exceeded is:

P(A2 > 402k/N) = exp(-k). (13)

th

In many cases, especially when the number of independent amplitudes is large and
the probability is small, Walker (1914) found the probability from egn. (13) to be
incorrect. The probability that one of n independent amplitudes exceeds the thre-

shold Aéh according to Walker is

k. n

pal > 4otk =1 - @ -e O (14)

th

Bloomfield (1976) expresses the probability that the largest squared amplitude

Imax among n independent amplitudes exceeds the threshold k2+£nn as

-1 - _o"k2
BT >k, + Lnn) = 1 - exp(-e “). (15a)

This test is related to Fisher's statistic Gn :

P(nG, > k, + Lnn) = exp(-e_k2) (1)
with )
2 )
Gn = A . / i Aj = (k2 + £Znn) /n. (17)
Consequently:
2 22, kg ’
P(Amax > 40°h"/N) = 1 - exp(-e ¢) (15b)

where h? = k, + &nn. {



170

Brooks and Carruthers (1953) recommended testing by

Aih > c2hi /N (18)
where hi = 4 £n(n/P). this leads to the same threshold as eqn. (15b) because h2 ~
£n(n/P) for P < 0.05 . For P = 0.05, N = 1440, n = 720 we obtain the same test
threshold Gn = 1.33% from (14), (15b),  (16) 2and (18). Ai z-Gn would be signi-
ficant. Only (13) provides a smaller value : Ath = 0.83% . This value stems from
the exponential distribution. A 5% exceedance means that 5% of the (squared)
amplitudes, i.e., 36, can be higher than Aih . This is a different test basis and
no contradiction to egn. (17) or (15a).

Another test procedure which is based on the principle of the analysis of variance
was developed by Hartley (1949). The test statistic is the F-test, but the calcula-
tions for the test are more elaborate than for egn. (13)-(18) because the individual
amplitudes A? enter. The reader is referred to the quoted reference.

The criteria which were discussed above do not take into consideration persistence.

Stumpff (1937) has shown that the threshold A2 should be revises to A; , incor-

th
porating persistence by including the (smoothed) autocorrelations:
2 2 n-1
AT = A (L+2 I r,w,cosif) (19)
P th i=1 i7i

where the weights are wy = (1-i)/N, and 6 = 2mj/N designates the angular frequency.
The author (1950) has shown that the contribution of the term in parenthesis for
daily pressure values of Europe may amount to a factor of four to five. In our case
this adjustment is not necessary because we can include persistence in the testing
of the power spectrum.

It can be shown that 2WA2/02 has a x2 distribution with 2 degrees of freedom
(see e.g., Kendall and Stuart (1966)). In the power spectrum usually we test:

- ) :
R = Lj/LE =X°/V . (20)

Blackman and Tukey (1958) deduce that v = 2N/m ~ 2/3, where m is the number of
lags. LE is the expected value of the power spectrum. For white noise we would
set LE =L . More frequently LE is assumed to be the smooth spectrum.Several
smoothing formulae have been suggested (see e.g., Kendall (1973), p.l1lO0ff).

In our case LE is replaced by the red noise spectrum. Because Lj/LE can be
either greater or smaller than unity both tailends must be tested.

Sneyers (1975,1976) has recently suggested testing the statistical significance
of the residual errors e, after selecting the first, second, etc. harmonic compo-
nents of the Fourier analysis. The Fourier series is discontinued after the residual
errors g, fall below the predetermined level of significance. This selection of
subsequent steps in order of the harmonics is regorously valid if the size of the

amplitudes decreases with increasing order of the harmonics such as in the example
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by Sneyers for the annual cycle in Uccle (Belgium). Oﬁherwise, the harmonics must

be picked in sequence of the size of the amplitude. If the latter selection proce-
dure is chosen the result should resemble the author's method by which an iterative
testing by size of the amplitudes is performed (see details in Section 5). Because
Sneyers methodology requires the recalculation of €t for every added harmonic,

the computational efforts become quite elaborate for larger data samples N and
number of harmonics N/2. Thus, the author preferred testing of the individual ampli-
tudes rather than the residual errors € as the noise in the time series implies

that these residuals are statistically insignificant.

5. SEPARATION OF NOISE AND CYCLES
-

The author's suggested method of separating cycles and noise requires two phases:
first, testing of the amplitudes of the Fourier series;. second, testing of the power
spectrum.

The testing of the amplitudes of the Fourier series is based on egn. (17). As
recommended by Brooks and Carruthers (1953), an iterative process is used by vwhich
the statistically significant maximum amplitude is eliminated. The maximum of the
remaining amplitudes is then retested until no significant amplitude is left. This
process is somewhat cumbersome for a large number of significant amplitudes and
can be abbreviated by extracting more than one amplitude during one step. Let us
denote the iterative threshold by G“T' Then:

-1

[s2 - 1 a2 /2] / s? . (21)
n nl k=]_ k

Because Gn increases only very slowly for large W , G, < Gnr— . Consequently,

1

replacing GnT by Gp ;T > h > 1, does not add components which would not be

selected by the detai;eg process.

The procedure is illustrated in Table 2. The first threshold Gnl = 1.33% of
205 (see Section 4). Three amplitudes in the Fourier series, n = 720, exceeded 1.337%..
These were the amplitudes of the wave number Jj = 2, 360 and 720, or periods of
180, 1 and 0.5 days. The significant waves in this first round are considered
as the true cycles and proved to be the yearly, daily and semidaily cycle. They
ny*23-9%

= 0.319% of 205 . This threshold appears very low, and at first one may expect

amount to 76.1% of the variance (see Table 2). Consequently, Gn4 G

at this low level that A§ > Gn4 for many amplitudes. This is not the case, however,
as the following calculations demonstrate. For n = 720 the average (squared) ampli-
tude would amount to 1/720 = 0.14% of 205 but 717 amplitudes contribute only
23.9% . Thus, the average reduces to 23.9 /717 = 0.033% which is about one-tenth
of Gn4 . This is precisely what can be observed in the spectrum of the 717 remain-

'ing amplitudes. In fact, 69% of the amplitudes stay under 0.033% although under
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the assumption of an exponential distribution (see Essenwanger (1976, p.113)) we
would expect only 60% .

By lowering the threshold to 0.319% only six more amplitudes were added, j =
1, 14, 25, 358, 359 and 361, with a total of 3,51% . This leads to GnlO = 0.274%.
Four more waves {( j = 3, 5, 53, 362) were found to exceed this third threshold .
The test criterion reduces to Gnl4 = 0.255% , but no other amplitude was larger
than Gny, - It should be noticed (Table 2) that the fourteen amplitudes co?prise
the annual, daily and semidaily cycles, j = 4 was added for continuity, and the

remaining three amplitudes may imply the existence of quasi-cycles.

TABLE 2.

Example of the procedure to separate cycles and noise.

Selection of
significant cycles Adj.| Red | Ratio
Power First step [Third step to | Noi-
Cyclesi spectrum per— Gn14=0'274% , 100%| se

3 Lj Lj jp jgp| cent ip % L3 Lj LRj Lj/LRj

0 5.9 5.9% 0 to 20 2( 2.47% 1 - 5| 3.84 1.7% 8.9% 3.7 |2.4
14 0.38
1 2.7 8.6 21 - 60 25 0.46 1.919.9(17.3 {1.4
43 0.31

2 1.4 10.0 61 - 100 1.4 7.4 (7.2 |1.0
3 1.1 11.1 |101 - 140 1.6 {5.7 |7.0 {0.8
4 1.0 12.1 |141 - 180 1.0 5.2 | 6.7 |0.8
5 0.6 12.7 |181 - 220 0.6 3.1 |6.5 |0.5
6 0.8 13.5 |221 - 260 0.8 4.2 (6.2 (0.7
7 0.9 14.4 |261 - 300 0.9 [4.7 | 5.9 |0.8
8 0.9 15.3 |301 - 340 0.9 [4.7 | 5.6 |0.8
9 67.9 83.2 {341 - 380| 360(64.51 [358 - 362|66.72 1.2 |6.2 5.4 j1.1
10 1.4 84.6 (381 - 420 1.4 {7.4 | 5.1 |1.5
11 1.2 85.8 (421 -~ 460 1.2 |6.2 |4.9 |1.3
12 0.7 86.5 (461 - 500 0.7 |3.6 |4.7 |0.8
13 0.6 87.1 |501 -~ 540 0.6 13.1 |4.5 |0.7
14 0.7 87.8 {541 - 580 0.7 |3.6 |4.4 |0.8
15 0.7 88.5 1581 - 620 0.7 {3.6 /4.3 /0.8
16 1.0 89.5 {621 - 660 1.0 [5.2 |4.3 |1.2
17 0.9 90.4 |661 - 700 0.9 (4.7 {4.2 |1.1
18 9.6 100.0 |701 - 720] 720]| 9.08 | 720 9.08 0.5 {2.6 2.1 |1.2
Total [76.06% - 80.79%(19.2%| - - -

jr 1is used for the Fourier ‘series in order to distinguish between power spctrum
and Fourier series. x2test criterion for Ly/Lr: and 160 degrees of freedom at 0.5%
and 99.5% is 0.67 to 1.41. The cycle length ="1/j days or 360/jp.

After completion of the selection of amplitudes from the Fourier series we sub-
tract the cycles (quasi-cycles) from the y, series to obtain e, . Then the power
spectrum for €. is calculated. This power spectrum should now resemble white or
red noise. The power spectrum (Lj) of e 1is displayed in Table 2 in the third
column from the right.

The testing of the power spectrum may now take place with a more stringent signi-
ficance level, e.g., P = 0.99. We find the x2 boundaries for v = 160 as 0.67 <

Ry < 1.41. Let us first consider the assumption of white noise. L = 1/18 = 5.56%,
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and 3.72 < Ly £7.74% . Several L value fall outside the boundaries. Thus,

we may reject the hypothesis that the spectrum of ¢, is white noise.

To confirm the decision we may test r; , the first lag correlation from €
v, after elimination of the cycles. We test whether r; is significantly different
from pj] = 0. The original first lag correlation of Yy was xp = -0.01 due to
the strong influence of the daily cycle (see egn. (11)). After elimination of the
cycles (third step, Table 2) the first lag correlation coefficient for €4 changed
to r; = 0.14. This correlation is significantly different from zero. ( The upper

significance boundary is = 0.052, r, >

¥0.025 1~ ¥o.052
tense of a red noise spectrum is more likely than white noise.

.) Consequently, the exis-

The red noise spectrum LRj baégégon r; for et and the ratio R, = Lj/LRj
are listed in the last two columns of Table 2. We f£ind three classes outside the
boundaries, i.e., j = 0, 5, 10. Several alternatives for a correlation may apply.

First, we may consider that the data series of &g is only a fraction of the
observations. Thus, we should test only a fraction of N. The original number of
degrees of freedom v = 160 may be too high. E.g., instead of N, we may use 19.2%
of N. This reduces v to 30 and expands the boundaries to 0.36 < R; < 2.07. Only
the spectral value j = 0 lies outside these boundaries. The procedure leads to
the re-examination of white noise because the boundaries for Lj/f would be equally
expanded. However, the first lag correlation ry = 0.14 is still significant even
at the reduced level of N, (rl > 0.12).

A second alternative is a substitution of Ly by the smooth spectrum Lj . Under
utilization of the "Hamming window" (see Taubenheim (1969, p.289) or Blackman and
Tukey (1958)), the new ratios Lj/LRj for j = 0, 5, 10 are now 2.5, 0.6, 1.3
This brings the ratios within the boundaries except for Jj = 0. Since Lo is not
significantly above ilo we may be satisfied. Similar arguments are valid for Ls.
This leaves only Lg .

The third option is a correction by an addition or dropping of amplitudes which
fall within the spectral classes. We would augment the 14 amplitudes selected in
phase one by adding the largest, second largest, etc., amplitude of the Fourier
series within the spectral class. E.g., in our case for j = 0 the class comprises
jF from 1 to 20. The largest remaining amplitude was 0.22% for j = 6. We need to
reduce LO =1.7% by almost 0.7% . Wg continue with the next highest amplitudes
which were 3j = 16 and 18. They provide another 0.36% . Finally,we add j = 7 with
0.15% . It should be noticed that in this case we have not created additional"cyclesy
but have only expanded existing cycles. The annual wave has been augmented to jF

=17 =1 to 7 is now 4.21% . The quasi-cycle j_, = 14 comprises now Jj_ = 14
F F

; jF
to 18 with 0.83% .

If we had decided that LlO were significantly above LRlO we would have added

waves in the class J = 11 with jF.= 380 to 420. The maximum amplitudes would occur

at jp = 385 with 0.20% . This addition to the cycles would bring the test ratio
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within the boundaries. Although the amplitude 0.20% below the last G, criteria just-
ification for selection is the peak in the power spectrum. Because the power Spect-

rum is independent of the phase angle quasi-periodicity is better reflected by this

tool.

If the cycle or quasi-cycle at jF = 385 is real it should reappear in a subdivi-
sion of the data. In both half-years (15 July 55 - 11 Jan 56 and 12 Jan 56 - 10
July 56) a maximum around 192-193 can be found in the spectrum (0.35% at jF = 192,
first 180 days, and 0.31% at jF = 194, second 180 days). These amplitudes stay below
the last iterative significance threshold (Gn = 0.61% or 0.41%) of the half-year
selection although they place peak amplitudes. We would need to search for signifi-
cance by further subdivision or we consider the maximum as a side lobe of the daily
cycle. For the subsequent tabulations the author has decided on the second choice,
and only the selections as given in Table 2, step 3, were adopted.

In order to correct a ratio which is too low we have two options. First, we may
drop some amplitudes within the spectral class. If this is not possible (such as
in our case) we may add amplitudes in other classes or augment cycles, etc.. This
supplementation in other spectral classes will reduce the share of the total noise
contribution to the variance and will raise the low Ly in the new spectrum. Usually
after the waves have been selected in the first phase, the first lag crrelation
of ey changes only slightly in the adjustment process during the second phase,
and the red noise spectrum remains approximately the same.

More sophisticated procedures could be engaged, such as a prorationing of waves
into shares of cycles and red noise, but the computational efforts for this sophist-
ication are disproportionate to the improvements or changes of Ly and LRj .

One may object to the correction procedure and the augmentation of the originally
selected number of waves because one could also continue this procedure until the
residual error is white noise. This argument is factually correct, and in the case
of the example illustrated in Table 2 the selection of a few more waves would leave
a white noise spectrum. The drawback is, however, that we may add too many unreal
"quasi-cycles" which are only produced by random processes and persistence. The
latter is taken into account with red noise, however.

In the example of Albrook the difference between white and red noise is very
small.This was one of the reasons for choosing this example for illustration. The
difference is much larger in other climates as displayed by the second example for
6-hourly data at Huntsville, 15 July 1959 to 10 July 1960 Figure 1). )

The observant reader may notice that the annual and daily waves which are listed
as being eliminated in the center part of Figure 1 amount to 73.2% . In Table 3
the share of these cycles adds up to 80.0% , however. This apparent discrepancy
can be explained. In the construction of Figure 1 (center part) only the amplitudes
for j = 1 and j = 360 were eliminated, amounting to 73.2% . In the final analysis

(Table 3) the annual wave comprises the amplitudes for j = 1-6, and the daily cycle
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j = 359-361 which sum up to 80.0%.

SPECTRAL ANALYSIS OF TEMPERATURE

HUNTSVILLE, ALABAMA
0.7 15 JULY 1959 - 10 JULY 1960

SIX HOURLY OBSERVATIONS
7 — POWER SPECTRUM (OBSERVED)
0.6 é —— RED NOISE
7
é ORIGINAL ELIMINATED RED NOISE LEFT 7.5%
0.5 . N
/| - 0.860 ANNUAL  yinve 73.24
7] WAX LAG = 72 POINTS
0.4 . )= 0.748 Py 0.545
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0.3l
0.3 %
é
02| ]
%
7R
0.1 % \\
¢// N
0.0 ”//I/// 1.

j=0124 6 8 10353637 0 2 4 6 8 10 10 12 14 WAVE NO.
> 36 36 4.5 1 DAYS 9 4.53 225 DAYS 4.52.251.5 0.9 0.75 DAYS

Fig. 1. Spectral analysis of temperature

6. CYCLES, QUASI-CYCLES AND NOISE

The procedure of selecting significant amplitudes has been applied to 6-hourly

temperature data of five consecutive years from four typical climates. For the sim-

' plicity of the computer program 360 days were chosen as the basic period (Fast
Fourier Transform) but results from the exact 365 days disclosed little change.
Table 3 summarizes the contributions to the variance by the yearly, daily and semi-
daily cycles, the quasi-cycles and the noise.

Although it is common knowledge that the daily cycle dominates in the tropics
(Albrook) and the annual cycle in the other climatic regions, the amount of the
contribution to the total variance of the data may not be readily available. In the
tropical area the high share of red noise may be a surprise but quasi-cycles are
of little practical consequence. As expected, a strong semidiurnal cycle exists
in the tropics. Its existepce proves to be statistically significant in the subtro-
pical and temperature zones, albeit with a much smaller contribution. The highest
percentage of quasi-cycles can be found in the subtropical (Huntsville) and the
temperate - (Frankfurt) zones, but the strong showing in the polar region in some

years may be somewhat of a surprise.
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TABLE 3.

Fractional share of cycles, quasi-cycles and red noise.

Albrook (Canal Zone)

Year 1955 1956 1957 1958 1959
Mean 26.1 26.7 27.1 26.7 26.4 degree C
Variance 8.0 9.5 8.6 8.4 8.2 (degree C)2
Annual Cycle 3.8 2.4 2.6 1.4 1.5 %
Daily Cycle 66.7 69.9 67.0 67.8 67.4 %
Semi-Daily Cycle 9.1 9.8 11.6 10.5 8.9 %
Quasi Cycle 1.2 0.6 1.3 1.6 0.5 %
Red Noise 19.2 17.3 17.5 18.7 21.7 %
Huntsville (Alabama)
Year 1959 1960 1961 1962 1963
Mean 15.6 15.4 16.1 15.7 17.3
Variance 107.4 92.8 96.9 | 113.2 [104.9
Annual Cycle 71.4 66.8 66.1 68.8 70.7
Daily Cycle 8.6 11.4 10.3 9.2 10.6
Semi-Daily Cycle 0.4 0.6 0.5 0.5 0.5
Quasi-Cycle 12.1 11.9 14.6 11.6 9.9
Red Noise 7.5 9.3 8.5 9.9 8.3
Frankfurt (F.R.Germany)
Year 1958 1959 1960 1961 1962
Mean 10.2 10.3 9.8 8.9 7.5
Variance 63.8 65.6 48.1 63.3 95.0
Annual Cycle 70.6 65.9 64.6 63.7 77.3
Daily Cycle 11.5 13.4 12.4 9.6 8.5
Semi-Daily Cycle 0.3 0.2 0.2 0.2 0.2
Quasi-Cycle 10.4 13.6 11.8 18.4 7.9
Red Noise 7.2 6.9 11.0 8.1 6.1
Barrow (Alaska)
Year 1958 1959 1960 1961 1962
Mean -11.9 {-13.4 -14.1 (-11.4 |-11.1
Variance 174.5 |175.6 [164.8 |143.6 |169.0
Annual Cycle ) 91.9 87.7 91.9 83.0 86.2
Daily Cycle 0.6 0.4 0.5 0.4 0.3
Quasi-Cycle 3.4 8.3 5.0 10.9 8.8
Red Noise 4.1 3.6 2.6 5.7 4.7

The statistical criteria wutilized in the selection of significant waves are
found in Table 4. The first row for every station after the designation of the year
provides the last threshold of Gn separating significant and insignificant ampli-
tudes. Although this value may appear to be very low, especially at Barrow, the
threshold must be brought into perspective with its association of the majority
of amplitudes. First we notice that everywhere the (lowest) test criterion Gy is
about ten times as high as the average of the remaining amplitudes (third row, Table
4) . Let us examine the lowest threshold, Gp = 0.05% , at Barrow (1960). A frequency

distribution of the (squared) amplitude revealed that the median (squared) amplitude



17T
TABLE 4.
Quasi-cycle selection.

Albrook Huntsville
Year 1955 1956 1957 1958 1959 1959 1960 1961 1962 1963
A€£/202 0.26% 0.24% 0.24% 0.25% 0.29% ||0.12% | 0.13% | 0.13% | 0.14% | 0.12%
n, 13 11 12 11 8 53 45 53 41 40
n 9 8 7 7 7 10 9 10 8 9
Xi/202 0.027%| 0.024%| 0.025%| 0.026% | 0.031%} 0.011%| 0.014%} 0.013%| 0.015% 0.012%
ry -0.01 -0.03 -0.04 -0.03 -0.02 0.86 0.82 0.84 0.85 0.84
L. 0.14 0.14 0.13 0.16 0.09 0.54 0.55 0.54 0.58 0.58
Frankfurt Barrow
Year 1958 1959 1960 1961 1962 1958 1959 {1960 |1961 1962
Af__h/2c2 0.11% 0.11% 0.16% 0.12% 0.09% ||0.08% {0.07% [0.05% |0.08% | 0.07%
n, 40 34 38 48 35 42 46 56 41 53
ng 10 12 10 9 12 19 10 19 16 15
X%/Zcz 0.011% | 0.010%| 0.016% | 0.012% | 0.009%|i 0.006%|0.005%| 0.004%| 0.008%| 0.007%
ry 0.83 0.82 0.80 0.85 0.88 0.98 0.98 0.98 0.97 0.98
o 0.51 0.51 0.59 0.54 0.48 0.78 0.84 0.83 0.81 0.86
Agh = lowest significant threshold n, = number of amplitudes > Aih
AR = average of remaining amplitudes n_ = number of amplitudes for annual,daily,
semi~daily cycle

TABLE 5.

Examples of quasi-cycles.

Albrook 1958 Huntsville 1961 Frankfurt 1961 Barrow 1961
Cycle PV Cycle PV Cycle PV Cycle PV
(days) (days) (days) (days)

45-51 1.0% 36-50 1.5% 33-60 5.1% 14-21 5.8%
6-8 0.6% 24-30 2.1% 17-26 4.5% 12-13 1.5%
13-18 3.9% 13-16 3.0% '9-10 2.2%
9-11 3.5% 11 0.6% 6-7 1.1%‘
6-7 1.2% 7-10 4.3% 5-5.5 0.3%
4-5 2.4% 4-6 0.5% 4 0.1%

3-2 0.4%

PV = percentage of variance

was < 0.001% . This would lead to a standard deviation of 0.0014% in an exponential -
distripution. Under the postulation of an exponential distribution and ¢ = 0.002 ,
i.e., a standard deviation even higher than the one deduced from the median value,

only 6% of the amplitudes are expected to exceed 0.005% which is one-tenth of the



178

threshold. The criterion of 0.05% corresponds to an expectation of less that 1 value
in 108 data points in an exponential distribution. For 715 amplitudes the moments
fit leads to ¢ = 0.013% which would be one-fourth of this lowest G, = 0.05%. Even
then only 1.5% of the amplitudes, or 10, are normally expected to exceed this thre-
shold. Thus, the significance threshold is not so low as it appears from its numeri-
cal value. Besides, the numerical value of the amplitude for 0.05% is A = 0.4°C
which is twice as large as the selection criterion G, = 0.25% , i.e., A = 0.2°C,

in the tropics.

The derived quasi-cycles cannot be totally listed in the frame of this article
but one example for the year with the highest contribution is given for every station
(Table 5). Although the individual amplitudes must fulfill the individual test cri-

'terion they can later belumped together whenever they show consecutive wave numbers
thus forming a "window" or resembling a "filter band". This conbination is justified
because the seasonal variation of the amplitudes and/or the change in the length
of periodicity are reflected in the spectrum by a spreading over several Fourier
terms which are conneqting wave numbers in the majority of cases. In order to take
conditions into account which are similar to the iiiustration in Table 1,ocationally
the bandwidth needs to be expanded by connecting isolated waves or adding too separate
bands with two or three adjacent amplitudes. Therefore, the number of selected ampli-
tudes is not identical with the number of separate quasi-cycles. In the present analy-
sis the number of quasi-cycles was held held to seven or less for every one of the
analyzed hourly sets of data.

We learn from the given examples that the combined amplitudes of one quasi-cycle
would exceed the first selection criterion Gnl = 1.33% in most cases. We could
adopt a rule that only quasi-cycles which meet this additional criterion should be
considered statistically significant. This rule would lead us back, however, to the
problem of significant peaks in the power spectrum of Et whenever these selected
amplitudes are included in the noise.

The physical reality of these quasi-cycles cannot be determined without a detailed
analysis of the atmospheric fluctuations, their causes and their reflections on the
particular meteorological element under study. E.g., the six to seven day cycle at
Huntsville appears to be associated with cyclonic movements (cyclone families)
while a quasi-cycle of nine to eleven days seems related to repititive synoptic
situations during cold air outbreaks in winter (see Essenwanger (1977,1979)). Detailed
analysis of the quasi-cycles could also include the study of the phase angle ¢ and
the fluctuation of the amplitude in time. '

Finally, it may be noted that the method to separate the data series into three
components resembles, in priciple, Craddock's (1956) proposal of filtering meteoro-—
logical time series. Two significant differences from Craddock's method exist, how-
ever, First, the cycles (quasi-cycles) are subtracted from the original data series

which leaves the noise as a defined statistical quantity. Second, a relatively
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simple mathematical formulation of the components is found in terms of the Fourier
series and red (or white) noise. The differences are inherent in the dissimilarity
of the analysis in Craddock's and the author's methods.

One additional fact about quasi-periodicity will be called to the author's atten-
tion. Quasi-cycles comprise usually a limited number of cycleswhose total length is
shorter than the entire data series. They disappear and may reappear but the phase
angles of the individual parts may not be aligned. this produces a reduction of the
amplitude in the Fourier terms of the total data sample. Because the power spectrum
is independent of the phase angle a statistically significant cycle may be indicated
in this tool while testing against the red noise background.

In such a case the only method to determine its Fourier representation for elimi-
nation from the data in order to separate cycles and noise is a subdivision of the
data series and a subsequent harmonic (or periodogram) apalysis of these subsamples.
This research for quasi-cycles and their reality may sometimes be somewhat cumbersome
but no simple tool exists by which quasi-periodicity can be easily identified. The
filter analysis could prove more advantageous in such cases but statistical testing
is more difficult in filter analysis. The reader should keep in mind that quasi-
periodicity is also produced by random processes. Therefore, statistical testing
and a careful analysis are essential Before hasty conclusions are drawn.

We may observe in Table 4 that in all cases the first lag correlation of the ori-
ginal data series is not identical with the first lag correlation of the red noise
component. Where the daily cycleis dominant this original correlation coefficient
is lower but where the annual wave controls most of the variance the red noise lag

correlation is lower than the original correlation.

7. CONCLUSIONS

The author has attempted to define quasi-cycles in atmosphefic time series as
the third compénent after extracting cycles and separating the red (or white) noise
by testing the power spectrum. The Fourier series of the spectrum is utilized as
an auxiliary tool to extract significant amplitudes by an iterative process and lo-
cate the quasi-cycles.

The representation by three components enables us to formulate a few mathematical
terms for meteorological time series without a lengthy listing of the individual fre-
quencies of the power spectrum, and without loss of detailed information.

Some reservations can be made to the use of the Fourier series. The fluctuations
of the amplitude of gquasi-cycles, the disappearance and reappearance with a diffe-
rent phase angle and the associated diminution of the amplitude may distort the
recognition of quasi-cycles in harmonic analysis.The described process combining
harmonic analysis and spectrum analysis decreases this deficiency. In turn, the

step by step significance testing minimizes the probability that quasi-cycles are
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selected which are produced only'by chance without physical reality.

The first lag correlation of the regular time series is governed by the presence
of periodicities (such as the annual or diurnal cycle) or quasi-periodicities .
Therefore, this lag correlation is not well suited for testing of significance again-
st red noise background in power spectra of the entire data series. After cycles
and quasi-cycles have been removed, the presence of red (or white) noise can be test-
ed by the first lag correlation of the residual error. One should reconsider this
type of noise as the "real" or "residual" noise in meteorological time series because
it is free of cycles and quasi~cycles and is predictable only in form of statistical
characteristics.

After extraction of the quasi-cycles they must be further investigated as to their
physical reality unless the physical background is obvious.

Quasi~periodicities may not always prove to be statistically significant in the
power spectrum of the entire data series as tested against the "classical" red noise
background but the entire window (filter band) may prove statistical significant.
Caution must be exercised, however, in the interpretation of guasi-cycles because
they can also imply side lobes of existing cycles or quasi-cycles. Thus, a detailed
analysis of the atmospheric fluctuations, their causes and their reflections on the
particular meteorological element is essential before a complete interpretation of
these quasi-cycles can be made. The identification of the quasi-cycles can be help-

ful for the follow-up study and problem formulation.
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DETECTION OF CHANGES IN THE PARAMETERS OF PERIODIC OR PSEUDO-PERIODIC SYSTEMS WHEN
THE CHANGE TIMES ARE UNKNOWN
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ABSTRACT

MacNeill,I.B., Detection of changes in the parameters of periodic or pseudo-periodic
systems when the change times are unknown. Proc. l-st Intern. Conf. on Stat.
Climat., held in Tokyo, Nov.29-Dec.l, 1979

A method of detecting changes in regression when change times are unknown has
been discussed by the author (Annuals of Statistics, 1978). An alternative to this
method, which has based on cumulative sums of raw regression residuals, is presented
in this paper. The new method, which is based on a likelihood-ratio type test, is
applied to various climatological data sets, including tree-ring data, temperature
data and sunspot series.

1. INTRODUCTION

Most climatological and meteorclogical phenomena are, at least in part, probabil-
istic in nature and, as such, are properly described by stochastic models. These
models may be characterized by certain parameters. As an example, consider the daily
maximum temperature at a station. A reasonable model might be of a regression type
with a year cycle plus constant forming the mean value function, and with a random
element superimposed upon this function. More specifically, if T(t) represents
the daily maximum temperature for the t-th day in the series and e€(t) represents
the corresponding random element, then, for appropriate parameters u, A, w and

¢, the stochastic model might take the form:
T(t) = u + A sin(wt + ¢) + e(t), t=1, 2, ...

Usually, one woﬁld expect a temperature series to possess the property of stationarity,
and hence one would find the statistical problem associated with such a model to

be one of the estimation of parameters. However, in some instances, it may be that

the stationarity assumption is not valid and that the parameter values change with
time. If the change times are known, then the statistical problem becomes a two-sample
test of hypothesis, which in this case possesses a reasonably standard solution.

However, if the change times are unknown, the problem of detecting change in u
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and/or A becomes non~standard. The problem of testing for change of regression
at unknown times was first considered by Quandt (1958, 1960) who proposed a test
for no change versus one change based upon the likelihood ratio. Hinkley (1969)
and Feder (1975) also explored the likelihood ratio test approach. Brown, Durbin
and Evans (1975) proposed tests based upon recursively generated residuals and the
associated sequences of parcial sums of these residuals. MacNeill (1978a, 1978b)
examined the properties of sequences of partial sums of raw regression residuals
and proposed a Cramér-von Mises type statistic for use in testing for change of
regression at unknown time. In the sequel, a related test statistic is proposed.
~ This statistic is derived using an approach of Chernoff and Sacks (1964), Gardner
(1969) , and MacNeill (1974) for the detection of parameter changes at unknown times
in a sequence of independent and identically distributed random variables.

Another series, much speculated upon by climatologists and meteorologists, is
the Wolfer sunspot series. Models of the autoregressive typé, which can be used
to characterize pseudo-periodic phenomena, have been shown to fit this series better
than those with strict periodic components. Also, it has been suggested that the
series is not stationary, and that the parameters of the fitted autoregressive models
are different in different parts of the series. The question then naturally arises
as to where the change points are. This again is a problem of detection of change
of (auto) regression at unkown time. The test proposed below can be considered for
such problems although distribution theory is not the same as in the previous example.
In the examples considered below, the sunspot series is analysed as a periodic phe-

nomenon and autoregressions are fitted to several other series.

2. DERIVATION OF THE TEST STATISTIC

The regression model considered below is characterized by a set of regressor
functions {fk(t), t=1[0,11, k=0, 1, 2, ..., p} and a set of independent and
identically distributed error terms {Ej, j 2 1} each normally distributed with
zero mean and variance 02 > 0. Without loss of generality, the time parameter is
scaled into the unit interval. The dependent variables {Yj, j=1, ..., n} are

then defined by:
Yj = §' g(tj) + ej' i=1, 2, ..., n,
wherxre

£ (tj) = {fo(tj), fl(tj)' ceey fp(tj)}

and
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9‘ = {BOI Bll

cees Bp}
is the vector of regression coefficients. In the standard matrix formulation, this

may be written as:

= +
Y =xB+e,
where X 1is the design matrix whose ij-th component is fj(ti). The Gauss-Markov
estimator for ép’ denoted by EP' is:

-1

= (X'X) X'y .
p “n~n ~n*n

2TD >

The subscripts on the vectors and matrices are omitted where no confusion results.

The vector of regression residuals is defined to be Y - g where the i-th component

The null hypothesis that is to be tested is:

HO: E(Yi) = Eé f(ti), i=1,2, ..., n

where B is fixed but unknown. The alternative hypothesis requires changes in

~0
go at unknown times. To specify alternatives, we let
= 8 ven
83 = osr Syyr ovr Oy

represent the changes in the vector of regression coefficients effected between
the i-th and the (i + 1)-th observation. That is, if gi is the vector of regression
coefficients for the i-th observation, then
. =8, +8§,.
@ +1 gl ~i
So that the Bayes—type argument introduced by Chernoff and Sacks (1964) may be used
to eliminate nuisance parameters, we assume that § has a multivariate normal distri-
. . . . 2
bution with zero mean and covariance matrix T I where 12 > 0. We then let a par-
ticular change sequence be defined by:

}

w' = {wl, Woy wees B g
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where w, is 1 if a change in B occurs between the i-th and (i + 1)-th observation
and is zero otherwise. Thus, a single change through the series of observations

would require one component of w to be 1 and the rest zero. The assignation of

a prior distribution to the collection of all possible change sequences, W, then
makes it possible to formulate the problem in a way introduced by Gardner (1969).

The nuisance parameters, §i; can then be integrated out and, with T2 small, the
likelihood ratio statistic for testing HO against change sequences W, with a uniform
prior can be shown to be approximately propotional to:

9, == I ra-xen e £ a - xxnT oy,

where §k is X with the first k rows identically equal to zero. The approximation

becomes exact as 12 vanishes. Note that:

n-1 n-1
o =2 3 Jlera-xxn k2= 1 || - vnxF])?
n T o2 g T EH LK 2 -
0% k=1 0% k=1
where, if
zZ' = {zl, Zgr wens Zz}'

2_ .2, 2 2
z]]° = 2]+ Zy 6 ...+ oz

Associated with the sequence of partial sums of regression residuals is a gener-
alized Brownian Bridge (see MacNeill 1978b) which we shall denote by {Bf(t), tel0,11}.

The stochastic integral

1
J B,zf(t)dt
0

is then related to a Cramér-von Mises type statistic defined upon the sequence of
partial sum of regression residuals; some examples are considered by MacNeill (1978a).

2
Let He and ¢ denote the mean and variance of the stochastic integral. Then it

£
may be shown that:

2 n
E(Q) =0 He I (i - 1)(§i'§i)
i=1 -

and

a 2 n n 2
var(Q) = 20 o, I I [min{(i- 1), (3 - D} (gnx.)2
i=2 j=2 173
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where Xi is the i-th row of the design matrix X, and

P p
(Xi‘X.) = I X, X. z
2177y =

= £ () £, ().
220 ife™ie 2=0 £°71 L3

Distributions of the statistic Q are skewed as can be seen from Table 2 of MacNeill

(1978a) , where it can be noted also that the upper 5% point is approximately two

standard deviations above the mean.

3. APPLICATION OF THE TEST STATISTIC
Three examples are considered below.

Example 1l: Average annual riverflow of the Nile at Aswan for the period 1870-1945.
The 75 observations in this series are plotted in Figure 1. Inspection of the

data suggests .a decline in average flow over the course of the series. An autoregres-

sive model of-order 1 fitted to the mean corrected data yields the following:

(Z(t) - 2947.7) = 0.6773{z2(t - 1) - 2947.7} + e(t).

RIVERFLOW 1870-1945
4649

4

4149 1

3649 4

3149 4

2649 4

1.

2149

1649 v . -

61
TIME (YRS)

Fig. 1. Average annual riverflow of the Nile at Aswan for 1870-1945.
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. The computations for test of change of the parameters of the model at unknown

time yield the following:
Q = 93.8 x 106,

E(Q) = 48.4 x 106,

and

Nar(@ = 1.17 x 10°.

Although the mean and variance represent approximations, it is evident that the

test has detected what is an obvious change of parameter.

Example 2: Tree ring data for Jeffery Pine from the Tioga Pass, California, for
the period 1384-1964.

TREE RING DATA

n

106

301

_J
-
=)
S
NQ
2

TIME (YRS)
Fig. 2. Tree ring data for Jeffery Pine from Tioga Pass, Califoenia, 1384-1964.
The 661 observations in this series are plotted in Figure 2. An autoregression

of order 1 was fitted to the mean corrected data and the statistics for testing

for change of parameter at unknown time were calculated as follows:
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0 = 21.1 x 10%,

E(Q) = 20.1 x 10°,

and

Nar(@ = 1.45 x 10°.

Thus this computation does not appear to support the hypothesis of change of parameter.
Example 3: Wolfer sunspot series for the period 1700-1960.

The 261 observations in this series are plotted in Figure 3. These data are often
regarded as periodic with a period of approximately 11.2 years and corresponding
frequency of 0.56 radians per year; this conclusion is suggested by a spectofal
analysis. However, it has been found that finite parameter schemes, such as the
autoregression of order 2, do a better job of fitting the data than does a model
with a periodic component. Part of the explanation for this could be that changes
in mean level, amplitude, or phase make it difficult for a periodic model with fixed

parameters to fit the data.

SUNSPOTS  1700-1960

T T b T

1 31 61 91 121 151 181 211 24
TIME (YRS)

Fig. 3. Wolfer sunspot series, 1700-1960.
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The following model is fitted to the sunspot series:
Z(t) = u + A sin(wt + ¢) + e(t)

where p, A and ¢ are estimated by least squares. This yields, as estimated model,

the following:
Z(t) = 14.47 + 4.66 sin(0.56t - 1.38).

This fitted model is superimposed over the original data in Figure 4. The fit ig
rather poor; several probable reasons are: first, the mean level of series fluctuates;
and, second, the fitted series becomes out of phaée with the actual observations
at certain times.

The statistics of the test for change of parameters at unknown time are as follows:

Q = 27.09 x 10°,

E(Q) = 2.05 x 10°,

and
Nar(@ = 0.75 x 10°.

The test strongly suggests that a change of parameters occurs within the time
period of the observations. l

As suggested above, the mean level of the series appears to fluctuate with time.
To investigate the series further, a mean value function was fitted empirically
to the data. This function, which is a rough estimate of the actual mean value func-
tion appears as the broken line graph superimposed on the original series in Figure 5.
The difference between the original series and the estimated mean value function
appears in Figure 6. Again, a sinusoid with frequency 0.56 was fitted by least squares
to the mean corrected data resulting in only a modest improvement of the fit; the
fitted sinusoid is superimposed on the mean-corrected series in Figure 7. One problem
that is immediately apparent is the serious phase difference between the two series
in the time period running approximately from 1770 to 1800. If this period is deleted
from the series, and a sinusoid of frequency 0.56 is fitted to the data, a much
better fit occurs. This fit is graphed in Figure 8. If seperate fits are made to
the pre 1770 data and to the post 1800 data, still better fits occur; Figure 9 and

10 show the respective fits.
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Fig. 6. Mean corrected Wolfer sunspot series.
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Fig. 7. Mean-corrected Wolfer sunspot series and fitted sinusoid.
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Fig. 10. Mean-corrected Wolfer sunspot series and fitted sinusoid, 1800-1960.
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PRECIPITATION SIMULATION PROCESS WITH MARKOV CHAIN MODELING

O0.P.BISHNOI and K.K.SAXENA

Dept. Agronomy and Dept. Math. and Stat., Haryana Agric. Univ., Hissar (India)

ABSTRACT .

Bishnoi,0.P. and Saxena,K.K. Precipitation simulation process with Markov chain
modeling. Proc. l-st Intern. Conf. on Stat. Climat., held in Tokyo, Nov.29-
~ Dec. 1, 1979

The daily precipitation data for two stations Hissar (Arid) and Ambala (Dry sub-
humid) have been analysed with the help of Markov chain models representing the con-
ditional dependence. This has been done by using a loss function composed of a log
likelihood ratio term and a degree of freedom term is used as a decision criterion.
It has been found that the third order Markov chain model represents better the daily
precipitation occurrence during the S.W. monsoon season. The common practice of as-
suming first order Markov chain is unjustified. If the record length is less than
2000 days at Ambala and 4000 days at Hissar, there is a tendency for a low order
chain to be misrepresented as the proper model. A specific example in which third
order model is required to depict the precipitation occurrence has been given in
detail. Therefore, the proper Markov order describing the daily precipitation occur-
rence process has to be determined and cannot be assumed a priori. The common practice
of assuming the first order model is unjustified.

INTRODUCTION

The daily precipitation occurrence can be approximated by simple Markov chain
model, but there have been instances in which the simple Markov chain is not able
to depict the daily occurrence properly. On the basis of a hypothesis testing pro-
cedure, Chin (1976) presented definitive examples in whiéh the simple first order
chain should be rejected and a second order model was proposed for such occasions.
In the present work this has been shown for the S.W. monsoon and N.E. monsoon pre-
cipitation. Instead of the conventional chi-square test, a decision procedure based
on the extension of the maximum likelihood priciple has been used. The primary objec-
tive is to determine the proper order of Markov chains that would be appropriate
to represent conditional dependence of daily precipitation occurrence in the S.W.
monsoon and N.E. monsoon seasons. A second objective is to ascertain to what extent,

if any, the Markov order is effected by sample size variation.

MATERIAL AND METHOD

The daily precipitation records during S.W. monsoon season June to September)
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and N.E. monsoon season (December to February) for 30 years at Ambala (1941-70),

and 55 years at Hissar (1915-70 , except 1945) during the S.W. monsoon season and

40 years during N.E. monsoon season (1931-70) have been utilized in the present study.
A markov chain is a sequence of discrete random variables and is said to be of

order k if k is the smallest positive integer, such that for all n the following

equation relating the conditional probabilities is satisfied:

}o= pix |x .

P{xn[xn-l'xn—2""’Xn—k’xn—k—l"" n-1"Xn-nr X

An approach to the problem of model identification based on an extension of the
maximum likelihood principle was proposed by Bartlett (1951), Akaike (1972, 1974),
Tong (1975) and Gates and Tong (1976). Akaike (1974) defined the AIC(6) in terms
of k such that

AIC(8) = -2 log{maximum likelihood)} + 2k ,

where k 1is the number of independently adjusted parameters-within the model.f is
an unknown vector parameter in the probability density function. When there are
several competing estimates in a model identification problem, the estimate that
minimizes AIC is the appropriate chOice.

Using a simplified notation, the transition probabilities of an ergodic Markov

chain is denoted by P, and the frequency of these transitions

i,i+l,i+2,...,3-1,3
by Ni,i+1,i+2,...,j—l,j . In dealing with large samples or relatively long records

of observations the log likelihood function is given by

log L log P,

= I, . . N . . . . .
i,i+l,...,3-1,7 "i,i+1,....3-1,3 i,i+l,...,3-1,3

=2 log (N, /N )

1,041, .00, 3-1,5 Ni,441,.0.,9-1,5 1,441, ...,5-1,3" V4,441, ... ,5-1

where (N )} is the sample maximum likelihood estimate

1,441, ...,3-1,3M,84, L 501
of the unknown transition probability of the population. Specifically we want to

compare the relative validity, for example,between an mth-order and (m-1)th-order

model. Let P, reprrsent the transition probabilities of an mth-order

i,i+1,...,3-1,3
chain and S be the number of states ; we want to find out if

P, . . .= . . . i=1,2,...,8.
i,i+l,...,3-1,3 P1+1,...,j—l,j vhere i 1.2 s

A pertinent step is to form the log-likelihood ration log Am—l m - Hoel (1954)
r

has shown that -2 log A for an ergodic chain is asymptotically a chi-squared

m-1,m
. . +1 . , .
variate with v2s™ degreedom. Here V 1is the difference operator on the subscript:

Vx~ =x - X ’ v2x2 = V(an) .
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Rewriting -2 log Am as

H
-1,m n-1m 1 We have

[log {N. }

i,441,...,3-1,9"N4,44, ..., 591

/Ni+l,...,j—l}] .

H =21z, , . . N, o, . .
m-1"m i,i+1,...,3-1,3 N1,1+l,.--:]—1r3

“logiNy L5103

The right hand side of the above equation is a measure of how well the observed se-
quence supports the hypothesis of an mth-order versus an (m-l)th-order chain, where
the count of the successive number of states observed in the sequence i, i+l,...,
j-1, J adds up to m. For k < (m - 1) it can be shown that

H = H

k' kK%-1 toxerflger *ooe0

m—le
We assume that the individual terms on the right hand side of this equation to

fm

gkt |

be asymptotically independent. Then, given that the chain is of order k, has

X . X . . : o+

a chi-squared distribution with degrees of freedom given by v = vs™ 1
To formulate a decision procedure related to the problem of Markov order identi-

fication, the fundamental step is the choice of an appropriate loss function. On

the basis of the AIC approach, Tong (1975) proposed the following loss function:

R(K) = ,H - 2(vs™ L gkt

where k is the order of the fitting model and m is the highest order under con-
sideration. Thé loss function R(k) thus defined is composed of two counter-acting
terms representing the log-likelihood ratio and the degree of freedom, respectively.
As one tries to fit the observed data with Markov chains of higher and higher orders,
'the log-likelihood ratio terms will most likely decrease progressively. But this
reduction in variance is achieved at the price of increasing model complexity and

is reflected as a graduated penalty by the increasing degree of freedom term. The
selected Markov orders k is the one that minimizes the sum of these two terms.

This is the minimum AIC estimated (MAICE).

A day has been described as a wet day (w) if at least 1.00 mm rainfall is recorded
on that day, otherwise defined as a dry day (d) . The past four days weather pheno-
menon has been presented in Table 1 for Hissar and Ambala.

The MAICE procedure indicated that the precipitation occurrence process in the
monsoon months can best be described by a third order model. A comparison of this
model with second and first order Markov chain models in their ability to represent

monsoon precipitation characteristics would be instructive. Any model that can des-
cribe the daily precipitation occurrence process well should be able to represent
the distribution of dry and rainy sequences as well. A dry sequence of length r is
defined as a succession of r dry days preceded and followed by at least one rainy
day. A wet sequence is defined correspondingly. ~ The positive integer ¥ may take
a value of 1. The distribution of dry sequence based on the third order model is

given by
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p(w)p(d|w)p(w|d,w)

P@) = p(wp(d|wp@la,wpwld,d,w
p(w)p(d|w)p(d]d,w)p(dld,d,w)p(d]d,d,a)r'3p(w|d,d,a)

>

2
3.

Here P(dr) is the marginal probability of getting a dry sequence of r days, and

p(w) is the marginal probability of day being wet. Calculations of second and first

order distributions were carried out by using similar procedures.

TABLE 1.

Occurrence of wet and dry days alongwith their weather phenomenon on preceding days
of Ambala and Hissar for (a) $.W.monsoon period (June-Sept.)

Hissar Ambala
Preceding days Observation day t Observation day t

t-4 t-3 t-2 t-1 w d Total w d Total
1236 5474 6710 914 2746 3660

w 452 784 1236 434 480 914

4 764 4710 5474 480 2266 2746

w \ 189 263 452 230 204 434

a w 268 496 764 204 276 480

\4 d lel 623 784 116 364 480

d [} 579 4131 4710 308 1958 2266

w \ w 96 93 189 128 102 230

d w w 103 165 268 29 105 204

w d w 60 101 161 42 74 116

a a w 189 390 579 145 163 308

d 4 d 475 3656 4131 244 1714 1958

w d d 114 509 623 57 307 364

d w d 110 386 496 68 208 276

w w a 60 203 263 41 163 204

d d d d 681 2975 3656 188 1526 1714
d d a w 159 316 475 106 138 244
d a w d 21 299 390 37 126 163
d a w w 73 116 189 70 75 145
a \ d a 85 301 386 22 186 208
d w a w 39 71 110 26 42 68
d \ w d 44 121 165 14 91 105
d w w W 56 47 103 49 50 29
w d d a 74 435 509 51 256 307
w d d w 35 79 114 25 32 57
w d w d 32 69 101 26 48 74
\ d \Y w 23 37 60 24 18 42
w w d d 33 170 203 24 139 163
w w d \ 22 38 60 16 25 41
w w w a 16 77 93 14 88 102
w w \ \ 41 55 96 74 54 128

(b) N.E. monsoon season (Dec.-Feb.)

186 3513 3699 235 2472 3707

\ 41 145 186 82 153 235

d 146 3367 3513 154 2318 2472

w w 9 32 41 25 57 82

d w 31 115 146 55 99 154

W d 8 137 145 8 145 153

d a 137 3230 3367 140 2178 2318

w w W 2 7 9 4 21 25
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TABLE 1 (cont'd)

d woow 7 24 31 21 34 55
w d w 2 6 8 3 5 8
d d w 28 109 137 47 97 140
a d d 121 3109 3230 134 2044 2178
w d da 10 126 136 6 139 145
4 w 4 9 106 115 6 93 99
w w d o] 32 32 2 55 57
a 4 d da 116 2996 3112 118 1926 2044
d d d w 30 91 121 50 84 134
d 4 w d 15 95 110 6 91 97
d 4 w oW 7 21 28 21 26 47
d w d da 14 93 107 2 91 93
d w d w 3 6 9 2 4 6
d w w d 2 22 24 2 32 34
d w w w 2 5 7 4 17 21
w d d d 9 116 125 4 135 139
w d d w 0 10 10 1 5 6
\ d w d 0 6 6 1 4 5
w d woow 0 1 1 (o} 3 3
w w d d 3 29 32 4 51 55
\ w d w 0 0 0 0 2 2
w w w 4 (¢} 7 7 1 20 21
w W w w 0 2 2 0 4 4

With the state space composed of d and w, there are 16 permutation in a 4-
day sequence. In considering_all possible 4-day sequences in a long record, repeated
counting upto 4 times for each day, in making up the sequences is permitted. An
example of observed and expected 4-day sequences without any restriction of preceding
aﬁd following day are shown in Table 2.

The model expectations were computed by using marginal probabilities of each se-
quence. Some examples for the formulation of these probabilities for the third order

model are as follows:

p(dddqd)
p (wwdd)

p(@p(d|d)p(ald,d)p(d]|d,a,d),
plwp(w|wip(@|w,wp@la,w,w .

Since the contents of the 16 classes in Table 2 are not independent and are not
mutually exclusive, the chi-square test for goodness of fit is not applicable. How-
ever, the relative magnitude of the quantity
16 (n; - e;)?

Xs = r ——, n, and e, being the observed and expected frequencies,

. e,
i=1 i

could still provide a gualitative indication of how well the models fit, in spite

of the differences in degree of freedom. The x2 for M3 is the smallest out of

the three. Without making any assertions about the probability values, it seems likely
that the third order model can simulate the distribution of 4-day sequences in this

case with much more fidelity than either the second or the first order model.
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TABLE 2.

Observed distribution of 4-day sequences compared with those computed with the first
order (ML), second order (M2) and third order (M3) Markov chain models.

(S.W. Monsoon Season)

(a) ambala
Sequence  Observed M3 M2 M1 M3 - Obs, M2 ~ Obs. Ml - Obs.
ddad 1714 1712 1692 1543 -2 ~22 -171
ddaw 244 243 266 326 -1 22 82
ddwd 163 164 177 208 1 14 45
ddww 145 145 136 188 0 -9 43
dwdd 208 209 209 208 1 1 o)
dwdw 68 68 66 44 0 -2 -24
dwwd 105 105 100 120 0 -5 15
dwww 99 99 108 108 0 9 9
wddd 307 306 315 327 -1 8 20
wddw 57 57 49 69 0 -8 12
wdawd 74 75 66 44 1 -8 -30
waww 42 42 49 40 0 7 -2
wwdd 163 164 147 188 1 ~16 25
wwdw 41 41 49 40 ) 8 -1
wwwd 102 103 108 108 1 6 6
WWwwW 128 127 123 99 -1 -5 -29
x2-value 0.06 11.94 110.90
(b) Hissar
dddd 3656 3655 3622 3486 -1 ~34 -170
dddw 475 477 509 565 2 34 20
ddwd 390 389 376 416 -1 ~14 26
ddww 189 190 205 240 1 16 51
dwdd 386 386 376 416 0 ~10 30
dwdw 110 109 102 71 -1 -8 -39
dwwd 165 165 155 176 o} -10 11
Awww 103 107 118 . 106 4 15 3
wddd 509 509 546 580 0 37 71
wddw 114 113 76 94 -1 -38 -20
wdwd 101 100 116 69 -1 15 -32
wdww 60 60 56 40 0 -4 -20
wwdd 203 202 209 246 -1 6 43
wwdw 60 60 54 40 0 -6 -20
wwwd 93 93 111 105 0 18 12
wwww 96 95 79 60 -1 ~17 -36
xZ-Value 0.10 38.95 137.72
(N.E. Monsoon Season)
(a) Ambala
x2-value 0.10 4.62 6.42
(b) Hissar
x2-value 0.15 7.34 8.67

RESULTS AND DISCUSSION

The Markov chain order to represent the daily precipitation process was selected

on the basis of minimizing the loss function. This choice represented the best
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compromise between the two competing requirements for reducing the residual vari-
ance without incurring a higher than necessary cost in the fitting process.

We have shown as an example for Hissar and Ambala stations that the second or
third order model is required to depict the precipitation occurrence process. The
various values of the loss function R(k) calculated for Hissar and Ambala are shown

in Table 3.

TABLE 3.

Loss function R(X) with m = 1,2,3,4 for Hissar and Ambala.

R(k) during S.W.Monsoon R(k) during N.E.Monsoon

k m v Hissar Ambala Hissar Ambala
0 1 1 602.56 394.85 793.19 439.06
R(0) 0 2 3 830.85 704.60 758.83 518.46
0 3 7 848.77 844.50 492,95 559.56
0 4 15 ~568.56 1085.57 248.35 719.98
1 2 2 228.28 309.75 -52.36 79.40
R(1) 1 3 6 449.65 449.65 -300.24 120.50
1 4 14 -1169.03 718.72 -544.84 280,92
R(2) 2 3 4 17.97 139.89 -247.88 41.10
2 4 12 -1399.42 380.96 -492.48 201.52
R(3) 3 4 8 -1417.39 241.07 -244.59 160.42
R(4) 4 4 0

0.00 0.00 0.00 0.00

The results of Table 2 clearly indicate that the M3 - Obs. have approached to
very small values and thus the daily precipitation occurrence seems to be well defined
by a third order Markov model for the stations under study. Therefore, for m = 4
it becomes evident that a second order or third order is required to describe better
the simulation of daily rainfall properly in monsoon seasons particularly S.W. monsoon
season. The considerable difference between second and third order loss functions
further indicates the stable feature of the third order characteristics.

We have also shown that at least a third order model is needed in this case to
reproduce the observed fluctuations in the distribution of dry day sequences. Since
the decision procedure applied to the model identification was based on the asymptotic
behaviour of the log likelihood ratio, it is inherently a large sample method. Ex-
periments were carried out to determiné the possible effects of sample size on the
order of conditional dependence. Loss functions were computed initially from total
span of data successively reduced by 5 years interval and the last by 1 year respec-
tively,the 1970 (Table 4). As the sample size, n , decreases the Markov orders de-
generate towards lower values of fluctuate. The minimum sample size that will yield
a stable estimate of the proper order seems to depend on the climate and the season.
An n value of 1830 days at Ambala (semi arid station) and 4270 days for Hissar

(arid station) should generate stable estimate. This suggests that this apparent
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third order characteristics should be considered spurious. When the sample size

is less than these limits there is a tendency for a low order chain to be misrepre-

sented as the correct model.

TABLE 4.

Effect of sample sizes on the variation of loss function.

Years n Loss function R(k)
k=0 k=1 k=2 k =3
Hissar, July - Sept.
1915-70 6710 -568.56 -1169.13 -1399.42 -1417.39%
1921-70 6100 -607.19 -1183.34 -1386.55 -1602.89%
1926-70 5490 -618.55 -1121.37 -1314.25*% -1304.69
1931-70 4880 -655.49 -1092.50 -1258.52 -1268.09*
1936-70 4270 -860.14 -1256.89 -1394.42* -1360.00
1941-70 3660 ~-630.64 -991.34 -1100.03 -1483.44%
1946-70 3050 -125.85 -479.37 -593,73% -581.34
1951-70 2440 -545.24 -861.07 -589.64 -864.82%
1956-70 1830 246.79 51.46 28.51 17.41%
1961-70 1220 -159.60 274.11 -288.65 ~320.20%
1966-70 610 109.10 43.40 4.42% 10.62
1970 122 -3.75 -13.58 ~24,.77% -12.42
Ambala, July - Sept.
1941-70 3660 1085.57 690.72 380.96 241,07%
1946-70 3050 656.21 246.02 133.29 183.62%*
1951-70 2440 550.84 217.97 103.94 ~-134,54%*
1956-70 1830 286.63 22.06 -51.14 -91.98%
1961-70 1220 280.75 106.64 66.65 4,89%
1966-70 610 223,23 114.28 58.67 -0.91%
1970 122 -7.67 -12.19 -21.75 -34.70%*
Hissar, Dec. - Feb.
1931-70 3610 248.35 -544.84%* -492.48 -244.59
1936-70 3159 241.76 -67.51 ~92,09 -204.21%
1941-70 2707 225.18 -31.33 -50.91 -131.80*
1946-70 2256 161.26 -75.69 -81.22 -159.34%*
1951-70 1805 44.24 -57.59 -69.80* -1.06
1956-70 1354 93.79 6.93 10.93 -124,15%
1961-70 902 129.68 41.67 32.82 -54.62%
1966-70 451 123.74 79.47 70.34 -30.56%*
1970 90 -16.12 -18.64 -12.06 -21.40%*
Ambala, Dec. - Feb.
1941-70 2707 719.98 280.92 201.52 160.42%*
1946-70 2256 510.50 192.46 109.96 93.24%
1951-70 1805 415.66 186.30 112.16 76.74%
1956-70 1354 170.06 32.88 10.98% 67.68
1961-70 902 34.30 -13.86* 73.44 26.88
1966~-70 451 -115.92 -214.,40% -135.82 -115.12
1970 90 ~20.96 -63.56% -48.54 -29.38

* lowest value in the row.

The predominance in Markov orders can be attributed to inherent physical causes
responsible for the formation and movements of S.W. monsoon currents. These migratory

systems will have a characteristic length scale and a characteristic life cycle
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time in the monsoon depressions. At any station the precipitation occurrences as-
sociated with monsoon depression passage would most likely indicate a conditional
dependence with Markov order higher than one. The likelihood occurrence of these

S.W. monsoon depressions, however, is dependent on whether the synoptic meteoro-
logical fields provide a favourable environment. One combination of environmental
factors favourable to the occurrence of air mass, thunderstorms could be a wind field
leading to local moisture convergence, unstable thermal structure, and the passage

of an upper air shortwave perturbations.
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STATISTICAL PREDICTION OF CLIMATOLOGICAL EXTREME VALUE AND RETURN PERIOD IN THE
CASE OF SMALL SAMPLES
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ABSTRACT

Suzuki,E., Miyata,M. and Hongo,S., Statistical prediction of climatological extreme
value and return period in the case of small samples. Proc. l-st Intern. Conf.
on Stat. Climat., held in Tokyo, Nov.29-Dec.l, 1979

Suppose X be a random variable having a continuous distribution function, and
basing upon an ordered sample obtained from the observations on X, we shall identify
and predict the extreme value and the return period of the population distribution.

Various methods were proposed for this problem so far in the case of large samples;
in the present paper we propose some methods applicable in the case of small samples.
For the prediction of extreme values we give a simple method based on an approxima-
tion of conditional expectation instead of calculating the definite integral involved
there, and for the prediction of return period the discrete linear filtering method
in the Kalman Filtering Theory -is applied.

1. INTRODUCTION

By using the data of the annual maximum snowfall amounts or the maximum wind speeds
obtained over a period of about twenty years, we would like to predict the possible
extreme value and the corresponding return period.

As the first step of predicting such an extreme value, we give a method utilizing
the conditional expectation, E{Xn+l[ xl,xz,...,xn}, obtained from the conditional
probability density function of order statistics, as is stated in the following
section. Section 3 is devoted to discuss the prediction problem of return period,
where we propose a practical method derived by applying the Kalman filtering theory.

A numerical example is given in section 4, and finally some remarks are given in

section 5.

2. PREDICTION OF THE EXTREME VALUE

Let Xl §>X2

size n+l from a population having a continuous distribution function F(x) and the

L. X <X . beorder statistics based on a random sample of

probability density function f(x). The joint probability density function of the

order statistics is then given by
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n+l

)= (! M £(xg) s (me<x) <Ll <xp <x <@ ). (20])

f(xl,xz,...,x . 1 N+l
i=1

n'*n+1

Since the marginal distribution of X1 <X, < ... <X is given by

(X Xyreeerx)) = 0 £(xysXy00ca,x %, ) dx

n

n+1 n+1

(2.2)

n
(m+)r T £(x)-{1 - F(x)),
i=1

the conditional probability density function of Xn+1 given XyreeerX, turns out
to be

{ Elx  /HL-Flx)) . % < Xopy <

f(xn+1|xl'“"xn) = o, elsewhere .

(2.3)

The conditional expectation and the conditional variance of Xn+ are given respect-

1
ively by
- 1 ©
E{Xn+1lxl""’xn} -1 - F(xn) fxn x f(x) ax , (2.4)
and
1 o« 2 R
Var{Xn+1]xl,...,xn} = i—:—ETE;foﬂx f(x) dx - [E{Xn+1|xl,...,xn}] . (2.5)

These values may be used to predict X 41 - In many cases, however, it is impossi-

1
ble to get an explicit formula for the value of the definite integrals involved in

(2.4) and (2.5). For example, consider the Gamma probability density:

v
8 e—ex <V 1

£(x) = (v B

(0<x<ew; v>0, B>0), (2.6)

which is of frequent use in statistical climatology. In this case, the parameters

. s = : 2
are estimated easily from the sample mean x and variance s~ by the moment method,

-2 —_
ve= x/s% . 8= X /8%, (2.7
while the definite integrals in (2.4) and (2.5) are not obtained explicitly.
We shall now introduce an approximation procedure to calculate (2.4) and (2.5).
Firstly, it is well known (Kendall and Stuart 1958) that F(xn) is well approximated

by its expected value:
F(x) = n/(n+l) (= E{F(X)}) . (2.8)
Secondly, we shall take the exponential smoothing procedure given by

-c(x-xn) ' (2.9)

f(x) = fixy)e c >0, X, <% < '

Then, since
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1-Flx) = f: fx)ax = £(x )e'n f: e ax = £0x)/c ©(2.10)

n n
applying (2.8) to the left-hand side of this approximation, we get
c = (n+l)f(xn). (2.11)

A little algebra leads us to the approximation:

E{Xn+1|xl""'xn} = x4+ 1/& , where & = (n+l)f(xn) N (2.12)
R By iterative use of the above process, we have the predictors Xn+l' Xn+2 ) eees
Xn+j s... as follows:
E{X o lxgseeoxd 2 ox + WD EGR) = X
E{X e XK = % X - % .
Bl impxp by + V/2£0,,) “n+2
(2.13)
B0 by Ry oy g % Xy F /D EGG ) ey

The conditional variances of these predictors may be a monotone increasing function

of j , but they will not be easily obtained.

3. PREDICTION OF THE RETURN PERIOD BASED ON THE KALMAN FILTERING THEORY

Hitherto, identification and prediction for return periods have been studied by
applying empirical extrapolation under Thomas'Plot rule or Gumbel's double exponen-
tial distribution. In the present paper, we shall make use of the Kalman filtering
theory to the prediction of return period; we apply the theory by the three reasons
stated below:

(1)We would like to attach importance to the nearest values X and X for pre-

1

dicting xn+ (2) We would like to clarify the variance of the predictor as far

'
as possible,lfor which the usual method of applying the limiting distribution is
not always suitable in the case of small samples, and (3) The non-stationarity of
the plotted curve on extreme probability paper should be taken into account to some
extent .

By the discrete linear filtering theory, the state quations and the observation

equation are expressed, respectively, by

T(X,,,) = BX)TX) + n(X,) (3.1)

i+l

and
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y(X)) = CXOT(X,) + elX;) (3.2)

where

Xl’XZ""’Xn : given ordered sample,

: i i \ X,
T(Xi+l),T(Xi). true value of the returen period corresponding to X1+l and it
A(Xi) : transformation coefficients for prediction
n(Xi) : exrror of the return period,

y(Xi) : value of the return period corresponding to the observed ordered
sample,

C(Xi) : transformation coefficients for observation,

e(Xi) : error of observation system.

The identification of return periods is given by the following process. First,
y(Xi) (i=1,2,...,n ) are obtained by empirical extrapolation under the Thomas
Plot rule. In order to identify T(X;) (i=1,2,...,n), we assume the following

linear equations:

T(X;) = ay(X)) +8 , (i=1,2,...,1), (3.3)
for which the coefficients o and B are obtained as the solutions of the equations:
n
b {(ca-l)y(Xi) + Bc + e(Xi)}cy(Xi) = 0,
nt (3.4)
T {(cu—l)y(xi) + Bc + e(Xi)}c = 0,
i=1

where C is the transformation coefficient of the Kalman filtering model, and in
practical application, we replace C(Xi) by the constant ¢ as a simple model.

Solving the equations in (3.4), and assuming that E{E(Xi)} = 0, we get the
relation (see, Arimoto 1977):

CCI2

T(X;) = T + —EQF:—EQEQ(Y(X )-cT) . (3.5)

We make use of this result to give a procedure of predicting the return period.

In the Kalman filtering theory, the transformation coefficients A(Xi) are given
functions, but in our present case they are unknown because of their dependence on
the observed order statistics. Hence we assume the following relations to obtain

the values of A(Xi) successively:

A(Xl) = T(X2)/T(X1), A(Xz) = T(X3)/T(X2),--., A(Xn_l) = T(Xn)/T(Xn_l) ’ (3.6)
and then A(Xn) can be determined by extrapolation under the linear model assumption:

A(X;) = an(X; ;) + b(Xi—Xi_l) + E(Xi),(i =1,2,...,n) . (3.7)

The coefficients a and b are obtained by the normal equation:

n n n
{zax )% I AX, - = _
i=2A(X1_1) a + {i=2A(X1_1)(Xi X, b iE2A(Xl)A(Xi_1), (3.8)
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n n
- - 2 -
B(X; ) (=%, e+ {2 (X=X ) 1o I OA(X)) (X=X
2 i=2 i=2

{

i

o~ s

1)~

Solving the equation to get the solution 4 and b , we then have

A(Xi) =a A(xi_l) + b (xi—xi_l). (3.9)

Then, we can predict T(Xn+1) by the following reccurence relation:

a

T(Xn+l) = A(Xn) T(Xn), (3.10)

where Xi is obtained by the relations (2.13).

4. NUMERICAL EXAMPLES

We shall show two examples for identification and prediction of the annual maxi-
mum snowfall amounts based on 20 records in Nara Prefecture and Toyama Prefecture
in Japan.

The algorithm of the calculation of T(Xi+1) is as follows:

= T - * e
T(X,, ) T(x) + Pi°°e(xi){Y(xi) (eT*(X;) e (X))
where
A o~ -1 -1 2

* = = 2 =
THOG) = BTG ) N ) ey = My e y) e My T A P
with initial conditions

* =7 =
T (XO) T(XO) s Mg GT(XO) .

- = Y *

Here, we have assumed that e(Xi), n(Xi),ae(Xi) apd on(Xi) are known. The T (Xi),

m, and p; are defined by

T*(X,) = E{T(X;)} , m; = E {(T(xi)—T*(xi))z} ¢ p; =E {(f(xi)—T(xi))z} .

TABLE 1.

’

Numerical results obtained by applying the Kalman filter model (Nara Pref.)

n b3 T @ A a% P M T*
1 0 1.05 1.03 1.00 —— | 0.60 1.50 1.00
2 2 1.11 1.08 1.00 0.61 1.60 1.03
3 2 1.17 1.13 1.00 0.62 1.61 1.03
4 2 1.24 1.20 1.06 | — | 0.62 1.62 1.13
5 3 1.31 1.30 1.10 0.0003 0.63 1.70 1.27
6 (3 1.40 1.41 1.10 0.0002 0.64 1.76 1.42
7 4 1.50 1.52 1.08 0.0002 0.64 1.77 1.55
8 4 1.62 1.63 1.07 0.0002 0.64 1.75 1.65
g 5 1.75 1.75 1.08 0.0002 0.63 1.74 1.75
10 6 1.91 1.90 1.09 0.0001 0.64 1.74 1.89
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TABLE 1 (cont'd)

11 6 2.10 2.09 1.11 0.0001 0.64 1.76 2.08
12 7 2.33 2.33 1.12 0.0001 0.64 1.78 2.31
13 8 2.63 2.62 1.13 0.0001 0.64 1.80 2.60
14 8 3.00 2.99 1.15 0.0001 0.65 1.82 2.9
15 10 3.50 3.48 1.17 0.0001 0.65 1.85 3.44
16 12 4.20 4.16 1.21 0.0001 0.65 1.89 4.07
17 13 5.25 5.13 1.26 0.0002 0.66 1.96 5.03
18 16 7.00 6.84 1.36 0.0004 0.67 2.05 6.25
19 17 10.50 10.13 1.51 0.0010 0.69 2.24 9.30
20 22 21.00 19.40 2.07 0.0102 0.72 2.57 15.29
%

21 24.1 40.15 2.18 0.0096 0.80 4.08

22 27.1 87.48 0.83 4.81

Note: P is the error variance for identification and prediction.

NARA Prefecture
1.0- Annual maximum snowfall amounts '

identification
—

prediction
—_

xn+j=xn+j—l
1

n+3)  (Rp+q-1)

F--

cm

23 4567 8 10 1213

16 17

22 24.111 27.174

Fig. 1. Identification and prediction of extreme values (Nara Pref.).
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NARA Prefecture
Annual maximum snowfall amounts 87.480

T{inT (27.174)/”
Il
4.0 /
I /
50 .
40.155 /
40 (2a.111) #
L3.5 /
30 A /
25 7 /
20 +3.0 (22;
57 25 E o observation
2. t
! a identification
10 4 ! C s
' a prediction
]
; t2.0 ,’ |
5 5
L 1.5 '
4 :
1
l
3110 !
1
'
2 }
1 0.5 !
t
:
identification | prediction
1 .10.0 i ?
'
1
!
T T T T T T Y T T T T ! T I T cm
0 4 8 12 16 20 24 28

.Fig. 2. Identification and prediction of return period (Nara Pref.)

TABLE 2.

Numerical results obtained by applying the Kalman filter model (Toyama Pref.)

n x T P A ot P M *

1 37 1.05 1.03 1.00 0.60 1.50 1.00
2 40 1.11 1.08 1.00 0.62 1.60 1.03
3 42 1.17 1.13 1.00 | —— | o.e62 1.62 1.08
4 43 1.24 1.20 1.06 | —— | 0.62 1.62 1.13
5 44 1.31 1.30 1.11 0.0001 0.63 1.69 1.27
6 46 | 1.40 1.41 1.10 | 0.0001 0.64 1.77 1.43
7 48 | 1.50 1.52 1.08 0.0002 0.64 1.77 1.55
8 59 | 1.62 1.63 1.01 0.0002 0.64 1.75 1.64
9 65 1.75 1.71 1.04 0.0002 0.62 1.64 1.64
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TABLE 2 (cont'd).

10 66 1.9 1.86 1.10 0.0004 0.63 1.68 1.78
11 68 2.10 2.08 1.13 0.0004 0.64 1.76 2.05
12 70 2.33 2.34 1.13 0.0004 0.64 1.81 2.35
13 75 2.63 2.63 1.13 0.0003 0.65 1.83 2.65
14 77 3.00 2.99 1.15 0.0003 0.65 1.83 2.98
15 | 104 3.50 3.48 1.13 0.0003 0.65 1.85 3.43
16 | 107 4.20 4.10 1.19 0.0003 0.65 1.83 3.93
17 | 108 5.25 5.13 1.27 0.0005 0.66 1.92 4.89
18 | 110 7.00 6.83 1.36 0.0008 0.67 2.05 6.49
19 | 165 10.50 | 10.12 1.46 0.0016 0.69 2.24 9.27
20 | 208 21.00 | 19.22 2.16 0.0040 0.71 2.48 | 14.80
X
21 | 213.38 41.55 2.21 0.0037 0.81 4.33
22 | 219.46 91.92 0.83 4.98
1.0 4 TOYAMA Prefecture
Annual maximum snowfall amounts
0.9
0.8
0.7 4
0.6+
i
n+1
0.5
0'4- # 2 3 . . . .
identification prediction
— _—
#
0.3 !
$
! X
0.2 &
3
0.1 ?
) H
d
0.0 cm
312432 eég 75, 10%OIO 165 20821382
1380 9o %10

Fig.

3.

Identification and prediction of extreme values (Toyama Pref.).
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TOYAMA Prefecture

Annual maximum snowfall amounts 91.9]
pal. 9
T InT ;(219.457)
{
]
4.0 !
50 J i
t
t 41.547
40 1(213.383)
10 _-3.5 s
25 |
!
20 3.0 » (208)
i :
]
15 4 | o observation
't-2.5 ,: s identification
]
10 4 E o prediction
i
7 2.0 !
. :’
1 E
4 1.5 i
!
3 !
b1
e |
2 T E
t
1 [0.5 i
identification f prediction
£ o ’
T 0.0 i
'
i
4
T T T T T T T T T T T T cm

R T
30 70 110 150 190 230 270
Fig. 4. Identification and prediction of return period (Toyama Pref.)

5. CONCLUDING REMARKS

We can identify the return periods T(Xi), i=1,2,...,n, by (3.5) ,and the predic=-

tion system can be denoted by
) o= flaa(x )+ p(X -X  DIT(X) + EXOTX ) + (X))

Evaluation of the prediction error, z(xn)i(xn)+n(xn), has not been done yet, which
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is left open to the study in the future.

In the last place, summarizing the theoretical and empirical knowledges up to
the present, we shall list the ranges of sample size n and the methods which are
suitable for n in each of the ranges in the identification and prediction problem
of extreme values and return periods:

1) n < 10 . In this case, there will be no method applicable in practice.

2) 10 < n < 30. We can use the curve fitting method to the empirical data by making
use of the Kalman filﬁering theory as studied above.

3) 30 < n < 70. The same method as in 2) above will be applicable in this case,too.
The theoretical models, Gumbel type, Weibull type and others, have been shown
to be applicable in practice. )

4) 70 < n . Theoretical models, efe—y-type, e‘Y—gtype, are applicable, but a cor-
rection of the difference between the theoretical model and the practical model

would be necessary.
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ON THE USE OF EXPONENTIAL SMOOTHING FOR THE ESTIMATION OF CLIMATIC ELEMENTS

M. OGAWARA

Chiba Univ. of Commerce, Chiba (Japan)

ABSTRACT

Ogawara,M. On the use of exponential smoothing for the estimation of climatic
elements. Proc. l-st Intern. Conf. on Stat. Climat., held in Tokyo, Nov.29-
Dec.1l, 1979

According to the agreement of the World Meteorological Organization (WMO), the
latest 30 arithmetical mean values of meteorological elements are currently adopted
as the climatic records and they are to be revised every ten years. This scheme is
based on the consideration-of climatic change.

In spite of the consideration, however, the 30 year arithmetical mean (AM) can
not always represent the recent climatic situation owing to the climatic change.
Here, by the word "recent" we mean the latest 10 year period, which may be a period
of present-day human lives and activities.

On this subject, we shall show that the method of exponential smoothing (ES) is
generally better than AM at least in diminishing the bias.

For routine work, however, the author proposes the use of ES with a common value
of smoothing parameter at all meteorological stations in the world and for all cli-
matic elements. The common value will have to be decided by the WMO on a basis of
world-wide examinations.

1. A STOCHASTIC MODEL FOR CLIMATIC CHANGE

Let X(t) be a monthly mean or total of a meteorological element for the year t.

In almost all cases we may suppose that X(t) is a stochastic process

X(t) =m(t) +Y(t) , (=0, #1,... ), | (1.1)

where m(t) = EX(t) is a trend function and Y(t) is a stationary process with EY(t)
= 0. Here, we assume that

I. m(t) is approximately linear in t over one or two decades T :
n(t +uw =a+bu, |ul <t (=0, +1,...), (1.2)

where a = m(t) and b = b(t),

II. Y(t) is an AR(1l) process (so called red noise) with
EY(s)Y(t) = czols'tl , le] <1, (1.3)

where in most actual cases ¢ is very small.

If we assume that m(t) is identically constant, i.e., X(t) is stationary, then
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the éutocorrelation of Y(t) would have more complicated structure; On the other hand,
if we assume that Y(t) is an independent process, then m(t) may be of a high order
in t.

In relation to our stochastic model, we may define some climatological concepts

as follows:

Definition 1. m(t) is called the function of climatic change, the value of m(t)

at the t-th year is the climatic value of the element, and m(t) - m(s), (s < t),

is called the climatic change in the interval (s,t).

Definition 2. Climatic record is an estimate ( or a prediction) m(t + u) of m(t + u)

(u > 0) from the data up to the year t.

In the following, we consider two special cases, u = 0 and u = 5.5, where
10
+ = - .
Zu=l(a bu) /10 =a + 5.5b
Now, the current method (AM) of estimating m(t + u) is given by

1 N-1
M (t +u) = N F Xt -3, (N=30), (1.4)
j=0

while exponential smoothing (ES) is

N-1

ae(t Fu) = a I pIX(t - 3) , (N<=>) , (1.5)
j=0

where 0 <8< 1 and a = (1 - B)/(1 - BN) . A merit of ES is in the fact that the

effect of a possibly large discrepancy of an approximate value a - bj from the
true value m(t - j) for a large j is diminished by the small weight Bj . The reason
why we do not use higher order exponential smoothing is that we want to put larger

weights on the data more up-to-date.

2. CLIMATIC CHANGE IN JAPAN

Zo(a - bj)/10, m, = 219 (a - bj)/10, then we have b = (ml - m2)/1Q

Let m, = Zj 2 j=10

1
If we put

b= ( x, - x,) /10, (2.1)

where ;i and ;é are 10 year sample mean values corresponding to my and my .
respectively, then Eb = b and if the difference ;i - ;é is significant we
can recognize a climatic change in the two decades. A test of significance can be
done by assuming that the data are independent random samples from normal distribu-
tions with a common variance (if necessary the data should be suitably transformed)

and  an estimate of the variance is approximately given by

19

62 = L [X(t-3) -4 +Dbjl%2 /20 ,(4 = (F + %,)/2 + (19/2)b ) . (2.2)
=0

& may be also approximated by & % (R)+R,)/6, R, and R, being the range in each

decade.
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\ .
By using this method, about 150 (stations) times 12 (months) cases are tested

for the period 1951-~1970 on the rough significance level 5 percent, and the follow-

ing results are obtained:

=

Temperature is decreasing at

increasing

Precipitation decreasing {

8 stations in Feb. or Mar.

Feb. or Mar.
Sep. or Oct.

Jun. or Jul.

I =
et [Sia IS

increasing {

Even if §i - ;é is not significant on the level of 5 percent, there must be more
or less climatic change.

Some examples are shown in Fig. 1.1 and Fig.l.2 in which horizontal dotted lines
are 30 year arithmetical means and the horizontal full lines are ;i and ;é for which
;i-;é is significant. In almost all cases, the discrepancy between the climatic

record by WMO and the last 10 year mean is quite large.

1910 20 30 40 50 60 . 70 “
r T T T R T T T
—— 10 years mean value 10
----- 30 years mean value
o exp.smooth. mg(t)

NAGASAKI FEB
8
6
4
18

NAZE FEB W

FUKUI MAR 218

Fig. 1.1. Examples of climatic change in Japan — Temperature (°C).
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1910 20 30 40 50 60 70
N T

T T T ¥ 1

NAGANO MAR 6

SAPPORO MAY

NAGANO MAY

Fig. 1.1. {cont'd)

3. OPTIMUM VALUE OF SMOOTHING PARAMETER

The mean square error of ﬁe(t + u) is given by

MSE (ES) = E[ﬁe(t+u) - (a+bu)]? .
- %2 3 pj+kplj—k|+ b2 I§§'+ w2 (3.1)
j, k=0
- 02%%52%%%;%%% + b2( I§§'+ u)z = [variance(ES)] + [biaS(ES)Il2 .

The optimum value of B = 1 - o can be obtained by minimizing MSE(ES) w.r.t.f , and

the optimum value of a = 1 -~ B can be shown to be a root of the equation

[y~ (v2+u-1)p21a> - [2(y%+u-1)p- (2y2+6u-7)p2]a"

+ [y2-u+l+2 (5u-6) p- (Y2+13u-19) p2Ja3+ [4u-5-2(8u-13)p+(12u-25)p2]a? (3.2)
- [4(u-2)-8(u-3)p+8(u-3)p2la - 4(1-p)2 = o,
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200

100

200

100

200

100

KUMAGAYA JUL 300

200

100

Fig. 1.2. Examples of climatic change in Japan — Precipitation (MM)

where y2= 02/b2 . If p = 0, (3.2) reduces to the cubic equation
(v2-ut+1)a® + (4u-5)02 - 4(u-2)a -4 = 0, (3.3)

and if u < thhe root exists uniquely in the inter&al (0,1). The optimum value of
g=1-oa for u=0,1,2 and 5.5 can be found from the diagram in Fig. 2 . For large
values of Y2 the variation of 8 is slight. For a finite N in (1.5) and a non-zero
but gmall o , the value of B given by the diagram is approximately optimum.

On the other hangd,
~ 2
MSE (AM) = Elm_(t+u)-(atbu)]

2

2 oY -
ke 2lse)) o, 2N, g (3.4)

N 1-p N(1-p)

= {variance(AM)] + [bias(AM)}2 .
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1910 20 30 40 50 60 70
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MATSUMOTO AUG

200

100

3 NAGASAKI SEP 831

1400

100

300

200

Fig. 1.2. (cont'd)

The optimum value of N is a root of the equation

4 3 1+p 4yzp
+ (2u - 1)N” - 2y2 =2 ¢ 4 = o0, 3.5
AR & A R 39

and if p = 0 the equation reduces to

N3 + (2u - l)N2 -2y2 = 0. (3.6)

If we use the optimum 8 and the optimum N for each yz, ES and AM are compara-
ble in both variance and bias as we see in Table 1. When p = 0, inequalities
(I ~pB)/(1+8) >1/N and B/(1 - B) < (n-1)/2 are mutally equivalent, and
hence the variance and the bias are complementary. Supposing however we attach more
importance to the bias than to the variance, for any N and u, B <(N-1)/(N+1) implies

bias(ES) < bias(AM). For instance, when N = 30 this is true if B £0.9355, i.e.,
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The influence of p is only on the variance, and if p > 0 and 2N > (1-Bp)/(1-RB)
or if p < 0 and 2N < (1-B8p)/(1-8) then var(ES) < var (AM).

6 7 8
10 10° 10 10 10, o
1 ——
”,"’
=" .99
.9 i
,¢*;‘
/‘y/ /
153”¢ /////’ .98
.8 2P
22
PP /////
-~ o’
/7 - // .97
7 //////
4
5/////, .96
b .95
.94
.93
u=5.5
.92
.1
3
1 10 102 10 10
Fig. 2. Optimum value of B for Y2= 02 /b2 (p = 0). (Scales of dotted curves are

up and right.)

The variance of unbiased estimate 4 + bu Of the regression a + bu by a sample

X(t~j) (0 < j < N), is given by

2 2
120°  on_14us &5

var (a+bu) N(N+D) o)

which is fairly large, because we can not take N owing to the generally short span
of the linearity of local trend. For instance, when N = 20 and u = 0, var (a+bu)
= 1.11402 , which suggests that this method is inadequate.

4. ESTIMATION OF OPTIMUM ES PARAMETER AND SOME EXAMPLES

Most simple way of estimating optimum B is to use (2.1), (2.2) and the diagram
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TABLE 1.

Variance and bias for optimum value of parameter (p = 0).

yz Optimum values (Variance) (Bias)
(Uz/bz) of parameter Coefficient of a2 Coefficient of b
[ N ES AM ES AM
10 {0.512 3 0.3288 } 0.3333 1.0 1.0
50 {0.680 5 0.1905 | 0.2000 2.1 2.0
102 0.739 6 0.1501 | 0.1667 2.8 2.5
103|0.857 13 0.0770 | 0.0769 6.0 6.0
=0 104{0.930 27 0.0363 | 0.0370 13.3 13.0
1.3x104|0.935 30 0.0336 | 0.0333 14.4 14.5
103/0.966 59 0.0172 | 0.0169 28.4 29.0
lO6 0.984 126 0.0081 | 0.0079 61.5 62.5
108{0.997 585 0.0015 | 0.0017 332.3 292.0
102|0.584 4 0.2626 | 0.2500 6.9 7.0
103|0.818 10 0.1001 | 0.1000 10.0 10.0
lO4 0.921 24 0.0411 | 0.0417 17.2 17.0
m o= 5.5 1.8x10%]0.9355 | 30 0.0333 |0.0333 20.0 20.0
10°(0.964 55 0.0180 | 0.0182 33.1 32.5
106|0.984 122 0.0081 | 0.0082 67.0 66.0
108 0.997 582 0.0015 |} 0.0017 337.8 296.0

(Fig.2) with Y2= 52/ 52 and u . The error of the estimate g may be inferred
from the fact that var(b) = 02/500 and the distribution of t' = /50056/v2062/18
= 21.21/? is approximately non-central t with degrees of freedom v = 18 and non-
centrality parameter A = b. From the Pearson-Hartley (1972) Table 27, we can also
find the approximate confidence limits of b . However, the sampling error of B is
fairly large owing to the small degrees of freedom, and so we should consider B as

a descriptive value for a special sample series.

Example 1. For Sapporo May Temperature (0.1°C), t = 1970, u = 5.5, we get ﬁ = 0.8,
02 = 125, Y2= 52/62 = 195. Thus we have a rough estimate é = 0.67.
The confidence interval of b with confidence coefficient 90 percent is found to

be ( -0.09, 3.09 ) which illustrates the remark mentioned above.
For the same data, if we use the values of B8 ,

8 = 0.60 0.67 0.70 0.80 0.90
then we get
ﬁe(t + 5.5)= 125 125 125 -124 122 (0.1°C)

respectively. From such examples we can see the robustness of ﬁ with respect to
small change of B .

Some examples of ES with roughly estimated B are shown in Table 2 and Table 3
in comparison with AM. Table 3 suggests that the prediction of m(t+5.5) by any method
is very difficult owing mainly to the unexpected change of local trend. On the other

Qand, as we see in Table 2, Fig.l.l and Fig.l.2, ﬁe(t) is much superior to 30 year AM,
ma (t) .
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TABLE 2.
Examples of estimation of m(t).

Temperature (0.1°C)

ES aM X9 ES AM X1

Station |Month s | -1960]1931-60|1951 . ~1570] 1941-70| 1961.
(YMSE) | (VMSE) -60 (/MSE) | (/MSE) -70

wacasaxr | res | 177 (7?;) (22%3) e (s?i) (6?;) e
NAZE pez | 077 (i?i) (13?4) e (éfg) (12??) e
FUKUT wr | 07 (5?;) (13?6) i Rl (S?i) (14?3) ”
NAGANO wr | 0% (6?2) (1372) i (6?2) (14?2) “
e o s e o Ml G e P
e R A N Rl A P
Precipitation (MM)
lane s | 0-84 %22) ti§> 205 | 0.72 iil) (112) 129
— o | 0-78 (gg) (22) 123 | 0.78 (;g) (ig) 76
raADn con | 0-95% tl?) tz;) 125 ] 0.74 %22) 138) 173
monta | a0 | 073 iii) <ii§) 166 [0.73 iii) t;g) 117
amsonoro | ave | 0-65 tiz) téi) 131 | 0.73 (zz) ig;) 78
Mocacnks | sgo | 0-85 322) %ZZ) 303 | 0.68 122) (izz) T51
o oot | 097 %i;) ti;) 143 | 0.74 (;g) iég) 83
*+ N =39, =0.0570 ; ** N =35, = 0.0456

Remarks

1. In order to improve on the rough estimate é , we may apply a successive approxima-
tion method as follows. Let as bl, c%, Y% and Bl =1 - %y be the first appro-
ximations. Then the second approximations ays b2, 0% , Y% and 62 can be obtained
by minimizing ale:OBlj[X(t-j)-a+bj]2 w.r.t. a and b ,'and they turn out to be

[+
)

- = 2 -
o = (#B1)sy - oysy s by = (a7/By)sy - ay8y o

Qo

j N 12 _
3 1231 [X(t-3) ay+ sz] = s a,s. + b,s, ,

o] 271 272
where
s. = o, LB jX(t—j)2 s, = 0., LB jX(t—j) and s, = a.ZjB jX(t;-j)
0 1 1 ’ 1 1 1 2 1 1 .

However, this method may have a negative effect on the robustness of the estimate
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TABLE 3.

Examples of prediction of m(t + 5.5).

Temperature (0.1°C)

ES AM ;i b/year ES AM
Station | Month -1960 | 1931-60 | 19611941 [1951 ~1970 11941-70

8 (/use)| (SE) | -70| -60| -70| B (/MsE) | (YMsE)
0.55 85 63 66 | 1.8 | -1.0 | 0.70 70 71

NAGASAKI | FEB (14.8)] (36.1) (13.2)](20.2)
0.70 153 147 140 | 0.7 | -1.1 | 0.63 | 143 [145

NAZE FEB (7.2)] (14.1) (10.0) | (22.1)
0.64 69 66 56 | 1.2 | -1.0 || 0.66 50 60

FUKUI MAR (11.1)] (24.1) (9.6) | (20.1)
0.79 37 27 26 | 0.7 | -1.0 || 0.69 19 29

NAGANO MAR (8.8)] (10.0) (10.1)](20.2)
0.80 118 113 125 | 0.4 0.8 | 0.67 | 125 |[118

SAPPORO MAY (5.5)] (8.2) (7.8) | (10.1)
0.85 151 149 161 | 0.06] 1.10] 0.42 | 166 |154

NAGANO MAY (3.0)] (4.0) (8.0)|(22.0)

Precipitation (MM)

0.77 202 184 129 | 3.0 | -7.6 | 0.58 | 133 {170

NAZE FEB (41) (60) (53) |(152)
0.66 90 88 76 | 5.8 | -4.6 | 0.66 | 127 88

MIYAKO MAR (50) (118) (45) (93)
0.89* | 120 121 173 [-0.2 4.8 | 0.60 | 135 (140

TAKADA JUN (10) (8) (27) (96)
0.56 123 182 117 [-7.5 | -5.4 || 0.56 | 131 [175

KUMAGAYA | JUL (63) (151) (38) [(109)
0.35 170 116 78 | 6.4 | -5.3 [ 0.57 93 [107

MATSUMOTJ AUG (45) (129) 1 (45) {(106)
0.82 290 253 151 | 5.7 [-15.2 || 0.46 | 181 [233

NAGASAKI | SEP (81) (120) (115) _|(305)
0.97**| 121 121 83 | 0.3 | -6.0 [ 0.59 69 114

URAKAWA ocT (13) (14) (52) [(121)

* N =39, a =0.1110 ; ** N = 35, o = 0.0456

m and the proof

Example 2.
a; = 121.0,
then we have

a, = 126.8,

Fo:

by

by

X

of the convergence of this procedure may also be difficult.
the data in Example 1,
0.8, 0% =125, yi =195, B; = 0.67 = 0.70(say) :

0.78, ¢2 = 130, y% =214, B, = 0.68.

2
2

2. Empirical minimization of Zt[ X{t+u) -a Zj BJX(t-j)]2 w.r.t. ¢ = 1 - B may be

inadequate, because the local trend varies with each short span of years and the

long range mean value of o or B does not always adapt to the recent situation except

in the stationary case.

5. GENERAL WEIGHTED MEAN AND ES
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Let
@« 0 o
M) = I owiX(t-3), Twy=1, z j[wj| < (5.1)
3=0 j=0 j=0
be a general weighted mean for the estimation of m(t+u) = atbu ; then the MSE is
given by
S . © 5
o(w) = - (c2p]J kl+b2jk)w.wk + 2p%u I juy + pou? . (5.2)
3,k=0 J =0
If we put
. ) ©
Wy = ag) + vy Tv. =0, I jlvi <o ,
j=0 ° j=o =’
then we get
3 j . -
Ap = ¢(aB +av.) - ¢(aB”) = I A, v.v, +2 I B.v., (5.3)
J 3,k=0 jk3i'k 4=0 3 3
where
. ' j+1 j+1
x| . . 2. 0202 (1-p2) 87" -0 (1-pB) p 2 ,
A, = a2(c? lj + b7 jk B, = + b7 (ou+ 5.4
3k (c% Xy, By (B-0) (1=pB) utg)j . (5.4)
(B #p) .

The first term on the right hand side of (5.3) is an infinite dimensional version
of a positive definite quadratic form, while the sign of the second term depends

on the series { vj} .

Example. If vj =¢ for 3 =0,1,...,.n; =-~d for j=n+l,...,ntm ; = 0 for

j > ntm , nc =md , then
Ay = azczc[n(c+d)+2—n(n+m)d] + bzcn(n+m)[cn(n+m)a2—4(u—l)a—4]/4 .

sufficient conditions for A¢ > O are given by

n(ctd)+2 | 2 (u=1) +2 (u-1) >+cn (n+m)

>0, n (n+m) cn (n+m) !
or
c <o, n(c+d)+2 .

n{(n+m)

6. CONCLUDING REMARKS

Although our illustrations are limited to the data in Japan, we may conclude as
follows:
1. Prediction of future climatic value m(t+u) {(u > 0) is difficult, but the estimate
ﬁe(t) of the present (or very near future) situation by means of exponential smooth-
ing is better in general than 30 year arithmetical mean ﬁa(t). To find the optimum

value of exponential smoothing parameter, the curve with u = 0 in the diagram Fig.l
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may be used.

2. However, it may be complicated to estimate and to use different smoothing coef-
ficient for each station and for each climatic element. For routine work, therefore,
it may be convenient and yet effective to use an appropriately decided common smooth-
ing coefficient throughout all the stations in the world and for all the climatic

elements.

3. The common value of B = 1 - o will have to be decided by the WMO on a basis of
world-wide examinations. However, it should neither be too small nor too large, and
it may be reasonable to select a value around 0.90. Then, in the presence of a cli-
matic change the bias will be smaller than that for the 30 year AM, and in the sta-
tionary case the variance of the estimate will be comparable to that for the 30

year AM.
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AN OPTIMUM LINEAR RESTRICTION IN THE ESTIMATION PROBLEM FOR A GENERALIZED LINEAR
MODEL AND ITS APPLICATION TO CLIMATIC DATA

E.SUZUKI, T.OOHASHI and S.HONGO

Inf. Sci. Res. Center, Aoyama-Gakuin Univ., Tokyo (Japan)

ABSTRACT

Suzuki,E., Oohashi,T. and Hongo,S., An optimum linear restriction in the estimation
problem for a generalized linear model and its application to climatic data .
Proc. l-st Intern. Conf. on Stat. Climat., held in Tokyo, Nov.29-Dec.31, 1979

A method of imposed linear restriction for a generalized linear model has already
been shown by some authors ; however, in practical applications it is rather hard
to determine a specific linear restriction because there can be many linear restric-
tions to obtain a conditional BLUE. So we impose one additional condition on the
linear restriction in order to find the conditional BLUE having the minimum trace
of its variance-covariance matrix. Further, the set of these estimators contains
an estimator obtained by using the Moore-Penrosr generalized inverse.

Since a method using the above conditional BLUE has not been applied so far to
climatic data, we show an application of the method to a particular example , which
is an attempt among possible approaches to the environmental impact assessment. Our
method is applicable to various types of data and its algorithm is very simple.

1. INTRODUCTION

In this paper a useful method is proposed to obtain a minimum variance, linear,
conditionally unbiased estimator ("conditional BLUE ) for a generalized linear model,
and an application of the method to certain climatological data is demonstrated.

A generalized linear model is defined as

y=XB+ €, (1.1)

where y is the n 1 vector of observations, X is an nxk (n > k) constant matrix
of rank(X) = r ( < k), B is a kx1 vector of unknown parameters, and € 1is an nxl
vector of errors with zero expectation and variance matrix E(ee') = o2I.

In ordinary regression analysis, the normal equation and its solution are given,
respectively, by X'Xg = X'y and é = (X'X)'lx'y (assuming that r = k) , and 3
is known to be a minimum variance, linear unbiased estimator. However, in a gener-
alized linear model (1.1), X'X has no inverse and the solution of the normal equ-
ation is not unique. Therefore, a linear restriction is imposed on the model (1.1)
to obtain a unique solution. Such a method has been already considered by Chipman
(1964) and summarized by Pringle and Rayner (1971), in which, however, the conditional

BLUE is not uniquely determined . So we. impose an additional condition on those
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conditional BLUE's in order to obtain a useful conditional BLUE minimizing the trace
of its variance-covariance matrix.

Now, we state aﬁ example to which our present method will be applied in later
section.

A tunneling work caused a trouble of ground water withdrawal during the period
1973-1977 in an area at the foot of Mt. Haruna, Japan, composed of rice field, town
field and mulberry field. This is a rectangular area with one side east to west of
6.5 km and the other side of 8.0 km, and the tunnel is running under the center line

of this area (see Fig.l).

« 8.0km ;
e Brn,rFGHIJKL.MNOTD'{\:‘\\,\i,"‘
1 N LA [
2 /‘?ﬂr—’—‘\_ \
3 \‘ , N ?\’7( 500m
[ AN 4
s4J_ \ ] ~ { 7 .
6.5km 6 | — '// &
71 Tz\ f 7 T717 Tunnel

/Y oo

kP
\
I~
NN
-
I~

10 } / / ‘EL77( / f,/
n // // (/' ;7L\”jﬁf’
o = T 1 T 200m
_____ 13 ¥i ( /] K»
Somgya R. Yoshigka R.

2 3km
o Entrance of the tunnel

Fig. 1. Topographical map around the tunnel.

The data in Table 1 are obtained from the partitioned areas, each being a 0.5km
x0.5km square. The observation vector y containg six discrete indices 0,1,2,3,
4,5 corresponding to six states of ground water withdrawal due to tunneling work
over the previous five years, the index of which is an intersection-multiplicity
about regions of water loss obtained by observation of wells every year. The constant
matrix X consists of four kinds of variables: The column X(0), being composed of
1, corresponds to the constant term of the regression equation. The columns X (1)

(i =1,2,...,7) are continuous variables indicating the topography and infiltration
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TABLE 1.

Original data.

N NO |y X(0)X(1) X(2) X(3) X(4)X(5) X(6) X(7) Z(1)Z(2)Z(3)2(4)2(5)2(6)Z(7)Z(8)

00001000010000000100O000001._O0000000000000000100000010000
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l1100100001110000001000000011000000000000000000000001100
00000010000000001000000110000000100010000011000001100000
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33344465554438_/76654l09887654321098764310986543209876.431
A A Sl I A A A AN A A A A A A A NN AAAAA AN AAAANNNAAANNNANAdNNA
llllllllllllllllllllllllllllll1111111111111111111lllllll
0000000.1_Oll000012400000021000000011110011211001110000221
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(Table 1 cont'd)
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(Table 1 cont'd)

116 13011 1 176 132 1.5 -0.4 3.0 0.0 1.0 O 0 1 0 0 0 1 0
117 6P |2 1 318 261 2.6 1.3 0.5 14.0 5.0 O 0 1 0. 1 0 0 0
118 7P {2 1 293 233 3.2 0.8 0.0 21.0 5.0 O o] 1 0 1 0 0 0
119 8P |3 1 268 211 2.5 0.3 0.5 8.0 5.0 O 1 0 0 1 ¢} 0 0
120 9P {2 1 250 195 1.5 0.51.0 3.0 5.0 1 0 0 0 0 0 0 1
121 10P 2 1 232 181 2.6 0.21.5 1.0 1.0 1 0 0 0 1 0 0 0
122 11p |2 1 212 164 2.0 0.9 2.0 0.0 1.0 1 0 0 0 1 0 Q 0
123 12Pp |2 1 194 148 2.1 0.6 2.5 0.0 1.0 O 1 0 0 0 0 1 0

X(1l) : above sea-level(m), X(2): altitude of impermeable layer(m), X(3): gradient

of topography of vertical direction to the route(®), X(4): gradient of topography
of parallel direction to the route(°), X(5): horizontal distance from the route (km),
X(6) : incidence angle to the route(°), X(7): infiltration coefficient( 1074, cn/sec) .

coefficient. Columns Z(1l) through Z(8) are indicator variables, the first three
of which denote the state of land utilization and the last five the state of the
soil: Z(l), Z(2) and 2(3) indicate a rice field, a town field and a mulberry field,
respectivey, and for each observation point only one component of the (0,l)-vector
(z2(1),2(2),2(3)) takes the value 1. Similarly, 2Z(j) indicates the j-th state of
the soil, j = 4,5;6,7,8. Thus, between the columns of the matrix X there exist two
linearly dependent relations, X(0) = Zizl Z{i) and X(0) = 2124 z(i) , and hence,
a methodology using a generalized linear regression model is necessary to estimate
the effects of X(i) and Z(j) on the water withdrawal.

In the statistical climatology, an application of generalized linear model will

provide us with a new methodology.

2. LINEAR RESTRICTIONS AND CONDITIONAL BLUE

In this section, we state some known results for the generalized linear model.

Chipman (1976) gave the following definition to obtain a conditional BLUE of B8 :

Definition 1. An mXk (m > k-r) matrix L is said to be complementary to the
nxk matrix X if thé following two conditions are satisfied: (1) rank(X) + rank(L)

=k, and (2) uX + vL = 0 implies uX = vL. = 0, u and v being vectors of respective

orders n and m . Furthermore, L is said to be polar to X , if the condition
(2) is replaced by a stronger condition: (2)' XL' =0 . If L is complementary to
X and ¢ is in the column space of L , then the equation L = ¢ 1is called a set

of complementary linear restrictions for the generalized linear model.

’
The conditional BLUE of B subject to a set of complementary linear restrictions

LR = ¢, and the variance-covariance matrix of B are given, respectively, by

- *

B=xXy+ L*q , var(d) = o2xt(xh), : (2.1)

where X* = (X'X + L'L)_lx' and L=F = (X'X + L'L)_lL', and in general, A* denotes
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a generalized inverse of A satisfying aata = A, a*aa* = a* and (AA*)' = AA¥,
Here, it should be noted that the coefficient of determination in model fitting,
R2 , and the fitted value y are fixed independently of the form of complementary
linear restrictions imposed, while the BLUE é and Var(é) may vary depending on
the forms of the restrictions. To overcome this difficulty , we shall impose one
more condition which provides us with a more useful conditional BLUE: Oohashi,
Hongo and Yamaki (1979) considered an optimum linear rest¥iction minimizing the

trace of Var(ﬁ), which will be restated below.

Definition 2. A set of complementary linear restrictions LB = ¢ and the matrix
L are said to be optimum if L and B satisfy the following two conditions:

(1) L. is (k-r)*xk and complementary to X, and (2) Var(é) has a minimum trace.

Form this definition, we readily have the following results:
Theorem If a (k-r)Xk matrix I is polar to X , then LB = ¢ is optimum.
Corollary Assume that L satisfies the condition (1) of definition 2. Let the
nonzero- eigenvalues of X'X be Al f—AZ < ... j_kr , while the eigenvalues of X (X )'

2 My 2 ... 2 Wy . Then it holds that

be Uy 2

Wy 2 1/A; for i=1,...,r; M; =0 for i =r+l,....k,

where all the equalities hold when L 1is polar to X.

Let M be the class of all conditional BLUEs subject to a set of complementary
linear restrictions, and N be that of all conditional BLUEs subject to a set of
optimum linear restrictions. Then, N c M and, by the above stated results, any
BLUE in N minimizes the trace of Var(é). Further, é in N is known to be of the
form B = XTy + LTc , where xt ana ot designate the Moore-Penrose generalized
inverse, from which we can see that é is not unique because there are many choices

of c.

3. SOME EXAMPLES OF OPTIMUM L

With the aid of the above theorem, we can derive some practical forms of L corres-—
ponding to certain types of constant matrices X. These forms were already shown
by Oohashi, Hongo and Yamaki (1979), but it will be beneficial to restate them:
(1) For the application to our present problem, i.e., to the matrix in Table 1,

an optimum L can be chosen as

(o] 0 o] 0 0

2 ~d; "4, 4,

1 174 9@

d,i0000000f{ 0 0 0i-a,-d

d, i0000000;-d
L = i

where di (i = 1,2) are arbitrary constants. In practical computation, di =1 (i=
1,2) and c = [0,0]"' may be used.

In general, when X 1is composed of kl continuous variables and k2 classes of
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dummy variables with kl and k2 non-negative, an optimum L can be obtained
in a similar manner.
(2) Let X = [xij] {nXxk) be of the form :

.

1 18] 8y «ee sp £ty .e- tq
|
: cee S5 oty Bl oaal
: pi J1 72 Iq
x= , ¢ eee . . r P=Kys @=ky k=14 Ktk
. ;. e e . R
1 isv oSy : t, ty o-r by
R ) p 172 q
where Syr weer sp are all_distict and each row of the second submartix is a permu-

tation of the first row;=and similarly for the second submatrix. Then, an optimum

L is given by

e s -y —c1 <. TCy o] 0 ... O
t 0 o ... OI “Cy =Cy . c%
) )
where s = c,1L El S. t =c,2 32 t. and c¢ and ¢ are arbitrary non-zero
17 i=171i 7 27 =173 1 2
constants.

(3) For a general X, one may construct an optimum L as

L= Wy, by £y 1

by using the eigenvectors Li (1 =1,2,...,k-r) corresponding to zero eigenvalues
of X'X , but this is sometimes useless in practical application due to the large
rounding error in calculating the eigenvectors.

In practical computation, the above forms of optimum L are very useful to obtain
the conditional BLUE, and it also gives us a simple computational method of the

Moore-Penrose generalized inverse of X.

4. COMPUTATIONAL RESULTS

Our problem is to explain the indices of the groud water withdrawal by the data
of the topography, the infiltration coefficient, the land utilization and the soil.
The values of R?, trace of Var(R) and 62(unbiased estimate of 02) are tabulated in
Table 2, in the case of original data y (Case(l)) and of transformed data Ln(1+y)
(Case(2)).

TABLE 2.

Estimated values.

Case(l) Case (2)
RZ 0.49051 0.54069
tr Var(B) 0.67564 0.13237
62 0.83065 0.16274
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TABLE 3.

(a) Correspondence between y and § in Case (1).

A B C D E F G H I J K L M N 0] P
1
5 0 0 0
-.73|-.52} .04
0 0 0 0 0 0
3 -.81(-.74 -.39/~-.11] .46 | .90
a 0 0 0 0 o] 0 0 0 o]
~.29/~.05{-.02[-.24] .01 } .35 |.77 }1.31/1.30[1.93
5 ¢] 0 0 0] 0 0 0 0 0 3 3 1 1
.28 {.01 (.34 |.10 [.45 |.51 |.68 |1.08(1.03/0.99{2.47|2.14{1.43
6 1 1 0 0 1 1 2 2 1 3 3 2 4 2
.94 | .45 1.55 [ .71 | .77 |1.14/1.73|1.24/1.64[2.17{2.59/2.42/1.81]2.25
7 0 0., 2 2 1 1 1 2 1 1 2 4 3 5 2
.98 | .65 | .70 [1.35/1.31{1.32{1.26/1.59[2.00]/2.20[2.50/3.10/2.59[2.59|2.56[/3.04
8 o] 0 4 1 1 2 1 1 1 1 3 3 2 2 3
.39 1.92 |.93 |1.03}1.16|.85 ]1.23|1.34/1.67{1.32|1,57|2.10/1.85|/2.25{2.07/2.81
o 0 0 1 0 ¢l 1 1 0 2 2 0 1 1 3 3 2
.26 |-.1411.14].96 (1.16|.81 [.95 87 | .85 |.59 [1.09(1.36/1.06/1.88/1.71/1.64
10 0 6] 0 1 1 1 1 0 2 2 4 3 2
-.04[~.02]1.52].60 |1.12 1.28|.87 | .75 1.98 11.04|/2.10/1.87]1.92
11 Q 0 1 2 2 2 2
~.06 -.18 .97 11.33]1.34/1.30[1.45
12 [¢] o] 1 2 2
1.111.83 11.06/1.10/1.26
; o] (o] 0 1
13 .61 [.62 96 | .80
(b) Correspondence between y* and $* in case (2).
A B C D E F G H I J K L M N 0] P
1
2 0 o] 0
-.34}1-.23].07
3 0 o] 0 0 o] [¢]
-.37{-.33 -.16|-.05}.16 }.39
4 ] (o] 0 0 0 0 o] 0 o]
-.07|.05 |.08 |-.07{-.06|.09 }.32 |.61 |.63 |.69
5 0] 0 0 0 0 0 0 1.39/1.39{.69 | .69
.17 |.10 |.26 |.13 [.30 [.33 31 |.53 |.47 .47 [1.24(1.11].74
6 .69 |.69 |0 0 .69 .69 [1.10/1.10].69 [1.39]/1.39{1.10({1.61{1.10
-56 .34 |.34 |.42 .47 |.65 |.86 .69 |.75 [1.02]1.24[1.19/.90 |1.12
7 10,...10....10 1.10/1.10}.69 (.69 |.69 [1.10/.69 |.69 i1.1011.6311.39/1.79]1.10],
.5 -43 {.46 |.75 |.71 |.76 |.70 |.87 [1.07{1.17|1.28|1.46/1.17/1.21]1.18(1.49
8 o] 0 -69 11.61}.69 |.69 |1.10|.69 |.69 |.69 ;.69 |1.39|1.39/1.10|1.10{1.39
.14 .48 |.48 |.54 .73 |.56 |.74 |.80 [.97 [.77 [.90 11.09/.91 |1.12/1.00/1.42
° 0 0 .69 {0 o] .69 1.69 |0 1.10(1.10{0 .69 |.69 [1.39/1.39|1.10
.08 |-.10}.63 |.65 |.62 |.56 }.60 |.55 |.53 39 |.65 |.78 |.54 99 [.97 |.80
10 o] [o] 0 .69 (.69 .69 |.69 (0 1.10{1.10/1.61|1.10{1.10
-.04(-.021.81 |.42 |.67 76 _{.56 (.49 |.62 (.56 11.12{.65 {1.02
1 0 0 .69 11.10{1.10{1.10(1.10
-.02 -.09 .53 |.68 |.72 | .65 |.76
12 0 ] .69 [1.10j1.10
.57 1.45 [.57 | .68 |.78
13 0 0 0 .69
.35 [.34 |.46 55

(y* =€n (1 + y)
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Table 3(a) and (b) are the correspondence between the observed (upper line) and
the estimated (lower line) for the case (1) and (2), respectively, and their respect-

ive maps are shown in Fig. 2(a) and (b), in which the patterns are defined as follows:

in Fig.2(a) in Fig.2(b)
[:] : {(y,§)'|y—[y +0.5]‘=0 } ((Y*,§*)ly*eIk and §*eIk for some k }
: {(y, 9 ]]y-1y +0.51]=1 1} {(y*,9%) |y*e:Ik and y*eI, jor I, . for some k}
///A s {ty, 9| |y-1y +0.51]=2 {(y*,¥%) |y*€Ik and y*eI, or I, ., for some k}
Egg : {(y, 9 ||y-ly +0.51]=3 } {(y*,§*)|y*elk and y*eI, jor I, . for some x}

where [+] designates the Gauss symbol, and the intervals Ik are defined by

I = [£n(l + k - 0.5),£n(1 + X + 0.5)) , k =0,1,2,3,4,5.

In Table 2 the value of RZ? in case (2) is greater than that in case (1). How-
ever, we cannot assert that the model in case (2) is better than case (1), because
the correspondence between the observed and the estimated is shown to be better in
case (1) than in case (2), as is seen in Fig.2(a) and (b).

Table 3 (a) and (b) are summarized respectively in Table 4 (a) and (b): In Table
4(a), the (i,j)-th element denotes the number of such cases that y = i and [§+O.5]
= j , and in Table 4(b) that y* = £n(1+i) and 9* ¢ Ij .

TABLE 4.
(a) Summarized result of Table 3(a) (b) Summarized result of Table 3(b)
N -1 0 1 2 3 4 5 |Total 1\3 0 1 2 3 4 5 |Total
0 4 22 24 2 0 0 0 52 0 33 18 1 9] o] 0 52
1 0 1 23 6 1 0 o] 31 1 1 26 3 1 0 0 31
2 0 0 14 8 2 0 0 24 2 1 15 6 2 0 0 24
3 0 0 1l 7 3 0 [¢] 11 3 [¢] 3 7 1 6] 0 11
4 0 0 1 2 1 0 0 4 4 [¢] 2 2 0 0 0 4
5 0 0 0 0 1 0 [¢] 1 5 [¢] 0 1 0 0 0 1
Total 4 23 63 25 8 ¢} G 1123 Totall 35 64 20 4 o] 0 123

A comparison between the sums of tridiagonal elements shows that the arrangement

(a) is slightly closer to a diagonal matrix than (b).

5. CONCLUDING REMARKS

We have applied a new method to a particular example to get the results stated
above. The correspondence between y and § is rather satisfactory, thoﬁgh the use
of lineér model for our sample seems to be slightly rough. To level up the accuracy
in the present estimation problem, further study of the hypotheses testing problem
in generalized linear model and a better choice of effective variables will be needed,
which are left open. The method we ave presented here will have a wider applicabi-

lity in climatological field and in other fields of science.
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APPLICATION OF THE DISCRIMINANT ANALYSIS IN METEOROLOGY

G. DER-MEGREDITCHIAN

Meteorologie Nationale (EERM), Seine (France)

ABSTRACT

Der-Megreditchian,G. Application of the discriminant analysis in meteorology.
Proc. l-st Intern. Conf. on Stat. Climat., held in Tokyo, Nov.29-Dec.l, 1979

Needs for the methods of statistical analysis of multidimensional data have been
increasing for these years in meteorological science. Discriminant analysis plays
an important role in meteorology in connection with forecasting and/or prediction
of meteorological phenomena.

The present article briefly reviews the methods in discriminant analysis with
emphasis on its application to meteorology. Some applications are also shown.

INTRODUCTION

The early applications of statistical methods in meteorology were in the use of
descriptive statistics, e.g., calculation of means and wvariances, data smoothing,
fitting theoretical models to empirical distributions, etc. Today, extensive use
is made of the statistical methods of analysis of multidimensional data, say, prin-
cipal components, linear and nonlinear multiple regression, factor analysis, canon-
jcal correlation, discriminant analysis, and so on, in which high speed computers
play a crucial role.

Discriminant analysis, in particular, plays a prominent role because of a contin-
uing need of the meteorologists to forecast atmospheric phenomena.

Statistical forecasting makes use of a stochastic model of weather, in which
predictand Y = {yl'y2""'ym} and predictors X = {xl,xz,...,xn} are random vectors
simultaneously extracted during the random experiment.

Regression analysis is used if the predictand is a continuous variable, while
discriminant analysis is applied if the predictand is a discrete variable indicating
the occurrence of some atmospheric phenomena.

Meteorologists have for some time made use of an empirical discriminant analysis
using an elaboration of some indices using two scalar predictors (Galway, Showalter,
Telpher) and even three predictors (Molenat) for the forecasting of such meteorologi-
cal phenomena as thunderstorms, hail, etc.

Some examples are given in later section.
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1. THEORETICAL MODEL OF DISCRIMINANT ANALYSIS

The theoretical model of discriminant analysis can be explained in the following

manner.
ikl A; Dbe a partition of a certain event Q into k mutually exclusive
subevents Ai's.

Let Q@ = I

Suppose a vector X = {xl,...,xn} of n variables X called predictors contains
information about the outcome of the random experiment. Define the cost c[Ai:Aj]
of predicting the outcome Ay when in fact Aj occurs. A decision function g(X) is
formulated for all outcomes X of the random experiment so as to predict an outcome
Aj.

Given a quality criterion Q[c] defined by the cost matrix {c[Ai:Aj]},several
strategies are possible, among which two of frequent use are minimizing the mathe-
matical expectation of cost E(c), and the minimax strategy which minimize the maxi-
mum cost.

In parametric discriminant analysis, if event Ai occurs, then it is assumed that
the vector of predictors X was selected from a population characterized by a prob-
ability density function fa,; (x) . Nature thus chooses the phenomena A; with pfior
(climatic) probability p; and the predictors vector according to the density fAi(x).

If k = 2, then the "optimal" decision rule may be formulated by means of dis-
criminant function

P, fAZ(X) c[Al:A2]

g(x) = ’
Py fAl(X) cla,:a,]

in the following manner: if g(X) > 1, we forecast Ay if g(X) < 1, we forecast

Al .

2. PARAMETRIC DISCRIMINANT ANALYSIS — NORMAL DISTRIBUTION —

For multidimensional Gaussian populations we have

-n/2 -1 =

exp[—%(x—u

- L3 1 —_ '
fAi(x) = (21) ’V(i)’ (1)) " Yoy eyl

where u(i) = uX(i) = EAi[X] and vV = EAi[(X—u(i))(X—u(i))']. It is con-

=V X
(i) XX (1)
venient to use a discriminant function
w(X) = Lng(x) ,

which gives the threshold value O.
For the case k = 2, three cases are possible:

(a) If V(l) # V(2) » the discriminant function is quadratic:
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1
p2c[A :A ]|V /2

= i - 1 -1 = - = A -1 - (1)
WK) = =5 [0 ) )"V 50 (X)) = (el )1 ) (X Wyl F anlc[Az'AﬂlV(z)Il/z

(b) If V(l) = V(2) , the discriminant function is linear:

p, clA :A)]
-1 2 1752
u(x) = (X- ' N S
(X) ( u(+)) v L + In b, ClA,ea,]
with
H =l[u + 1 = - d V=1V =V
W T2yl Y TV TPy YT T T T @

(c) In case(a) above, althought the optimal rule is quadratic, it is still preferable
to use the best linear rule, defined by the Ander son-Bahadur (1962) method.

It is important to have a measure or index of information for each group of pre-
dictors which characterize the probability of decisional errors. The most common
indices are the Mahalanobis distance Ag[Al,AZ], the Kullback divergence Jn[Al’AZ]
and the Bhattacharya distance Bn[Al,AZ], the last two of which are defined respect-

ively by the formulas:

Jn!Al,AZ] = fR“ fAz(x) ﬂn[fAz(x)/fAl(x)]dx + fRn fAl(X) ln[fAl(x)/fAz(x)]dx '

1/2
B A = - £ -£ a .
n(By Rl = -LaS e, (0 £y (01 Tax

In the present case of Gaussian populations these become :

_1 _ -1 1 -1
3, 0aB,] = 5 {ex V) V) TV )=V oy T + v g (2)]“( )
and
_ -1 S TS T I -1 . o1
B,[AAy) = gl “’(1) OYOM2 YO YoroVore Y rovoro
. -1 1/4 1/2
F Uiy Vin ) - o VY o1 Gy I

If the discrimination function is linear, then the divergence becomes the Mahalanobis
distance :

2 - v vy L
LU SO A

3. SELECTION OF PREDICTORS

The need to sort out the useful information and reject the uninteresting or even
spurious variables leads us to choose the group of k "best" predictors. We distin-

guish the following cases, 1 - 6 :
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1. Exhaustive selection method.

For each group of predictors, {xil,...,xik] , we compute the value of a specific
index of information. We examine all the groups of k predictors. Unfortunately,

this is possible only for very small number of predictors, say k < 15.

2. Progressive selection.

Here we distinguish the forward procedure in which we choose successively the
best predictors, and the backwa;d procedure in which we eliminat; successively the
worst predictors.

The actual calculations are facilitated the index of information is the Mahala-
nobis distance A%[Al,A2], by using the following formula which gives the increase
of Aﬁ when the number of predictors increases from k for the vector X to (k+l) for

the vector {X,x}:

-1 2
[m -V Ve, U 1
2 _ a2 _ x(-) XX XX "X{(-)
Apeq [R25] AL A /R, PR .
%% 7 VxxVxxVxx

It allows us at step number (k+l) of the selection process to replace (N-k) inver-
sions of matrix of order "k+1", by only one inversion of a matrix of order "k"

where N is the number of potential predictors.

3. Improved progressive selection.

At the step "k" of progressive selection we obtain the indices il""’ik of the
best group of predictors. After that at the step "k+1" we obtain the index ik+1 of
the additional best predictor. At this time we examine successively each of the
already chosen predictors Kiyr Xjgreen o when the others-are fixed. An existing

computer program permits us to perform this operation completely 5 times.
4, Random selection.

Progressive selection is not of course an optimal procedure. One may show that
sometimes we can not find in this manner the best set of predictors, although the
procedure is suboptimal in some- sense. This is the reason we must use an entirely
different algorithm, which uses the principle of exhaustive selection in some form.

By a random process we find "k" different integers il,...,ik and we compute for
the vector {xil,...,xik} the value of the information index Qk[xil,...,xik]_ We
repeat this operation and save the best scores by comparison with the former result.
Our program is not expansive in time for several thousands of such random extractions.

At least it has happened in this manner that we have found some "excellent" pre-

dictors which escaped the progressive selection.

5. Adaptative random selection.

In this algorithm we want to combine both the advantages of the exhaustive and
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the progressive selections. In this way we utilize the so-called purnishment-reward
principle. In the initial step of selection, each predictor is randomly chosen with
a uniform probability 1/N. For two groups of integers {il,...,ik} and {jlr---rjk}
we define the good ( x(G) ) and the bad ( x(B) ) predictors by comparing the index
of information for each group. Each x which is not a good nor a bad predictor is
called a remaining predictor ( x(R) ). The at the next step random extraction is

performed in accordance with the following probabilities:

Pk+1[x(G)] =P [x(G)] + §p, x(B)] = Pk[x(B)] - 8p, Pk+1[x(R)] = Pk[x(R)]-

Pre1

The correction 6P is made in such a way that probabilities Pk(x) become neither
negative, nor greater than one. The application of this method to real data seems

to show that it is a very good modification of the selection of scalar predictors.

6. Selection of random fields (or vectors).

In meteorological practice it may occur that among our predictors we have some
meteorological fields or vectors. Then to obtain the forecasting scheme we will be
interested in not destroying the physical sense of our predictors and performing
the selection among those fields (or among those vectors) and not among the compo-
nents of those fields(or vectors)in order to find the most informative of them.

In that way we associate with each field X a scalar variable z which, in the
case of linear discrimination, contains the same information about process as the

field X. In other words we have
2 - 2
Az[Al’AZ] = AX[Al,AZ] .

Here we use the linear transformation

z =F! X,

where F = [ Fl,...,Fi,...,Fn] is a matrix having the following properties:
' = ' v )F = L.

F VXXF In , F (u(_)u(_))

Here L =

[Zidij] is a diagonal matrix with diagonal elements li '6ij being the
Kronecker delta. It is easy to see that only El # 0 .

Thus we have substituted for the field X the corresponding scalar variable z
and we can now perform the selection of the scalars z with the help of the usual

selection algorithms 1 - 5.

4. THE CHOICE OF THE "OPTIMAL" NUMBER OF PREDICTORS

The actual realization of the forecasting scheme is obtained with the empirical
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discriminant function g(X), since the theoretical discriminant function g(X) ig
always unknown. All the parameters of g{(x) are obtained from the available sample

of observations ; the parameters Pi' uX(i) ' VXX(i) are estimated by pi " My’
Vyx (i)
formation, but on the other hand obtain some additional error. The choice of the

. That is why, when we add a predictor we on one hand obtain additional in-

optimal number of predictors is a compromise between these two contradictory proper-
ties.

We shall discuss only the case of linear discrimination whose measure is fully
determined by means of the Mahalanobis distance.

Notice first that Ag is a biased estimator of Aﬁ since we have

_T-2 2 no. o n
Ton-3 L0 % 7+ 7

E[ 2] =
n 1 2

1.

T1 and T2 being the sizes of samples from the two populations and T = Tl + T2.
The success in correctly allocating the data into the two populations Al and A2
must be estimated by the unbiased estimator

n

1 5

Let us now examine four different ways of solving the problem of "optimal" choice

of the number of predictors.

1. Traditional approach.

In the Gaussian case the hypothesis

A2 - a2 = o0

H k+2 k

0*
of no significant contribution of the last' 2 predictors to the first k predictors

can be tested with the statistic

A2 _ a2
e r-k-2-1 T1T2 b8, - 8]
r
- A2
(T 2)+T1T2 Ak

which is distributed under Ho as a Fisher's F with 2 and (T-k-2-1) degrees of free-
dom. One may criticize a stopping rule based upon the above testing, because the
Mahalanobis distance is not a monotonic function of the number of steps, so that

a decision of no significant increase in information may be changed some steps later.

2. Dunn-Varady-Chouriguine approach.

Let H[Ai:Aj] be the probability of a wrong decision when the decision rule is
given by u(X) and Ii{e) = {H[A1:A2] + H[AZ:All} /2  (here we put P;=Pp, = 1).
It is well known that the estimates of I(e):

a ~ ~ - 2
fite) = o(-0/2) ana f(e) = 8(-E/2) , with o0 = (/YIS L % ax
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are generally much too optimistic and in fact are only valid for the learning sam-

ple.

Let us now introduce the variables D[Ai:Aj] and D(e) by means of the relations:
n[A,:a.1 = <I>(-£D[A :AL1) Me) = d>(——l-D(e))
1i°73) 2 i’y ! 2 °

Dunn and Varady (1966) have obtained the quantiles of the probability distribution
of D[Ai:Aj] by means of a simulation procedure using the randomization bf A .

The corresponding confidence intervals can be obtained from a selection algorithm
due to Chouriguine's formula which gives an very good fitting of those 95% inter-
vals for n < 10 and T

= T, < 500:

1 2

2n _, 24 o
- —T+( = 0.15) }{1 + 0.0125 An} ,

2n _ 16 22
- {T+( T+O.l)}{1+0.125An}.

For a stopping rule strategy based on the lower limit D of the confidence interval,
the compromise which define the "optimal" value of n results from the two contra-
dictory tendencies: for a fixed value of T &n increases with n, but the length of
the confidence interval increases also, so we observe first an increase in D, then

a maximum value and finally a decrease.

3. The Okamoto-Deev approach.

Sedransk and Okamoto (1971) and Deev (1970) have studied the asymptotic behavior
of the conditional law of the discriminant function ﬁAi(X). In fact, as we have

asymptotically
Upn. ~ N((-1)iA2/2, a2 ),
1

Okamoto has obtained the conditional distribution function of the variable Ui =

[GAi— (—l)iﬁz]/ A as follows:
Folx[a) = {1+ L(d,8) +0@n)} ex) + o/,
1

where ©¢(x) is the first term of the asymptotic expansion, L(d,A) the term of order
1/N, 0Q(d,A) the term of order 1/N2 ,'N being defined as one of the numbers Tl ’
T2 and n.

Deev has obtained an even more interesting result, since the first term of his

expansion gives an excellent estimate, which is better than Okamoto's first three

terms. If the discriminant function u = [X - u(+)]'ﬁ_lﬁ defines a decision

(-)
value by comparison with the threshold

s = KVl{plc[A2:Al]/P2c[Al:A2]} ,
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then the first term of the asymptotic expansion of the probability of a wrong deci-

sion is given by
MA,A,] = Plu< s]A2]

—1)- £1A2 - -
W 2s(£-n=1)- £[A27,T,+(n-1) (T,~T,) ]
- ’
2(£-n+1) DT1T2

£2(£+1) £, [A%+ (n-1) £]
b~ = » £ = T/(TT,), £, = (THD)/T
(E-n+1) 2 (E-n+2)

The utility of such results is obvious. It gives an objective estimate of the
quality of discrimination (performed with the empirical G(X)) on the test sample

taking into account the unbalanced sizes of each sample (Tl # T2).

4. Minimization of the empirical average risk.

Vapnik and Tchervokenis (1974) have studied the theoretical average risk associ-

ated with a forecast §(t) of y(t):

3@ = J_ly-y(a)1? ap(x,y),

and its empirical analog :

o 1 T ~ 2

JT’m(a) = T T (e

where m is a parameter representing the complexity of the decisional algorithm.
The main result of their work says that with a probability greater than 1-n , n

being any given positive number, we can have

s < Gy (@ vitAm,y

where the function ¥ —> 1 when T —> «© .,

On the other hand, when m increases,the empirical risk 3 decreses, but the
function ¥ decreases.

The results of Vapnik and Tchervokenis for example assures with a probability

greater than 1-n that

’ n[€n(4T/n) + 11 - &n(5n/7)
Ptest(e) = Plearn(e) +2 j T

which gives us, for instance, the approximate size of the learning sample necessary

to obtain the test sample of given quality.
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5. REALIZATION OF DISCRIMINANT SCHEMES

In the forecasting procedure the operation which giveg us some difficulties is
the inversion of predictors' variance-covariance matrix VXX(i) or Voo -

In the case of linear discrimination, if the matrix VXX is ill-conditioned, we
can apply the following procedures.

(a) Ridge regression, in which the inverse of VXX is replaced by the inversion
of VXX + qIn . (b) One of the pseudo-inverse procedures of a squared matrix, for
example the Moore-Penrose pseudo-inverse. (c) Preliminary linear transformation of
the predictors x5 by means of principal component z; = CiX. We replace the inverse
with a diagonalization procedure, and we obtain a simple form for the discriminant

function:

k
u(z) »~ Zi= m

1 Zi(_)[z- 1/ X,

-m
i zi(+) i

and for the Mahalanobis distance:

12 /A,

2 k
An(z) ~ L fm i

i=1 zi(_)

where Ai = Ai(v) denotes the ith eigenvalue of the matrix VXx , and the number k

is chosen in such a way that we have Ak+l < g.

In general one tries to avoid the gquadratic discrimination and the adjustment
of too many parameters on the learning sample, since in this case the quality of
discrimination on this sample is quite illusory and soon disappears on the test
sample. Anderson and Bahadur (1962) have studied the "best" linear decision rule

a'X in the case when V #V and the optimal diécriminant function is quad-

XX(1) XX(2)
ratic in Gaussian disribution case. The conditional probabilities of a wrong deci-
sion are then:

. 3j 1/2
P[A,:A, = 1 - &(y. with .= (-1 a' . = S 'V .\ a .
[ i 3] (yl), Y:J (-1~ { HX(]) 1/[a X%(3) 1
Minimizing the probability of error is equivalent to maximizing ¥s- Then a one-
parametric procedure enables one to find a set of the so-called "admissible" points
(yl,yz) for which there do not exist other "uniformly better" strategies. So for

each ti e (0,1) and tl+ t2 = 1 we have:

-1

2ot = BVt B2Vxx(2)! Py

R ' - ' - '
Sopt aopt ux(l) * t1aoptVXX(l)aopt aopt uX(2) t2aoptVXX(2)aopt i

Note that this procedure may be generalized to a family of multidimentional laws
for which constant value surfaces are concentration ellipsoids.

Different procedures have been proposed for the case of discrete variables. In
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particular Saporta has proposed an algorithm based on the utilization of the
Tschuprow coefficient Cij as a measure of statistical independence, which has the
properties of a correlation coefficient. He introduces formally a new concept, the
"partial" Tschuprow coefficient by means of a recursive relationship similar to the
classical case for the partial correlation coefficient:

C - C

C
c = 13 12 723 i

13-2 (1-c2,) (1-c2.)

Then it is possible to obtain a selection procedure based on those partial coef-
ficients in the same manner as in the regression case for the maximization of the
multiple correlation coefficient. Then it is not difficult to obtain the discrimi-
nant although some caution must be exercised.

Other results have been obtained for the case of mixed predictors (quantitative,

and qualititative, ordinal or nominal variables).

6. ESTIMATION OF THE FORECAST'S QUALITY

Conditional probabilities of a wrong decision P[A A ], for which the explicit
form is particularly simple in the Gaussian case, put 1nto evidence the dependence
of the forecast quality on the choice of the threshold value, s = ln{plc[AZ:Al]/
p2c[Al:A2]} , and consequently on the cost matrix {c[Ai:Aj]} . In particular, for

the case of linear discrimination (V. ) we have

xx(1) -~ Vxx(2)

i+j A i+l s

P[Ai:Aj] = o[ (- l) 7 + (1) A 1.

The forecast quality is described by the two curves P[Al:Az] and P[A2:Al], and each
individual user may use the point corresponding to his own cost matrix.

We can also obtain similar curves corresponding to the relative conditional fre-
quency of a good (or false) forecast F[Ai:Aj], the absolute conditional frequency
N[Ai:Aj], the mean cost of a decision rule ¢ , and many of the quality indices dis-
cussed by Dice, Sokal and Sneath, Kulzinsky, Rogers, Tanimoto, Yule, Jaccard, etc.

These curves may be expressed as functions of the threshold 's for a given value
of A2 , and each user may chooée\his own index and then determine the corresponding
optimal threshold using the appropriate curve.

The parameters of the discriminant function are obtained on the learning sample,

for which we get an estimate (n,T) of the forecast quality which overestimates

Qlearn
the quality resulting from the selection of n.

On the test sample we get an estimate of the quality Q (n,s) which is more

test
realistic, but the size of the sample S is generally much lower than the size T of
the learning sample.

Sometimes we don't have enough observations to divide the sample into two parts
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(learning and test). In this case we apply a method which allows us to obtain for

the whole sample an estimate QS R(n,T) of the forecast quality comparable to

Qtest
we have eliminated the 2T + 1 observations X(8) , 6 e(t-T,t+T). Then we compute

(n,T-21-1). We proceed as follows: Compute the parameters of a sample in which

the value of the discriminant function only for the single value X(t) of the pre-
dictors. Note that the coefficients of the discriminant function are not re-computed
at each time, but may be obtained by means of successive corrections using the matrix
formula:

1 1

1 - xatx

a-xx)t - Al A XX

7. NON-PARAMETRIC DISCRIMINANT ANALYSIS

In this case we don't consider the random nature of the predictor vector, but
use only geometric considerations in the space RI of observational data. For
this purpose a metric (distance) is defined in this space, e.g., Euclidean, Minkow-
ski, Hamming, etc. Then various algorithms may be introduced to obtain discrimination

procedures, many of them heuristically.

1. Nearest neighbor method.

If X(near) is the nearest point in R® to X(t), then the decision is that X(t)

belongs to the same class as X(near).

2. Fix~Hodges method (k-nearest neighbor).

We apply the majority rule among the nearest k points to the point X(t). It is
a natural extension of the Nearest neighbor method and gives better results in those
parts of RP where points of both classes are available.

The crucial factor here is the choice of the "optimal" value of k , which corre-
sponds to the definition of the "optimal” diameter in the so-called "Ball Regres-

sion". For the order of this optimal value Mechalkine (1969) obtained the formula:

. 2/ (4+n)
kOPt a [Tl T2] ’

for slightly different values of T, -

3. Average distance method.

Each observation X(t) is allocated to the class Ai if the average distance

da(x(t), A,) = . z a(x(t),x(1))
i T.
i X(T)SAi

is less than the average distance d(X(t),Aj) .
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4. The kernel method.

Here each class Ai is represented by some point a(i) e R® , which is calleq
the kernel of the class Ai . It may be the vector of mean values, of modes, or of
medians. The class allocation is obtained by using proximity relations between the

observation X(t) and the kernel a . In this case the discrimination function is

(1)

g(X) = d(x(t), a ) - d(X(t), a

(2) ) -

(1)

The advantage of this method is that it could be used for very large samples,
since we need to save in central memory only the coordinates of the kernel a(i) ,
and then we need only the value of each X(t) for the class allocation.

Furthermore, the kernel method is directly applicable to an arbitrary number of
classes.

Geometric considerations give us many other variations of the heuristic algorithms,
which, although non-optimal in the parametric sense, often have the very useful
property of robustness, when we pass from the learning sample to the test sample.
Non-parametric methods have an advantage over parametric methods, which although
"most powerful","overfit" the learning samples and lose ability to forecast on the
test samples.

Of course, the assumptions necessary for the applicability of parametric methods
are very often not easy to verify. Current practice suggests that a good compromise
is to obtain simultaneously both parametric and non-parametric solutions thus exhib-

iting several possible discrimination decisions.

8. 'METEOROLOGICAL EXAMPLES OF THE APPLICATION OF DISCRIMINANT ANALYSIS

The application of a statistical forecasting (or decision) model is based on the
relatioships synchronous or asynchronous between predictors and predictands.

The synchronous connections are of coursestronger than the asynchronous,and may
be applied by using the outputs of hydrodynamical models (the deterministic fore-
casts) as predictors. Two variations are then possible: the first is the so-called
"Perfect- Prog'" method for which the correlations are computed on the observational
sample between the true values of X(t) and the values of y(t). The second is the so-
called "MOS" (Model Output Statistics) method for which the correlations are com-—
puted on the sample of hydrodynamical model's output between the deterministic fore-
casts §(t) and the predictand y(t). Each method has its own advantages and defects.

We applied the two methods for the forecasting of several meteorological phenom-—
ena: precipitation occurrence for 7 stations in France, avalanche's occurrence for
an hundred stations in Savoie, SO2 pollution at Rouen, frost' occurrence ét;.

For the avalanche's problem we have elaborated a model called "Edelweiss" for

the statistical forecasting of the avalanche's risk probability for 120 stations
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in the Savoie region of France. We have completed the learning and test samples,
and we are in the process of implementating the model.

For the precipitation forecasting we use the "Amethyste" hydrodynamical model
described by the French Meteorological Office by Rousseau and we used the statistical
adaptation of the model's outputs for 7 French stations in both his "Perfect Prog"
and "MOS" variants. Shortrange forecasts are given in operational form systemati-
cally for 24, 48, 72 and 36 hours and we have statistics on some aspects of the
model's performance for the first 6 months.

For the SO, pollution at Rouen we elaborate a very short-range forecasting model
(3-hours) based on local and synoptical predictors.

For the frost occurrence forecast we applied a lot of various discriminant algor-
ithms in a small sample of 225 observations which shows an excellent separation of

the two populations for a set of 6 predictors.

9. FURTHER DEVELOPMENTS AND CONCLUSIONS

Discriminant analysis seems to be a fastgrowing branch of statistical science.
Many étudies have been made in the search for better algorithms: most powerful,
most robust, with less restrictive constraints, applicable to non-normal case, with
predictors of various nature (qualititative and quantitative). New methods of selec-
tion of useful predictors have been studied, so that it is possible to eliminate
the spurious results, i.e., the bad predictors. It is in fact a crucial problem,
because we need objective methods to determine what kind of information we need to
use for the forecasts.

Many interesting studies have been made in the field of quality estimation, that
is the extrapolation on the test sample of the various estimation of forecast accu-
racy obtained on the learning sample.

In Meteorology and Climatology the applications of discriminant analysis are
numerous and varied: for the forecasting of occurrence of atmospheric phenomena,
for different diagnostic process, for qualitative forecasting of continuous variables,
for objective measuring the accuracy of'deterministic forecasts, etc.

It is very important to emphasize the multidimensional aspects of the discriminant
analysis, because only the collective properties of a set of meteorological varia-
bles determine the meteorological situations determining the occurrence or the non-
occurrence of meteorological phenomena.

1 believe that this statistical method will be soon a current tool in the hands

of the meteorologists.

REFERENCES

anderson,T.W., 1957. An Introduction to Multivariate Statistical Analysis. John
Wiley, New York.



254

Anderson,T.A. and Bahadur,R.R., 1962. Classification into two multivariate normal
distributions with different covari?nce matrices. Ann. Math.Statist. 3?.

Bois,P. and Obled,C. Analyse des donnees nivoclimatiques en vue de la prevision
des avalanches.

Chouriguine, 1969. Le choix des paramétres pour la classification de deux Popula-
tions normales. Méthodes statistiques de classification N1, 6. Moscou.

Deev,A.D., 1970. Representation of statistics of discriminant analysis, and asymp-
totic expansion when space dimensions are comparable with sample size. Dokl.akad.
Nauk, SSSR, 195:759-762(in Russian).

Der Megreditchian,G., 1969. Un nouveau procédé de réalisation des schémas de discri-
mination et de régression(en russe.). Météor. et hydro. 7. .

Der Megreditchian,G. et Lukijanova,L., 1969. Quelques particularités de l'application
de l'analyse discriminante linéaire 4 la prévision(en russe.) . Ann. du Centre
Hydrometeor. de 1'URSS, 44.

Der Megreditchian,G., 1972. Une methodologie décisionnelle statistique pour la pré-
vision des phénoménes atmosphériques dangereux. Document interne EERM.

Der Megreditchian,G., 1973. Méthodes statistiques de prévision par classes en M&té—
orologie. La Météorologie V-26. i

Der Megreditchian,G., 1975. Approche statistique du probléme d'évaluation des risques
d'avalanche. La Météorologie V-3.

Dunn,0.J. and Varady,P.V., 1966. Probabilities of correct classification in discri-
minant analysis. Biometrics 22.

Facy,L. and Der Megreditchian,G., 1973. ILa pollution atmosphérique. Organisation
mondiale de la santé PNUD/ROM/71/512.

Fisher,R.A., 1938. The statistical utilization of multiple measurements. Ann.Eug.4.

Fix,E. and Hodges J.L., 1952. Discrimatory analysis: Non-parametric discrimination.
USAF Sch. of Avia.Medecine, Randolph Field, Texas. Rep. 4 & 11.

Foley , 197l. Considerations of sample and feature size. IEEE Trans.on Comp. C 20-
12.

Fukanaga, Kessel. 1971. Estimation of classification error. IEEE Trans. on Comp. C
20 - 12/

Gnedenko,B.V., 1970. Cours de la thforie des probabilités. Moscou.

Hills, M., 1966. Allocation rules and their error rates. J.Roy.Stat.Soc., B, 28.

Kullback,S., 1958. Information Theory and Statistics. John Wiley, New York.

Lachenbruch, P.A. and Mickey,M.R., 1968. Estimation of error rates in discriminant
analysis. Technometrics 10:1-11.

Méchalkine,L.D., 1969. Méthodes locales de classification. Recueil " Méthodes sta-
tistiques de classification " (en russe.) Editions M.0.U., Moscou.

Nagy,G., 1968. State of the art in pattern recognition. Proc. of IEE, 56.

Nilson,N.J., 1965. Learning Machines. McGraw Hill, New York.

Romeder, 1973. Méthodes et programmes d'analyse discriminante. Dunod.

Sebestyan,G.S., 1962. Decision Making Process in Pattern Recognition. New York.

Sedransk,N. and Okamoto,M., 1971. Estimation of the probabilities of misclassifica-
tion for a linear discriminant. function. Ann.Inst.Stat.Math., Tokyo, 23:419-435.

Sonetchkin,D., 1972. Déchiffrage météorologique des images satellites (en russe.)
Ann.du Centre Hydrometeor. de 1'URSS, Moscou.

Sorum,M.J., 1971:. Estimating the conditional probabilities of misclassification.
Technometrics 13.

Vapnik, Tchervokénis , 1974. Théorie de Reconnaissance des formes. Moscou.



Reprinted from:

Statistical Climatology. Developments in Atmospheric Science, 13
edited by S. Ikeda et al.

© Elsevier Scientific Publishing Company, 1980

REGIONAL CLASSIFICATION OF EAST AFRICAN RAINFALL STATIONS INTO HOMOGENEOUS GROUPS
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ABSTRACT

Ogallo,L., Regional classification of East African rainfall stations into homogene-
ous groups using the method of principal component analysis. Proc. l-st Intern.
Conf. on Stat. Climat., held in Tokyo, Nov.29-Dec.l, 1979

An attempt has been made in the present study to use the empirical orthogonal
functional method of principal component analysis to classify East African annual
rainfall stations into homogeneous regional groups. The annual rainfall records used
were from 86 stations distributed all over East Africa during the common period 1931
=75.

The results from the analysis indicated that communality was greater than 70%
at all stations except four. These four stations were Kigoma, Kasulu, Kagondo and
Kilindoni. The lowest communality of 57% was observed at Kigoma. The Kaiser's cri-
terion indicated that the cut-off value for the eigenvalues was at the eigenvalue
number 16. The sixteen eigenvectors accounted for 80.6% of the total rainfall vari-
ance, of which 50.3% were explained by the first three orthogonal vectors.

Fourteen regional patterns were discernible from the spatial patterns formed by
the major eigenvectors.

1. INTRODUCTION

Empirical orthogonal functional methods have been applied to climatological re-
cords by many authors in attempts to reduce the dimensionality of the basic data
being processed, and to describe some climatological patterné. Such work include
those by Veitch (1965), Craddock (1965), Craddock et al. (1969,1970), Gregory k1975),
and Dyer (1977). The theories of the empirical orthogonal functions have been dis-
cussed by Burt (1952), WMO (1966), Harman (1967), Rummel (1970), Kim et al.(1970),
Craddock (1973), Preisendorfer and Barnett (1977), Child (1978), and many others.

In the present study the method of principal component analysis has been used
in the attempt to group the East African rainfall stations into homogeneous regional
groups.

The term East Africa refers to three countries namely Kenya, Uganda and Tanzania.
The region is enclosed by latitudes 4°N ~ 11°S and longitudes 30°E - 42°E. The spa-
tial pattern of the stations used is presented in Figure 1, while Table 1 gives their
locations. The annual rainfal% records used were for the common period 1931-75. The

rainfall records were obtained from Kenya Meteorological Department.
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Fig. 1. Network of the rainfall stations.
(For the station code name and number, see Table 1.)

TABLE 1.

Location of the stations and their elevation above mean sea level.
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Country & Station , Station Latitude
Stations Code Name | Code Number o] '
KENYA
Garissa GRS 3 0 268
Gazi GAZ 39 4 258
Kabarnet KBT 25 0 30N
Kabete NRB 4 1 15s
Kajiado KJD 14 1 528
Kakamege KKG '8 0 17N
Kapsabet KPT 20 0 12N
Kericho KRC 28 0 23S
Kiambu KIB 13 1 11s
Kilifi KLF 24 3 40s
Kisumu KSM 27 0 068
~Kitale KTL 9 0 54N
Kitui KTI 22 1 228
Konza KNZ 16 1 44s
Lamu LMU 19 2 16s
Lodwar LDR 1 3 07N
Londiani LNI 75 0 1l0s
Machakos MCK 17 1 31s
Magadi MGD 15 1 53s
Makindu MKD 18 2 17s
Makuyu MKY 36 0 558
Malindi MLD 38 3 13s
Marsabit MST 6 2 19N
Meru MRU 26 0 O3N
Mombasa MBS 37 4 04s
Mt.Elgon MES 21 1 08N
Moyale MYL 5 3 32N
Naivasha NVS 30 0 43s
Nakuru NKR 33 0 17s
Nanyuki NYK 2 0 O5N
Narok NAR 11 1 08s
Ngong NGN 12 1 20s
N.Kinangop NKP 32 0 34S
Nyeri NYR 31 0 26S
Rongai RGI 34 0 11s
Solai SO1 35 0 07s
Sotik SOoT 29 0 40s
Tambach TBC 10 0 36N
Voi VOI 23 3 24s
Wajir WJIR 7 1 45N
TANZANIA
Amani AMN 51 5 06S
Arusha ARS 44 3 23s
Bagamoyo BGY 59 6 258
Biharamulo BHL 42 2 38s
Bukoba BKB 40 1 20s
Dar es Salaam DES 60 6 49s
Dodoma DDM 56 6 10s
Kigoma XGA 45 4 528
Kilosa KLS 48 6 50s
Kagondo KGD 50
Kilindoni KNM 68 10 00
Kigomasha KGM 70 4 52
Kasulu KSL 46 4 34
Lindi LND 67 10 00

Longitude Elevation
0 'E (Meters)
39 38 128
39 31 46
35 45 2043
36 44 1891
36 48 1738
34 45 1555
35 07 1999
35 17 1982
36 50 1767
39 51 3
34. 45 1146
34 55 1829
38 0l 1177
37 08 1655
40 54 9
35 37 566
35 35 2317
37 16 1646
36 17 613
35 50 1000
37 10 1540
40 07 3
37 59 1345
37 39 1570
39 42 16
34 45 2226
39 03 1113
36 26 1901
36 04 1851
37 10 2104
35 50 1890
36 40 2043
36 38 2631
36 57 1829
35 51 1890
36 06 1829
35 05 1824
35 32 1829
38 34 560
40 04 244
38 38 911
36 41 1372
38 55 9
31 19 1479
31 49 1144
39 18 9
35 46 1120
29 38 777
37 00 491

1372
39 43 9
39 41 15
30 06 1320
39 43 9
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(TABLE 1 continued)

Lushoto LST 47 4 47s 38 17 1396
Mahenge MHG 63 8 41s 36 43 1107
Masasi MSS 66 10 42s 38 49 457
Mbeya MBY 62 8 568 33 28 1759
Morogoro MGR 57 6 518 37 40 579
Moshi MSH 58 3 21s 37 20 813
Musoma MSM 41 1 308 33 48 1148
Mwanza MWZ 43 2 31s 32 54 1131
Mkokotoni MKN 55 5 528 39 15 9
Pangani PGN 52 5 268 38 59 9
Songea SNA 65 10 428 35 40 1166
Sumbawanga SWG 61 7 578 31 36 19
Tabora TBR 49 5 02s 32 49 1266
Tanga TNG 53 5 04s 39 06 9
Tukuyu TKY 64 9 15s 33 38 1616
Tundura TRN 69 11 o6s 37 22 701
Wete WET 54 5 04s 39 43 18
UGANDA .

Arua ARU 71 3 03N 30 35 1280
Entebbe EBT 85 0 o3N | 32 27 1146
Fort Portal FPL 84 0 40N 30 17 1539
Gulu GUL 74 2 45N 32 20 1106
Kabale KBL 79 1 158 29 59 1871
Ka;angala KLL 78 0 20s 32 19 1158
Kitgum KTM 73 3 17N 32 53 937
Masaka MSK 81 0 20Ss 31 44 1313
Masindi MSN 82 1 41N 31 43 1146
Mbale MBL 77 1 06N 34 11 1220
Mbarara MRR 86 0 37s 30 39 1443
Moyo MOY 72 3 41N 31 44 1036
Ngora NGR 83 1 27N 33 46 1128
Serere SRR 76 1 31N 33 27 1139
Tororo TRR 80 0 43N 34 10 1226

2. METHODS OF ANALYSIS

The observed values of the annual rainfall at several locations (stations) for
the set of years were subjected to pricipal component analysis by generating a cor-
relation data matrix between the set of the stations for the set of period (S-mode),
This method has been applied by Gregory (1975) and Ryer (1977) t§ delimitate the
regional patterns of the annual rainfall over United Kingdom and South Africa, res-
pectively.

In the attempts to delineate the homogeneous regional patterns, the major eigen-—
vectors which were significantly correlated with each station were noted, and the
regional classification was finally based on the spatial patterns formed by princi-
pal components (eigenvectors). The Kaiser's criterion (Kaiser (1959)) was used to
determine the cut-off value for the elgenvalues. These eigenvectors were further

subjected to the orthogonal varimax and oblique rotations. Rotation of these
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hypothetical vectors often remove certain ambiguities that are sometimes evident
in the direct solutions. The orthogonally rotated components were further presented
graphically in a two dimensional space of the reference axes to display visually

more informations about the variables.

3. RESULTS AND DISCUSSIONS

The results of the analysis indicatea that the final communality was as high as
95% at a number of stations. It was greater than 70% at all stations except four.
These four stations were Kigoma,Kasulu, and Kagondo in north-western Tanzania, and
Kilindoni in Mafia Island. The lowest communality of 57% was observed at Kigoma.
Kigoma is situated in the eastern shore of Lake Tanganyika and is blocked to the
east by high ground. The characteristics of rainfall at Kigoma has been noted to
have no similarity to those of most situations with the same type of annual rainfall
regime (Tomstt (1975)). Communality indicates the proportion of the total variance
of the annual rainfall at each station that is explained by the common empirical
orthogonal vectors. The results indicate that at least 70% of the total variance
of the annual rainfall at each station is accounted for by the common factors which
apply over the rest of the stations. This may be an indication of the influence of
some common rain generating functions, and it seems to suggest that the influence
of the unique properties of the individual stations were generally of little signi-

ficance.
TABLE 2.

Results of the pricipal component analysis. (Only the first 20 components are pre-
sented.)

Eigenvalue Eigenvalue Before|% of Total Variance Cumulative Variance
Number Rotation Extracted %
1 29.8 33.6 33.6
2 9.6 11.1 44.7
3 4.8 5.6 50.3
4 3.3 3.9 54.2
5 3.2 3.7 57.9
6 2.9 3.3 61.2
7 2.6 3.1 64.3
8 2.4 2.8 67.1
9 2.1 2.4 69.5
10 1.8 2.1 71.6
11 1.5 1.8 73.4
12 1.4 1.6 75.0
13 1.3 1.5 76.5
14 1.3 1.5 78.0
15 1.2 1.4 79.4
16 1.1 1.2 80.6
17 0.9 1.1 81.8
18 0.9 1.1 82.9
19 0.8 0.9 83.7
20 0.7 0.8 84,5
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From Table 2 , the Kaiser's criterion indicates that the cut-off value for the
eigenvalues is at the eigenvalue number 16. These sixteen eigenvectors account for
80.6% of the total variance of the rainfall of which only 33.6% was extracted by
the first eigenvector. The first three eigenvectors together accounted for 50.3%
of the total variance, indicating that no few common factors could be found that
can account for most of the variance of the annual rainfall in East Africa.

Craddock (1965) noted that the first eigenvector only could extract as high as
92.28% of the total variance of the monthly temperatures over Central England, while
Veitch (1965) observed that 75% of the total variance of the Australian pressure
field could be accounted for by the first three principal components. Craddock and
Flood (1969) found that these three first components could extract 65% of the total
variance of the 500 mb geopotential fields over the Northern Hemisphere. On subject-
ing annual rainfall to empirical orthogonal analysis, Gregory (1975) observed that
the first three components could account for 687% of the total variance of the annual
rainfall over United Kingdom. Dyer (1976) found that only 47.23% of the total variance
of the South African annual rainfall could be extracted by the first three eigen-
vectors with the first vector accounting for 27.95% .

In order to classify the rainfall stations into some homogeneous regional groups,
the eigenvectors which were significantly correlated with each station were noted.
The regional grouping was finally based on the spatial patterns formed by three major
eigenvectors. The fourteen homogeneous groups which were discernible from the ortho-
gonal varimax solutions are presented in Figure 2, while the major principal compo-
nents for the various regions are given in Table 3. Closely identical regional patt-
erns were also observed from the results ofthe direct solutions, oblique rotations,
and the graphical solutions. No cluster analysis was performed but the high degree
of association between the stations in the various groups were confirmed by scanning
the correlation matrix.

The results of the analysis indicated that central highlands of Kenya and most
of Uganda were highly correlated with the first eigenvector, while coastal regions
especially northern Tanzania were significantly correlated@ with the second component.
The fifth component was prominent in the southern highlands of Tanzania. In other
regions more than one components were prominent. No distinct regional patterns could
be delineated around Lake Victoria due to the limited data available around the lake,
butthe characteristics of the lake stations (Region N) were noted to tend to those
of the stations in the neighbouring regions.

Figure 3 gives the relief map of East Africa. Most of Uganda rise to over 1000 m.
In the west of Uganda are the highlands which lead to Ruwenzori mountains, and to
the eastern border with Kenya lie Mt. Elgon. To the south are the highlands which
are continuous from north western Tanzania. Apart from north eastern region, most

of Uganda receive substantial amount of rainfall throughout the year. A trough of
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Fig. 2. Regional classification from the orthogonal varimax rotation.

low pressure extends over Uganda and Lake Victoria throughout the year. The trough
has been observed to move towards the centre of the lake at night giving an inflow
into the regions of the trough (Asnani (1979)).

Figure 4 gives the spatial distribution of the mean annual rainfall in East Africa.
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TABLE 3.

The major eigenvectors observed in the various regional stations.

Region The Major some General Charactristics
Eigenvevtors of the Eigenvectors
A I &I
B I Loading on Component I > 0.7
C I & II
D v | Component IV is not dominant but

is the only major component.

E I Component II is positive giving the
only difference to Region B.

F I Component I is not dominant, but
is the only major component.

The loading on Component I lies
between 0.5 & 0.7.

I&IT
I Component I is not dominant but
is the only major component.
I IT & IIT
J II Loading on Component II > 0.7.
K v Component V is not dominant, but
is the only major component.
L I1I Component III is not dominant, but
is the only major component.
III & V
N Lake Victoria region. No distinct regional patterns

could be delineated but the characteristics of the
lake stations were close to those of the bordering
regions.

Only three regions of Kenya have rainfall over 1000 m. These are the central high-
lands, the western parts of Kenya, and a narrow coastal strip. These relect the infl-
uence of topography, moisture sources from Lake Victoria and the moist Congo airmass,
and the effect of Indian Ocean. Due to the variations of latitude, exposure, and
geographical positions, there are also variations in rainfall in the central high-
lands. The central highlands is divided into two by the rift valley. The western
highlands especially their western slopes receive amount of rainfall which appear
to increase with highest, notably in the central latitudes(Brown et al.{(1973)). The
stations in the rift valley are generally drier than in the eastern highlands. In
the eastern ranges the rainfall regimes become more seasonal.

Most of Tanzania has one dry and one wet season. The double highland formations
observed in the central highlands of Kenya is discernible in the southern border

of Tanzania. In the eastern border with Kenya are the highlands which lead to Mt.
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Kilimanjaro. South east of these lie patches of high ground which include the Lushoto
Mountains. To the west of Lake Victoria are the highlands which extend to southern
Uganda. The seasonal distribution of rainfall is generally bimodal in the highlands
with the exception of the southern highlands of Tanzania.

The synoptic flow over East Africa is mainly easterly throughout the year. Addi-
tional northerly current is observed during the north hemispheric winter, while the
influence of the southerly component is experienced during the south hemispheric
winter.

The annual rainfall of East Africa exhibit strong seasonality, but the regional
grouping of East Africa based on seasonal distributions has been observed to be com-
plicated (Potts (1971), Grifiths(1972), Brown et al.(1973)). The seasonal variations
of rainfall depend largely on the seasonal migrations of the ITCZ which are related
to the sun's movements. The ITCZ is very diffuse in East Africa due to the diversity

of topography. Topograpgy and exposure largely control the amount of rainfall.

4. CONCLUSIONS

The results of the analysis indicate that the method of principal component analy-
sis was capable of grouping the annual rainfall of East Africa into some recognizable
regional patterns. Fourteen regional patterns were discernible from the spatial pa-

tterns formed by the major orthogonal vectors.
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ON A MATHEMATICAL MODEL OF CARBON DIOXIDE CONCENTRATIONS IN THE MID TROPOSPHERE
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ABSTRACT

Gould,J., Ahrens,F.A. and Hong C.S., On a mathematical model of carbon dioxide
concentrations in the mid troposphere. Proc. l-st Intern. Conf. on Stat. Climat.,
held in Tokyo, Nov.29-Dec.l.,1979

A model describing the spatiotemporal behavior of carbon dioxide, C(8,Vy,r,t) ,
in the mid troposphere is proposed. The analytic model considers the diffusive
and advective transport of CO,; due to the stationary and nonstationary sources
and sinks (anthropogenic, land biotic, and oceanic) at the surface of the earth.
For the axially symmetric case mathematical methods to solve for C(6,y,r,t) based
on empirical evidence are given.

1. INTRODUCTION

Carbon dioxide is one of the tracer gases used in the study of global atmospheric
mixing. The CO2 concentration is observed to contain systematic variations due to
atmospheric transport and to sources and sinks which exist mainly at the surface
of the earth. Herein we combine some classical mathematical techniques with some

empirical evidence in proposing a model of CO concentration in a region of the

2
troposhere. In proposing the model we intend to bring together some of the body
of results and, since the model embodies some simplifications, to contribute to

the direction of future research.

The underlying hypothesis is that the observed spatiotemporal variations of CO2
concentgation in the mid troposphere can be explained by a model of atmospheric
transport from sources and sinks at the surface level via advection and turbulent
diffusion. The model enables a decomposition into components. We shall address a
mathematical basis for these components and solution methods. The advantages of
this mathematical modeling approach lie in the natural decomposition, the numerical
simplicity which may provide physical insight without a massive computer effort,
and the provision to examine the efforts of potential changes in the future source/

sink behavior.
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2. THE DIFFUSION MODEL

Let C(6,¥,r,t) denote the concentration of CO2 in units g—cm_3 at time t
and position (6,Y,r), where 6 is longitude, ¥ is colatitude, and r is distance
from the center of the earth. The concentration must, at east instant, satisfy a
material balance taken over any volume element. Assuming that the principal axes
of the turbulent diffusivity tensor K coincide with the axes of the spherical
coordinate system, atmospheric incompressibility, and that molecular diffusion is

negligible when compared to turbulent diffusion, then C must satisfy

u u
o, goc, Mo, Mo s | 13 2 8¢, yC
ot T Yyar T Y B0 g siny 36 ;2 9r K Cqp * 22 )]
1 ) . aC 1 9 aC
+ 5% [KW siny 5@'] 55 55 [KGBG 1+ s, (1)

r2 siny r sin"y

'UG) represent advection and S 1is the rate of generation of CO

where (ur,ul‘J 5 2
through a unit area. The term vC/r incorporates a virtual pressure gradient
due to gravity ; vy = 7.74 x 10ll cm. In the course of reducing (1), assumptions

will be made based on empirical evidence, intuitive appeal, and/or mathematical
expedience.

The major sources and sinks of CO are the oceans, the land biota, and anthro-

2

pogenic oxidation ; atmospheric CO, is relatively inert. Restricting our attention

to the region above 2 x 105 cm, wezneglect terrain variations and consider the sources
and sinks to be exclusively on the surface of a spherical earth with radius a =
6.366 X% lO8 cm. While this restricts validity of the model to regions which do not
have significant surface height compared to the height of the tropopause, on a large
scale the earth is very nearly spherical. This value of 2 x 105 cm is suggested
in Tverskoi (1965) and is supported by Bischof (1965), Bischof and Bolin (1966) and
Garratt and Pearman (1973). Thus we may delete S from (1) to incorporate it as
part of the boundary condition at r = a.

While the tropopause forms an ellipsoidal envelope of the earth with height
varying from 10 x 105 cm to 19 X 105 cm, for mathematical convenience we shall
assume that H = 10 X 105 cm, the height of the tropopause, is independent of tempo-
ral and spatial coordinates. Accordingly, we define the region of interest of our
model, the mid troposphere, to be between 2 x lO5 cm and 10 X 105 cm. The variations
of 002 concentration across the tropopause have been studied in Bischof (1965, 1971,
1973) and Bolin and Bischof (1966,1970) . Because of the temperature inversion, the
virtical mixing just above the tropopause is much less intense than below. This
causes the tropopause to behave as a damping layer for CO. flux (Bolin and Bischof

2
(1970)); this may be introduced into the model as a boundary condition at r = a + H
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by defining a leakage coefficient o which relates CO2 flux to the gradient across
the tropopause ; the value o lies in a neighborhood of 2.79 X ]_03 cm—s_l. Let
C denote the Co2 concentration just above the tropopause. The amplitude of seasonal
variation of C is small compared to that of C in the mid troposphere ; also c
contains little spatial variation. Therefore, we assume that a spatially independent
and aperiodic value of C shall suffice for calculating the gradient across the
tropopause. The nonstationary behavior of c shall, however, remain as a source
of variation.

One dimensional diffusion models with constant Kr = 2.5 % 105 cm—s"1 (Bolin and
Bischof (1970), Bolin and Keeling (1963)) or constant KW =3 X lO10 cmz—s_l
{Bolin and Keeling (1963), Junge and Czeplak (1968)) have been constructed with
reasonable success. While no similar work exists for Ke , from geometrical conside-
ration we anticipate that K, = K, at the equator and generalize this result for

mathematical convenience. ’ v

The annual averaged drift velocity in the north-south direction is estimated to
be uw = 10_1 cm-s_l( Hoffert (1974)). Thus, the transport of CO2 in the north-
south direction due to advection is negligible compared to that due to diffusion.
There is no consistent averaged radial drift pattern ; we expect u. to be near
0 . So the radial diffusion of CO2 is dominated by turbulent diffusion transport.
The annual averaged drift velocity in the east-west direction has magnitudes of typi-
cally 3000 cm—s_1 , 250 cm-s_l , and 1000 cm—s_1 above the northern hemisphere,
the equator, and the southern hemisphere, respectively ( Mintz (1954)) .Thus, we
regard diffusive transport in the east-west direction as negligible in comparison
to advective transport. Hence, we adopt a model of axial symmetry (i.e. ac/36= 0)
because of the predominance of east-west advection and the absence of source/sink
data with logitudinal dependence. As shall become evident, the parameter 8 may be
suppressed in our axially symmetric model.

We recognize two types of sources and sinks, one whose intensity is independent
of the concentration of CO2 present and the other whose intensity is dependent on

the concentration of CO2 present. While photosynthetic rates on a diurnal time

scale depend on the concentration of Co2 present, this becomes a negligible effect
on a seasonal on secular time scale. Hence, we identify the land biota, as well as
anthropogenic oxidation, source/sink behavior as independent of the concentration

of CO2 present. We now decompose this CO2
into two components, o(6,¥,t) which is stationary and n(6,¥,t) which is non-

independent source/sink distribution S

stationary with respect to time ; so S(9,¥,t) = a(6,¥,t) + n(d,y,t), where

ne, e = = [ se,2a (2)
t-T

and T is the fundamental period of the periodic constituents of the stationary
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components. Since diurnal variations are negligible, T = 1 year. We identify the
stationary component o as corresponding to land biotic source/sink behavior. We
now assume that the spatial pattern of the nonstationary source/sink distribution,
which we identify as primarily anthropogenic oxidation, remains invariant over the
interval of study. The fact that the rates of CO2 increase in ppm—yr_l at various
observatries (Keeling and Pales (1965), Keeling and Brown (1965) , Bolin and Bischof
(1966,1970), Bolin (1973), Keeling et al.(1976) agree ) provides indirect evidence
toward the validity of this assumption. So n(y,t) = nl(t) L(y).

The exchange of CO2 across the ocean-atmosphere boundary, however, does depend
on the presence of atmospheric CO2 via the gradient in partial pressures of CO2
across the ocean surface (Keeling (1965)). The partial Pressures at the ocean surface
(in ppm), Pw , depends also on the ocean surface PH and temperature at the location
; however, we shall select a representative value constant over time which averages
the empirical relation. The flux across the ocean-atmosphere boundary is —W(pC—Pw),
where W 1is the coefficient of gas exchange that relates CO2 flow at the surface
to the gradient in CO2 partial pressures and p is the conversion factor from g-cm_3
to ppm. Although p varies with temperature and pressure, we say p = 5.1 x lO8 ppm-
cm_3—g_1 . The coefficient W depends on temperature and surface roughness, which
results from air and water circulation. 1In a laboratory W has been determined
(Kanwisher (1963)) in experiments which did not involve breaking waves and violent
winds. From estimates of the average CO2 flux entering the atmosphere from the
ocean between 30°N and 30°S and the average gradient of partial pressures across
this boundary (Keeling (1965)), we fix W = 2.6 x lo-ll g—yr_l-cm_z-ppm~l. We
generalize this result to the entire globe and neglect the variations in the frac-
tion of the surface of the earth covered by ocean in any latitude band; this mathe-
matical convenience reflects remaining uncertainties in the determination of the
W function.

according to these various simplifications and assumptions, we obtain the follow-

ing boundary value problem (3-6) :

- Kr%% r=a = S~ W(pC-Pw) I =a (4)
rgg—lr=a+H a(C - <) |r=a+H (5)
g_uc»lw=o = g%'u: =0 (8)
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The geometry of the spherical coordinate system yields boundary condition (6).

The principal sources and sinks of atmospheric CO, are the land biota, the oceans,

2
and anthropogenic oxidation. The above natural decomposition leads to corresponding
stationary and nonstationary components of atmospheric CO2 concentration. Accordingly,
we may use source/sink data to estimate o and n , and then find the induced station-
ary component Cs and nonstationary component Ca of mid tropospheric CO2 concent-
ration using (3-6) by the following methods. Finally,we obtain C(8,¢,r,t) =
CS(¢,r,t) + Ca(w,r,t) because of the linearity of the governing equations.

Diurnal Variation. BAs a matter of preanalysis, let us first consider a vertical
column of air with no net horizontal exchange and a = y = 0. the governing partial

differential equation and its boundary conditions are

c _ o, ¥
Y (7)

aC

K 3r lr=a+H =0 ®)
aC iw.t .

Kear |r= = S;e 3 =12 (9.9)

with wy = 1.72 x 10_2 day—l for a source with period 1 year (seasonal variation)

and w, = 2 day_l for a source with period 1 day (diurnal variation). By solu-
tion of problems (7,8,9.j) we find that the relative decay of the amplitude of the
diurnal variation to the decay of the amplitude of the seasonal variation decreases
from 7 x lO_2 at 2 x lO5 cm to 3 X 10‘6 at 10 X 105 cm. Accordingly, in the mid
troposphere the amplitude of diurnal variations is negligible compared with that

of diurnal variations ; hence, in the mid troposphere we shall ignore diurnal vari-

ations.

3. AXIALLY SYMMETRIC NONSTATIONARY SOLUTION

The nonstationary component Ca of atmospheric CO2 concentration is governed

by the boundary value problem

aC X aC K ac
a r 3 2 a P 9 . a
— = = — [r7 ;—+ yC ] + ——— - sinp —— (10)
ot r2 dr or a r2 siny oY oY
BCa
Kear lr=a = (n=-w ca) ]r=a an
3c
K —= = a(c-c) | (12)
rar r=a+H a r=a+H
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JC 3C
a

a
EIP—I\FO— WIW 0. (13)

Using a separation of variables scheme, we seek solutions of the form Ca(w,r,t)
= Y(Y)R(x)T(t). It follows that the only solutions for VY(y) are { Pn(cosw),
n=20,1,2,... } , where Pn is the Legendre polynomial of degree n (MacRobert
(1967)) . From the separation it also follows that T(t) must satisfy the ordinary
differential equation
dar

Er vl = 0 (14)

where Vv 1is some complex constant. Solutions to (14) are of the form T(t)= Toevt.
Since the nonstationary component is characterized by pure exponential behavior
with no sinusoidal effects, v must be real.

Following Hoffert (1974), we assume that the zonally (latitude band) averaged
nonstationary source/sink distribution can be written in the product form
eA(t—to)

n(@,t) = nit,) L{Y) . (15)

A(t—to)

That is, nl(t)‘= ;(to)e , where ﬁkto) is the averaged global anthropogenic

flux of CO2 at reference time t0 = 1950. Based on Baes et al.(1976), ﬁkto) =

2—day_l and the growth constant X = 1.18 x 10_4 da.y_l . From

3.15 x 107° gCO2—cm—
Hoffert (1974), L(y) is a normalized latitudinal distribution such thatfgL(w)sinwdw

= 2. Thus, adopting Hoffert's results,

-2 fW
L(y) = sin ¥ (16)

where f(y) is the fraction of energy consumption per unit latitude. This empirical

description of L(y) can be approximated by a mixture of Legendre polynomials

m .
L(y) = néo Ln Pn(cosw), (17)
where { Ln , n=0,1,...,m} are suitably chosen constants. It is also desirable
to choose Lo,...,Lm so that L(y) is never negative on the interval [0,7n] ; LO=1

guaranteeé the normality condition.
It is tempting to conclude that since n(¥,t) increases exponentially with

growth parameter A , the globally averaged CO concentration just above the

2
tropopause, C , is also exponentially increasing with the same growth parameter A.
This turns out not to be the case. Because of many active sinks (mainly oceanic)
at the surface, C(t) increases less rapidly.

An improved empirical description is obtained using a mixed exponential form
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Fig. 1. Normalized latitudinal source/sink distribution profile
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Fig. 2. BAn empirical model of C(t) wusing 7 = 1.

_ Lo A ety .

c(t) = L C_ e (18)
p=0 P

where AO = A

It is now evident from the above discussion that the general solution of the
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nonstationary component is given by

_ A (et )
Pn(cosw) Rnp(r) e . (19)

Moo
TR R=]

¢, ,r,t) =

p=0 n=0

Each function igp(r) is the solution to a single variable boundary value problem

22

R 2 2 R =
r Rnp + (2r+Y)RnP - X [Apr + n(nﬂ)K\U] Rnp 0 (20)
—KrRI'lp(a) = I(p) n(to) L, - WpRnP(a) (21)
KrRx"Ap(a+H) = al I(n)cP - Rnp(a+H) 1, (22)

where I(p) and I{(n) are unity if the argument is 0 and O if the argument is

nonzero.

4. AXIALLY SYMMETRIC STATIONARY SOLUTION

The Fourier representation of the concentration independent stationally source/
sink component is
ijwt
o () e Jus (23)

o(p,t) = Re %
i=

(o]

where cj(w) is a ??mplex valued function embodying the phase behavior of the jth
harmonic Re Gj(w)eljwt and w = 1.72 x 10_2 day~l is the fundamental frequency
of seasonal variation. In order to empirically describe these harmonics we may

use standard Fourier technique on the atmospheric release/uptake data reported by
latitude band and month in 1014 gC in Machta (1974); each of these values, however,
needs to be first normalized by dividing by the respective area of the latitude
band and multiplied by 1.205 x lO—l to convert to the basic time unit of 1 day
and since 1 gC yields 3.67 gCO2 . We observe that from this data we obtain co(¢)

= 0. We discard those functions oj(W) which do not differ significantly from
zero and approximate each of the remainder by a mixture of Legendre polynomials

m
cj(w) = nio an Pn(cosw), (24)
finding the parameter an by standard regression techniques. Note that Bno =0
for all n .
Denote by Cj the solution due to the jth harmonic; by virtue of the pricipal of
superposition from the linearity of the model (3~6), we may write the stationary

solution
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©

Cs(w,r,t) = Re I C.(p,r,t). ’ (25)
j=o

Each harmonic Cj of stationary mid tropospheric co, concentration is governed

by the boundary value problem

ac, K ac, K aC,
J r 9 2 Jj P 9 . J
7 0 Y ao [ s—+ yC,] + —/—F— — siny = (26)
3
r r2 or or 3j r2 sing Y Y
SCj ijwt
K x|, =Fe gj(w)e S+ IIWR - WoC ]r=a (27)
3,
K —2 | = -ac, | (28)
¥ 3r r=a+H j 'r=atH
ac. aC. .
J 3
_3 - = 0. 2
W ly=o0 Ty = O 2

Using the same separability scheme, as above, for each Cj, we obtain the stationary
solution of the form
oo . t o
Y
Cs(w,r,t) = Re T etIw ¥  Pn(cosy) an(r) . (30)
= n=o

The functions Pn(cosw) are, as above, the solutions of Legendre's equation which
is derived in the separation. Each function an(r) is the solution to a single

variable boundary value problem

2 v L 1 L. 2 n
- + v =
r an (2r Y)an Kr [1jwer™ + n(n+l)Kw] an 0 (31)
Y LAY

- ' = 1 -

Karj (a) an + I(])WPW Wpan (a) (32)
K R'. (a+H) = - of_, (a+H) (33
- nj a o nj a -

Here also I(j) is the indicator of whether 3j = 0. Upon finding the significant

terms, the summation (30) should be truncated to contain only those.

5. OBTAINING C(0,y,r,t)

Taking advantage of the linearity of the governing partial differential equation

(3), our two components Ca and Cs, which satisfy their respective problems ,
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(10-13) and (26-29), sum to a solution of the master problem (3-6) for mid tropo-

spheric CO, concentration

2
c(6,¥,x,t) = Ca(w,r,t) + Cs(w,r,t)
7 m _ A (t—to) J . N "
= 5 I P (cosP)R _(r)e ¥ + Re{ I e 1P (cosWIE_,(r) }, (34)
n np . ~'n nj
p=0 n=o0 j=o n=o

where E;p and ﬁn' satisfy their respective boundary value problems.

This method of solution is conceptually more vivid than the usual pure numerical
solution methods. It also turns out to be computationally more feasible, requiring
less machine memory and processor time. The functions EAP and %np are numerically

calculated with almost as much ease as the exponential, trigonometric, and Legendre
functions. The form of their boundary value problems (20-22 or 31-33) is linear.
Any solution to a linear single variable boundary value problem is of the form
alYl + a2Y2 , where a; and a, are constants and Yl and Y2 are independent
solutions of the second order linear differential equation (20 or 31). Without
any loss of generality these independent solutions may be specified according to
the initial conditions

Yl(a) Yi(a) 1 0

= . (35)
Yz(a) Yé(a) 0 1

Tables of values of the functions Yl and Y2 are obtained on the interval [a,a+H]
via some numerical integration scheme (e.g. Runge-Kutta) applied to the two independ-
ent initial value problems (Hildebrand (1956)). Upon substitution of the form alYl +
a2Y2 into the boundary conditions (21-~22 or 32-33), a system of linear equations
results from which a; and a, can be found. It is not known with mathematical
certainty whether this system is always nonsingular; however, for most physically
well-posed problems, a unique solution can be expected. The above procedure must

be repeated for each pair (n,p) or (n,j) which produces a significant component

of (34).

6. DISCUSSION

The above model is an interpretation of global scale processes and empirical
evidence. While it extends prior models by simultaneously considering variations
according to (Y,r,t) within an axially symmetric framework, several assumptions and
simplifications were made for its construction; thus, this modél should be viewed
within a sequence of progressively more appropriate semi-analytic descriptions of

the distribution of co, concentration in the mid troposphere.
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In approaching the various subproblems and in making assumptions and simplifica-
tions based on empirical evidence, intuitive appeal , or mathematical expedience,
we have idetified several areas where the analysis presented here could be valid-
ated or extended; it would yield additional interesting results if more data were
available. By restricting the domainto the equatorial region, we may obtain solu-
tions which include longitudinal variations in order to shed light on the prior
assumption that the east-west advection suppresses longitudinal variations suffici-
ently to justify the axially symmetric model. If there are significant longitudinal

variations, within any latitude band the CO, concentration will form standing wave

2
patterns subject to random fluctuations due to transient source/sink behavior. add-
itional data is required to investigate the spatial dependence of the flux across
the ocean-atmosphere boundary due to latitude variations of the proportion of the
surface covered by ocean and due to other concomitant meteorological factors.
Computational results suitable for comparison with Bolin and Keeling (1963)
and others shall be forthcoming in a later communication. Mathematical attention
must be fogused on finding the optimal nonnegative Legendre polynomial approxima-
tion to the normalized nonstatioﬁary source/sink distribution (17). Other empirical
parameters (18,24) require evaluation. Some tunig of the model by a sensitivity
analysis of vaguely specified parameters will be an important refinement of the

results.
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ABSTRACT

Bean,S.T. and Somerville,P.N. Some new worldwide cloud cover models. Proc. l-st
Intern. Conf. on Stat. Climat., held in Tokyo, Nov.29-Dec.l, 1979

Using daily measurements of day and night infrared, and incoming and -absorbed
solar radiation obtained from a TIROS satellite over a period of approximately 45
months, and integrated over 2.5 degree latitude longitude grids, the proportion of
cloud cover over each grid each day was derived for the entire period. For each of
four three month periods, for each grid location, estimates a and b of the two
parameters of the best fit beta distribution were obtained. The (a,b) plane was
divided into a number of regions. All the geographical locations whose (a,b) esti-
mates were in the same region in the (a,b) plane were said to have the same cloud
cover type for that season. For each season, the world is thus divided into separate
cloud cover types.

Using estimates of mean cloud cover, for each season the world was again divided
into separate cloud cover types. The process was repeated for standard deviations.

For ecach season three separate cloud cover models were thus obtained using the
criteria of shape of frequency distribution, mean cloud cover and variability of
cloud cover.

INTRODUCTION *

The purpose of this study was to develop a model for worldwide cloud cover using
a satellite data set containing infrared radiation measurements. Other cloud cover
models exist ( Barnes et al.,1968; Falls,1974; Greaves et al.,1971). These early
cloud models used primarily ground-based cloud observations. The satellite data set
containing Day IR, Night IR, Incoming, and Absorbed solar radiation measurements
on a 2.5-degree latitude-longitude grid covering a 45 month period of record has
recently become available. There was originally a 2-year period of similar data on
an NMC grid. The first step was to convert these infrared data to estimates of cloud
cover. The statistical analysis of classification of cloud region characteristics
was then performed.

There are several reasons for desiring a cloud model based on satellite data.
The ground-based data are much more limited in scope. Some fairly large areas of
the world have either no data or very sparse data, and models using ground-based
observations necessitate a number of assumptions, including on occasion that a region

is essentially like its antipodal location. A good worldwide cloud cover model is
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needed for the purpose of studying the relationship between cloudiness, precipitation,

and the Earth radiation budget.
CONVERSION OF SATELLITE IR MEASUREMENTS TO CLOUD COVER

A major initial task was to derive cloud cover estimates from the satellite infra-
red data. The method used in this investigation follows the suggestions obtained
through personal communications with Thomas I. Gray, Jr. (1978).

Albedo is defined as the reflective power, or the fraction of incident light that
is reflected by a surface or body. Included in the satellite data are the amount of
incoming solar radiation, Iin , and the amount of absorbed solar radiation, Iab .
The satellite observed albedo A, is estimated by

A = (Iin-Iab)/Iin - )

If the Earth's surface absorbed all solar radiation, then the cloud cover might be
taken simply as 1 minus albedo (assuming also that clouds reflect all solar radi-
ation). Different parts of the Earth's surface, however, have differing radiances.
For example, the albedo of the ocean is approximately 5 percent (95 percent of the
solar radiation being absorbed), while the Sahara desert reflects approximately 40
percent of the solar radiation reaching it.

To determine cloud cover, we needed to obtain the background radiation of the
region of the Earth of interest. To do this, for a given season and a specific loca-
tion, we calculated A from eqn(l) for every day of a season and observed the mini-
mum value, Amin . This minimum value should occur on the day of least (hopefully
near zero) cloud cover. If r is the reflectance of the clouds and x is the frac-
tion of cloud cover, then the basic formula may be written as '

A = x +r+ (1-x) - Amin
from which we have the fraction of cloud cover, x , as

x = (A - Aug) /- Asn) - (2)

This formula requires a knowledge of r which varies.

A way to estimate the cloud reflectance r , is by oﬁserving the difference be-
tween the Earth's surface temperature and the temperature equivalent of the satellite-
observed daytime infrared geading (denoted by IRD). The radiance of the IRD by stefan’s
law is equal to 5.75 10° DT4 (watts/mz), where T is the temperature equivalent

in degrees Kelvin. Putting 2z = (surface temperature - T ), (units degree Kelvin),

the following relationship has been observed:

r = -0.000265z2 + 0.0295z + 0.10 . (3)
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A surface temperature of 30°C for latitudes within 25 degrees of the equator and
-5°C for latitudes within 25 degrees of the pole was used. Interpolations were used
for intermediate latitudes.

Using this method, the proportion of cloud cover was calculated for each day of
the year over the 4-year period covering the entire globe. We considered the data
for the four seasons separately, and we developed a separate cloud cover model for
Winter, Spring, Summer and Fall, where Winter consists of the months December, Janu-
ary, and February, etc.

Because this investigation is based on derived cloud cover estimates and may be
subject to criticism, it is noted that ground-based cloud observations are also esti-
mates as well as cloud cover obtained by satelliﬁe photography. We make this conjec-
ture: Those variables which are not well defined in the IR to cloud cover conversion
procedure will have small contributions to climatic modelling of the clouds over
the entire season. For a specific day and area the preceding procedure may not be
entirely satisfactory for synoptic cloud cover analysis. It should be noted that
because of the orbit of the TIROS satellite the estimates in the near polar regions

are degraded somewhat.
A PROBABILISTIC MODEL FOR CLOUD COVER

The proportain of cloud cover over any grid square is a random variable which
has some probability distribution associated with it. Falls (1974) found that the
Beta distribution could be used to represent the probability distribution éf the
proportion of cloud cover. Henderson and Sellers (1978) has also found the Beta dis-
tribution useful as a model for the probability distribution of the proportion of
cloud cover. The Beta probability density function with parameters a and b ‘'is
given by:

I'(a + b) a-1

b~1
f{x) = T(a) Tmo) X (1 - x)

for 0<x<1,a>0,b>0.
The Beta probability density function can assume a variety of shapes. It can be
mound shaped, U-shaped, or J-shaped with varying amounts of skewness. Table 1 shows

the relationship between the a and b parameters and the shape of the frequency

curve.
TABLE 1.
Shapes of the Beta probability density function for different a and b parameters
Shape Parameters
Mound a>1 b>1
J a>1 b <1
Reverse J a<1 b>1
U a<1 b <1
Uniform a=1 b=1
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1. Histograms of the proportion of cloud cover with Beta curves superimposed.
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Fig. 2. Histograms of the proportion of cloud cover with Beta curves superimposed.

The question arises as to how well the Beta distribution actually fits the cloud
cover data at hand. To answer this question we first estimated the a and b para-

meters using the methods of moments. These estimates are given by

~

£ - -9 EQ-x -s2172 , & = xb/a-%,

where x is the sample mean proportion of cloud cover, and s2 is the sample vari-

ance of the proportion of cloud céover. Next, we constructed histograms for the cloud
cover at several grid locations. A grid location was selected at random from latitude
circles 12.5° apart beginning with 50°N latitude and extending to 62.5°S latitude.

A histogram was constructed for each selectedlocation on the basis of the cloud cover
data for the Winter quarter (December, January,February) for the four years of data.
Each of the histograms was constructed on the basis of approkimately 350 cloud cover
values. The corresponding Beta curves are shown superimposed on the histograms in
Figures 1-2.

The (a,b) parameters of the Beta distribution give a good deal of information
about the cloud cover characteristics of a given location as illustrated in the pre-
vious table and figures. Thus, we used the estimated parameters (a,b) in determining
regions of homogeneous cloud cover. ]

As a first step, it is instructive to consider the frequency histograms of the

calculated (a,b) values for each of the four seasons. There are 10,224 grid points
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over the glove, and each grid point has an (é,ﬁ) pair associated with it for each
season. The following frequency histograms (Figures 3-6) of the 10,224 (é,ﬁ) pairs

give some indication of where the parameter pairs are falling in the (a,b) plane.

b
0 250 644 386 141 122
>0 4 171 391 257 165 114
4.0 3 346 710 662 327 149
3.0 18 487 727 1150 598 148
i'g 10 209 242 378 249 104
) 16 140 226 148 32 30

0.0 a

0.5 1.0 1.5 2.0 2.5

Fig.3. Winter freQuency histogram for global (a,b) values {December, January,Feb-

ruary)
b
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>0 |14 562 714 952 433 85
1.0 2 361 1004 1007 155 7

2 154 706 111 9 0
0.0 a

0.5 1.0 1.5 2.0 2.5

Fig.4. Spring frequency histogram for global (3,6) values (March, April, May)
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2.0 7 551 788 787 299 88
1.0 6 467 998 735 262 167
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Fig.5. Summer frequency histogram for global (é,ﬁ) values (June,July, August)
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Fig.6. Fall frequency histogram for global (4,b) values (September, October, No-
vember)

The numbers in the above frequency histograms indicate how many (5,3) parameters
over the entire globe fall in the specified block. For example, there are 644 (a,b)
pairs globally such that 1.0 < & < 1.5 and b > 5.0 in the Winter quarter.

The 36 regions in the (a,b) plane from the frequency histogram for global (5,5)
values form a basis for determining homogeneous cloud cover regions. Grid points
on the globe which have (5,6) parameters falling in the same block have very similar

cloud cover characteristics. This concept leads to a preliminary cloud cover model.
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Each grid point on the globe is assigned to one of 36 groups depending on the block
in which (a,b) falls. A FORTRAN program was used to label each grid point with 0 - 9
or A - Z depending on the group the grid point fell into. These labels were printed
in a rectangular array maintaining the latitude and longitude position of each point.
This procedure results in a map of the globe containing a large number of contiguous
regions which have the same basic cloud cover characteristics. The resulting maps

are shown in Figures 7-10 with global maps siperimposed. These maps have been simpli-
fied by combining several of the 36 blocks and recording the maps. The record maps
are shown in Figures 15-18. The key for the original and maps is given in Figure 11.

The key for the record maps is given in Figure 12.

FI|No gl <

N0 (RO | =

W O [ |

N bR (A Ric IO I
v W [ |2 {3 (N

O N WA !

0.5 1.0 1.5 2.0 2.5

Fig. 11. Code for original homogeneous cloud cover regions map.
The maps may be interpreted according to the distributional characteristics of
the various regions. Typical Beta frequency curves for the 12 recorded regions are

given in Figures 13-14.
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Fig. 12. Key for recorded homogeneous cloud cover regions map.



Fig. 13. Typical Beta frequency curves gorresponding to 12 regions in Fig.l2.
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Fig. 14. Typical Beta frequency curves corresponding to 12 regions in Fig.1l2.
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WORLD WIDE CLOUD COVER MODEL USING MEAN AND STANDARD DEVIATION CONTOUR LINES

One may wish to determine mean and standard deviation of the proportion of cloud
cover at any given location. To do this we have developed contour maps which give
the mean or standard deviation. The methodology is similar to that used to determine
homogeneous cloud cover regions. We first calculated thg/mean and standard deviation
of cloud cover for each grid point for a particulaf season. To obtain a contour map
for the mean cloud cover for a particular season we used a FORTRAN program to érint
the first digit of the mean cloud cover for each grid point on the globe maintaining
the latitude and longitude position. Contour lines were then traced on a transparent
map overlaying the printout. Separate maps were constructed in the same way for the
standard deviation of cloud cover. These maps are shown in Figures 19-26.

The maps in Figures 19-26 may be used as a general guide to the cloud cover char-
acteristics for any place on the globe. Also, the mean and standard deviation of
the proportion of cloud cover obtained from these maps may be used (in the absence
of the previously given maps in Figures 7-10) to obtain estimates for the parameters

(a,b) in the Beta distribution.
CONCLUSIONS AND RECOMMENDATIONS

The current cloud cover model illustrates a useful objective methodology for cloud.
cover classification. The developed maps can be useful for those who need some infor-
mation regarding the cloud cover characteristics for any particular location on the
globe. This is particularly useful in that the practicing climatologist can obtain
a great deal of cloud cover information without going through large volumes of data.

There are problems with the current cloud cover model. The most obvious of these
is the lack of data. To make a goog climatological model a reasonably long record
length is required. The satellite data available for this study comprise approximately
44 months. This is sufficient for some model development, but a longer period of
recoxrd would be desirable. Also, temporal persistence cuts down on the actual number
of independent cloud cover observations. Another problem is that the cloud cover
used in the model is derived. This is not to say that the cloud cover values used
are not accurate, but the derived cloud cover should be compared with some independ-
ently observed cloud cover. It should be noted that any type of cloud cover measure-—
ment will have some degree of error associated with it.

The topic of error analysis in the estimation of the parameters (a,b) was not
covered for several reasons. There are several types of errors which made the problem
quite complex. First, as previously mentioned, there is an unknown error component
in the derived cloud cover itself which may vary from place to place. Also, there
is error in recorded satellite measurements. The cloud cover values have a temporal

correlation which is not fully known. The short length of the record certainly
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contributes to the error (the degree of error depends on the temporal persistence
of cloud cover and the long term cyclic behavior of cloud cover). Another factor

is that the satellite measurements were taken for a given grid location at the same
time each day.

It is worth remarking that even with the above-mentioned errors, it is still possi-
ble to use the data at hand to classify areas of the glove into homogeneous cloud
cover gegions. The methodology is sound, and the presently developed models should
give a good overall picture of glob_al cloud cover characteristics.

The above comments lead to three major recommendations. First, the derived cloud
cover should be verified using some independent measurements. Second, spatial and
temporal persistence of cloud cover need to be investigated. Third, the model should

be updated with a longer length record.
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VARIABILITY OF NORTHERN HEMISPHERE MEAN SURFACE AIR TEMPERATURE DURING RECENT TWO
HUNDRED YEARS

R. YAMAMOTO

Geophy. Inst., Kyoto Univ., Kyoto (Japan)

ABSTRACT

Yamamoto,R. Variability of northern hemisphere mean surface air temperature during
recent two hundred years. Proc. l-st Intern. Conf. on Stat. Climat., held in
Tokyo, Nov.29-Dec.l , 1979

Variability of the hemispherical or global mean surface air temperature during
recent 100 years has been estimated by several authors. Most of the works indicate
no reliability of the spatial averaging, which is indispensable to confirm any time
changes. In the present paper, the optimum interpolation method is applied to the
northern hemisphére network of the seasonal mean surface air temperature anomaly,
and the values at regularly distributed grid points are obtained, together with
the errors, for each season from 1876 through 1975. The grid point values and their
errors thus obtained can give the zonal and hemispherical mean as well as longitu-
dinal profile along a latitude circle, together with their errors.

The changes of the northern hemisphere mean temperature obtained in the present
paper is clearly smaller than those in the previous works, though the main warming
from the 1880s and the cooling from the 1940s are found similarly to those in the
previous works. Possibility of underestimate in our present analysis and overesti-
mate in the previous works is discussed.

The network of temperature observations was very sparse before the decade of
1880s. Possibility of the application of the optimum interpolation to such a sparse
network is examined. It is noticed that the field of correlation which is requisite
for the optimum interpolation has an appreciable temporal change in long distance,
which means that the estimation of large-scale field of the temperature changes
in the period before 1880s decade should be attempted by some other method than
the optimum interpolation.

1. INTRODUCTION

Interest has been increasing in the change and variability of the climate, in
particular connection with increasing vulnerability of human life to the climatic
conditions (WMO,1978). We are not free from anxiety about a possibility that a
drastic change of climate may occur in the near future, assoéiating with the changes
of climate-controlling factors such as increasing concentration of the carbon-
dioxide in the atmosphere (Kellogg, 1977).

It is important for the scientists to study the mechanism of,and to acquire
some insight into the climatic changes. Analysis of the past climatic data may be
probably one of the promising approaches for the problem, in addition to numerical

model experiments (e.g., Manabe and Wetherald (1975)).



308

The climatic element such as surface air temperature, in general, suffers from
local variability, which appears to be a noise in detecting statistically the effects
of global scale changes of the climate-controlling factors. It is reasonable to
expect that the effects may appear appreciably in the changes of global or hemi-
spherical mean climate, in which the local variability is smoothed out by spatial
averaging. .

Our main concern in the present paper is directed to variability of the northern
hemisphere mean surface air temperature. Some mentions are given on the available
data of the temperature in Section 2. In Section 3, some problems involved in the
results of the previous workers are pointed out. The optimum interpolation proce-
dure of data analysis, which can easily give an evaluation of the error of the esti-
mation, is briefly described in Section 4. The change of the northern hemisphere
mean temperature for recent 100 years is presented in Section 5. Section 6 is de-
voted to discuss the possibility of estimating the large-scale temperature change
in the older period of 100 years, and some concluding remarks are given in the

final section.

2. DATA OF THE SURFACE AIR TEMPERATURE

The surface air temperature is most closely related to the human 1life, and the
data network is the most abundant among the various climatic elements. However, the
air temperature has remarkable diurnal variation and is vulnerable to local topo-
graphic effects, and its spatial representativeness is less than the other climatic
elements such as the barometric pressure. Therefore, special attention should be paid
to the analysis of the network data, even if the time mean data is treated (Mitchell
(1963)) .

Fig. 1 shows the time series of annual mean surface air temperature for the 100
years (1876-1975) at Hakodate (Japan, 41°49'N, 140°45'E), and those of the temper-
ature anomaly of zonal mean along 40°N and of the northern hemisphere mean. Estima-
tion procedure of the last two values will be described in Section 4. Thin curves

in this figure represent the long-term trends, which is determined by

4

T = T+ I (A cos[2mkt/200] + B

oy K k51n[2ﬂkt/200])

where T is the annual mean temperature or its anomaly, T the 100 year mean, and

t is the year. Fourier coefficients Ay and Bk are determined by the least square
method. The RMSEs of the annual mean from the long-term trend are estimated as
about 0.6°C, 0.1°C and 0.06°C, respectively. This implies that the values averaged
over large area is appropriate for detecting statistically the effects of global

scale ¢ ange of climate-controlling factors such as the carbon-dioxide concentration

and increase of the stratospheric aerosols due to volcanic eruptions.
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T ANNUAL MEAN SURFACE AIR TEMPERATURE
o T T T T T T T T T

HAKODATE (41°49' ,140°45'E)

40°N ZONAL MEAN

0.2 N.HEMISPHERE MEAN

Ly 1 | 1 | I ! l 1 L

1880 1890 1900 1910 1920 1930 1940 1950 1960 1970

Fig. 1. Time series of annual mean surface air temperature at Hakodate (41°49'N,
140°45'E), and the zonal mean of temperature anomaly at 40°N and the northern
hemispheric mean (thick curves) and their long-term trends (thin curves).

TABLE 1.

Total number of stations north of 25°S with available data of monthly mean surface
in the air temperature, in the NCAR archives.

85°N 65°N 45°N 25°N 5°N 5°g TOTAL
-65°N ~45°N -25°N -5°N -5°g ~-25°8
1656-1675 1 1
1676-1695 1 1
1696-1715 1 1
1716-1735 1 1
1736-1755 2 1 3
1756-1775 6 1 7
1776-1795 9 3 12
1796-1815 9 3 12
1816-1835 10 4 1 15
1836-1855 10 6 1 17
1856-1875 5 16 14 7 . 42
1876-1895 7 68 - 76 35 2 9 197
1896-1915 10 81 ) 95 51 7 21 265
1916-1935 17 105 128 68 10 39 367

'

The longest series of the data of the surface air temperature measured instrument-
ally is found in Central England since the year of 1659 (Manley (1974)). However,
the number of stations with available temperature data increased quite slowly, as

shown in Table 1, which is referred to the archives of NCAR, U.S.A. Before the last
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quarter of the 19th Century, almost all the stations wiﬁh data are located within
the north mid-latitudes, and there were few available data in the tropics until the
decade of 1870. Therefore, all the previous works to estimate the northern hemi-
sphere mean temperature were undertaken for the period after the last quarter of
thw 19th Century. In the present paper, two periods of 100 years or 1776-1875 and
1876-1975 are separately taken.

3. ANALYSIS OF THE NORTHERN HEMISPHERE MEAN TEMPERATURE FOR RECENT 100 YEARS

Pioneer work on the global or hemispherical mean temperature was made by Willett
(1950) . His analysis was based upon a presumption that the 5 year mean of the sea~
sonal mean temperature at a station may have significant representativeness over
broad area. Dividing the whole globe into 18 latitudinal bands of 10 degree width,
willett determined the mean temperature of each band by averaging the data at sta-
tions located within the band, taking precaution against the overweight in region
of dense network such as Europe and North American Continents. Succeeding to the
Willett method of analysis, Mitchell (1961,1963) has obtained the change of the
northern hemisphere mean temperature with special attention to the homogeneity of
the data. Similar analyses were mede by Reitan (1974) and Brinkmann (1976) for more
recent decades. Budyko (1969,1977) has calculated the change of the annual mean
temperature averaged over the northern hemisphere from maps of the temperature ano-
maly for each month.

Inspecting these results, Lamb(1977) made the foolowing mention : " margins of
error of the estimate must be presumed greatest in the extensive ocean areas, but
repetitions of the calculations in different laboratories indicate that the main
warming from the 1880s and the cooling from the 1940s are beyond doubt! The results
by Mitchell (1963) and Budyko(1969) are shown in Fig.2, which is reproduced from
Robock (1978).

0_7 T T T T T T T T T T T T
//\‘
o-er BUDYKO (NH) // A
KO (NH 7 N J
0.5 ’- e\
7
0.4 1 /
— 7
So0.3F N '/ TMITCHELL (0°-80°N) 1
> ING -
0.2 F ) N
< / ~
0.1+ ,/
d
0.0 .y 1 1 i W | 1 1 1 1 1
1887 1897 1907 1917 1927 1937 1947 1957
YEAR

Fig. 2. The 5-year mean of surface air temperature anomaly reborted by Mitchell(1963)
and Budyko(1969), reproduced from Robock(1978).
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Although the general tendencies of the warming from the 1880s and of the cooling
from the 1940s are commonly seen in both of the results, there are some disagree-
ments, e.g., some delay of several years in Mitchell's result. On the other hand,
it is essentially necessary to assess how much errors are included in the estimated
hemispherical average, for confirmation of the actual changes. These situations
suggest us to re-compute the hemispherical mean surface air temperature, paying
special attention to the assessment of the errors of estimation. The present author
and his collaborator (Yamamoto and Hoshiai (1979a)) have adopted the optimum inter-
polation method, which makes possible to evaluate the error involved in the analysis

rather easily.
4. OPTIMUM INTERPOLATION METHOD

Spatial mean of the temperature can be easily calculated when the data at regular-
ly distributed grid points are given. The values and the errors at these grid points
can be estimated by applying the optimum interpolation technique to the network of
stations located irregularly, see Yamamoto and Hoshiai (1979,a,b). This technique,
which is usually used in objectivé analysis of numerical weather prediction, has
been developed by Gandin (1963).

Optimum interpolation technique gives a value of deviation Té from the time
mean Eé ( hereafter, N designates the time mean, i.e., the expectation Y.r.t.time)
at an arbitrary grid point by a linear combination of the observed data Ti at n
stations, i = i,2,...,n, within the range of appreciably positive correlation with

the grid point g :

T = T!P., + I (1)
. i
i=1

where Pi is the weighting factor and Ig the interpolation error. Employment of the
anomaly data diminishes the influence of the difference of the station altitude.

The observed deviation %i consists of the true deviation Ti and the observational

error e. , the latter of which includes the effects of local irregularities. €

and Tiz are assumed to be homogeneous within the correlated range, and will be

2 2 2

denoted by €“ and 0%, respectively. The value of €“ can be estimated with the aids

of the structure functions, as shown later.
Under the condition that the value of Ié should be minimum,the following equations
which determine the P, are derived:
ooy i
L uiP. + A%P, = , i=1,2,...,n, . (2)
jep 33 i g

i i ; © s
where A2 = 82/02, and uj and u; are the correlation coefficients between the

i-th and j-th stations, and thé i-th station and the grid point g, respectively.
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Then, the value of Ié is reduced to E; :

2 = o2(1.0 - t e Wiy (3)
9 =12 * 9
The details of this method can be found in the textbook by Gandin (1963).

In practice of the optimum interpolation, it is prerequisite to know the depend-
encies of the structure function and of the correlation function upon the distance
between a pair of stations. The former is used to estimate the observational error.

Under the assumptions that the observational error e is random an§ independent
of the true deviation Ti énd ej (3 # i), the structure function B; between. the

i-th and the j~th stations is expressed as follows:

L = L ’ 2 = L. ' y - 2
Bj = ('rj Ti) [(Tj Ti) + (ej ei)]
= vo_ oy 2 2 2 oo iy 2 2
= (Tj Ti) + Ej +ei = (Tj Ti) + 2 . (4)

Then, we have

limBl = 2e2. (5)

i»j

An example of distance dependency of the structure function for the annual mean
temperature is given in Fig.3, which is referred to the data sample of 60 years at
stations in western Europe network. Extrapolation to zero distance gives the obser-

vational error of about 0.13°C.

(OC)Z STRUCTURE FUNCTION
1.0~
EUROPEAN NETWORK

1913-1972

0.5~

0.2

0.1

0.05

0.02 [~

0.01 | | 1 | J
0 200 400

LONGITUDINAL SEPARATION(KM)

Fig.3. Dependency of the structure function of the annual mean temperature upon
longitudinal separation. Data are at stations in European network for 60 years
(1913-1972) . Extrapolation to zero separation gives the value of 2¢2,
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CORRELATION FUNCTION

1.0 C.EUROPE(65°N-45°N,5°E-50°E)
. L WINTER 1931-60

CORRELATION

0 | 1 1 hd 1
500 1000 1500 2000
SEPARATION(KM)

Fig. 4. Correlation coefficients of 3-month mean temperature in central Europe,
computed from 30 year data (1931-1960).

CORRELATION FUNCTION
C.EUROPE(65°N-45°N,5°E-50°E) 1931-60
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o ~. N
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.
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500 1000 1500 ~..2000

SEPARATION (KM)

Fig. 5. Regression curves of correlation functions of 3-month mean temperature for
30 year period (1931-1960) in central Europe.

The correlation function is, in general, dependent on the direction and the dis-
tance between the pair of stations. Here, isotropy of the correlation is éssumed,
although the directional dependency should be taken into account in more advanced
analysis. Concerning the dependency of the function upon the distance, we obtain

a regression curve from a set of u% . An example of the correlation of 3-month mean
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temperature is given in Fig.4, and the regression curves for each season in Fig.s5,
At distance of 1000 km, the correletion‘has a value of 0.67 in winter and of 0.43

in summer. The values u; in egns. (2) and (3) is determined from the regression
curves.

The values of 02 and u; are estimated from the data sample of 30 years(1931-
1960). The 95% confidence intervals for these quantities are determined, and the
upper limit for o2 and the lower limit for u; are taken in estimation of the inter-
polation error Eg by the egn. (3). Because the distribution of T' may be assumed
to be of Gaussian type, the value of Eg thus obtained is roughly equal to the 68%
confidence limit for the error. If no available data exists within the range of
appreciably positive correlation with the grid point concerned, we have Eé = g2,
and the value Té falls in the range of *0 with a probability of about 68% .

The observed data at stations used for interpolation of one grid point value are
not utilized for other grid point values. This limitation on data employment keeps
the interpolation error of one grid point independent of the other, and simplifies
the computation of spatial mean error estimate. The zonal mean value of the temper-
ature deviation and its estimation error can be easily calculated from these inter-
polated values at the grid points of equal spacing along the latitude circle. Thus,

G _2 1/2
gzlEg /G 7,

where G is the number of grid points used for the zonal mean calculation. Lati-

the 68% confidence limit for the error of zonal mean is estimated as {I

tudinal averaging of the zonal mean gives the mean over the hemisphere or latitudinal
belts, in which case the error becomes generally smaller than that of the zonal mean.

In a similar way, time averaging also diminishes the error.

5. RE-COMPUTATION OF THE CHANGE OF THE NORTHERN HEMISPHERE MEAN TEMPERATURE DURING
RECENT 100 YEARS

We have attempted to re-compute the change of the northern hemisphere mean temper-
ature during recent 100 years from 1876 through 1975, using the observed data at
367 stations north of 25°S, the locations of which are shown in Fig.6 (Yamamoto and
Hoshiai (1979b)). The optimum interpolation technique is applied to the network data
of the seasonal mean (3-month mean) temperature deviation from the 30 year mean
(1931-1960) of each seasonal mean temperature. The temperature deviation and the
interpolation error are estimated at grid points on 10° latitude and 30° longitude
(45° longitude only at 80°N) intersections from the equator to 80°N.

These grid point values give the hemispherical distribution of the temperature
anomaly for each season from 1876 to 1975. The detailed descriptions of the results
will be found in Hoshiai's paper (1980). Some mentions on the errors are given
here. Magnitude of the interpolation error depends upon the latitude, season and
the number of stations with available data. The interpolation error at the grid

point of 70°N, 0° Long. is, for example, 2.05°C and 1.64°C in 1880 and 1970 winter,
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and 1.25°C and 1.04°C in 1880 and 1970 summer, respectively. The errors at 0°Lat,
180°Long. is 0.56°C in winter and 0.48°C in summer, irrespective of the year.

The zonal mean of the seasonal mean temperature anomaly and its error are caleu-
lated from the values of 12 grid points (8 grid points along 80°N only). Latitudinal
averaging of the zonal mean values with areal weighting gives the latitudinal band
and the hemispherical ones. The 5-year running means averaged over the latitudinal
bands of 30° width are shown in Fig.7 . For the bands of 90°N-60°N, 60°N-~30°N and
30°N-the equator, the errors are 0.11-0.12°C, 0.04-0.05°C and 0.03°C, respectively.
In polar band (90°N-60°N), the minimum temperature in the 1910s decade and the maxi-
mum in the 1930s are significant, and the warming from the 1910s to the 1940s has
the rate of about 0.6°C/20 years. In mid~latitude (60°N-30°N), the minimum temper-
ature in the 1880s and the maximum in the 1940s are found. Although the changes in
tropics (30°N-the equator) are small, the maximum appears appreciably in the 1960s
decade.

Table 2a and 2b show the northern hemisphere mean temperature anomaly from the

30 year mean (1931-1960) and the 68% confidence limit for the error, for each season

of the 100 years (1876-1975).

SURFACE AIR TEMPERATURE
0 5-YEAR MEAN

(°c)

T I T I I I T T T T

0.4

0.2 90°-60°N
0.0

-0.2
-0.4

0.2

0.0

-0.2
0.4 L ' i

0.1 30°N-0° -
0.0 Wﬂ;

-0.2

—

-0.4 L 1 ! ! I L | ! !
1880 1900 1920 1940 1960

Fig.7. The 5-year running mean surface air temperature anomaly averaged over 30°
width latitude band, expressed by the 68% confidence interval.
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TABLE 2a.

Seasonal mean of the surface air temperature anomaly from the 30 year mean (1931-
1960) averaged over the northern hemisphere, in the unit of °C.

YEAR WN SP SM AT YEAR WN SP SM AT

1876 0.00 -0.11 -0.02 -0.16 1926 0.24 0.10 0.00 0.08
1877| -0.17 -0.13 =-0.02 -0.10 1927{ -0.07 -0.13 -0.01 0.08
1878 0.04 0.06 =-0.01 0.00 1928 0.06 -0.06 -0.07 0.01
1879 -0.08 -0.03 -0.08 -0.14 1929| -0.26 -0.07 -0.02 -0.04
1880! -0.20 -0.12 -0.08 =-0.22 1930| -0.02 0.04 0.03 -0.00
1881{ -0.20 -0.08 =-0.11 -0.22 1931( -0.18 -0.03 0.07 -0.02
1882 | -0.03 -0.09 -0.13 -0.26 1932 0.16 0.06 0.02 -0.05
1883| -0.46 -0.16 -0.08 -0.12 1933| -0.22 -0.20 -0.03 -0.12
1884 | -0.17 -0.29 -0.18 -0.24 1934| -0.08 -0.01 =-0.01 0.07
1885| ~-0.30 -0.14 -0.15 -0.20 1935 0.19 -0.06 -0.00 -0.10
1886| -0.23 -0.14 -0.10 -0.21 1936| -0.23 -0.01 0.06 0.00
1887 | -0.16 -0.08 -0.13 =-0.12 1937 0.17 -0.06 0.07 0.16
1888| -0.30 -0.14 =-0.09 -0.12 1938 0.03 0.23 0.06 0.20
1889| -0.21 -0.02 -0.06 -0.18 1939 0.09 0.03 0.03 0.04
1890| -0.11 =-0.09 -0.14 -0.09 1940 0.12 0.12 -0.02 0.01
1891 | ~-0.29 -0.15 -0.11 =-0.15 1941 0.17 0.05 0.04 -0.04
1892| -0.07 =-0.18 -0.11 =-0.13 1942| -0.13 -0.03 -0.04 0.02
1893| -0.64 -0.06 =~-0.09 -0.14 1943 -0.03 -0.02 -0.05 0.10
1894| -0.07 -0.09 -0.11 -0.18 1944 0.33 0.06 =0.03 0.06
1895| -0.37 =-0.11 -0.11] -0.09 1945¢ -0.22 0.01 -0.05 -0.05
1896 | ~0.13 -0.20 =0.02 =-0.12 1946 0.02 0.08 -0.03 0.01
1897 | -0.19 -0.06 -0.04 -0.09 1947| -0.23 0.12 -0.01 0.09
1898 | -0.08 =-0.33 -0.06 -0.14 1948 0.07 0.05 0.00 -0.01
1899 0.03 -0.09 -0.10 0.03 1949 0.15 0.02 -0.05 0.07
1900 -0.30 0.00 -0.01 =-0.04 1950 -0.21 ¢.02 -0.08 -0.07
1901 -0.03 0.04 0.01 -0.08 1951| -0.25 -0.01 -0.03 0.01
1902 0.01 -0.14 -0.i6 -0.20 1952 0.18 -0.09 0.01 -0.12
1903} -0.03 -0.10 -0.20 -0.10 1953 0.05 0.17 0.10 0.04
1904{ -0.22 =-0.21 -0.17 -0.10 1954| -0.09 -0.10 0.00 0.09
1905{ -0.22 -0.19 -0.11 -0.06 1955| -0.03 ~0.17 -0.02 -0.08
1906{ -0.18 -0.00 -0.04 -0.12 1956| -0.33 -0.20 =-0.14 -0.24
1907 -0.19 =-0.22 -0.24 -0.16 1957| -0.08 -0.05 0.04 -0.01
1908 -0.14 -0.15 -0.15 =-0.25 1958 0.23 0.05 -0.02 0.05
1909{ -0.31 -0.26 -0.10 -0.08 1959 0.18 0.13 0.03 -0.09
1910{ -0.11 -0.04 -0.12 -0.19 1960 0.13 -0.14 0.05 -0.05
1911{ -0.27 -0.17 -0.09 -0.09 1961 0.32 0.02 0.04 -0.03
1912} -0.08 -0.12 -0.20 =-0.35 1962 0.13 0.08 -0.04 -0.09
1913 -0 19 -0.14 -0.15 -0.07 1963| -0.07 -0.,07 -~0.04 0.11
1914 0.20 -0.06 -0.11 -0.11 1964| -0.13 -0.15 =-0.10 =~0.17
1915 0.02 0.04 -0.04 0.00 1965 -0.21 =-0.11 -0.18 -0.13
1916 0.08 -0.15 -0.12 =-0.11 1966} ~0.14 -0.10 -0.01 -0.10
1917| -0.42 -0.31 -0.09 -0.14 1967 | -0.24 0.09 -0.07 0.01
1918 | -0.41 -0.17 =-0.15 =-0.03 1968| -0.15 0.26 -0.14 -0.18
1919| -0.21 -0.13 -0.10 -0.13 1969} -0.52 =-0.16 -0.07 -0.08
1920| -0.11 0.07 -0.04 =-0.20 1970} -0.01 -0.08 =-0.06 -0.19
1921 -0.08 0.08 -0.02 -0.18 1971| -0.20 -0.23 =0.11 -0.04
1922| -0.15 0.04 -0.08 =-0.15 1972 ~0.21 -0.05 -0.10 ~-0.23
1923| -0.07 -0.12 -0.09 0.06 1973 0.17 0.12 0.01 -0.01
1924| -0.07 -0.08 -0.02 ~0.01 1974| -0.12 0.01 -0.07 -0.12
1925 -0.04 -0.03 -0.04 0.00 1975 0.07 0.13 -0.02 -0.05

WN - Winter (December, January, February). SP - Spring(March,April, May)
SM - Summer (June, July, August), AT - Autumn(September, October, November)
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TABLE 2b.

The 68% confidence limit for the error in the estimation of the northern hemisphere
mean temperature anomaly given in Table 2a, in the unit of °C.

YEAR WN SP SM AT YEAR

1876 0.19 0.13 0.09 0.12 1926 0.15 0.12 0.09 0.11
1877 0.17 0.13 0.09 0.12 1927 0.15 0.12 0.09 0.11
1878 0.17 0.13 0.09 0.12 1928 0.15 0.12 0.09 0.11
1879 0.17 0.13 0.09 0.12 1929 0.15 0.12 0.09 0.11
1880 0.17 0.13 0.09 0.12 1930 0.15 0.12 0.09 ©.11
1881 0.16 0.12 0.09 0.12 1931 0.14 0.12 0.09 0.11
1882 0.16 0.12 0.09 0.12 1932 0.14 0.12 0.09 0.11
1883 0.16 0.12 0.09 0.12 1933 0.14 0.12 0.09 0.11
1884 0.16 0.12 0.09 0.12 1934 0.14 0.12 0.09 0.11
1885 0.16 0.12 0.09 0.12 1935 0.14 0.12 0.09 0.11
1886 0.16 0.12 0.09 0.12 1936 0.14 0.12 0.09 0.11
1887 0.16 0.12 0.09 0.12 1937 0.14 0.12 0.09 0.11
1888 0.16 0.12 0.09 0.12 1938 0.14 0.12 0.09 0.11
1889 0.16 0.12 0.09 0.12 1939 0.14 0.12 0.09 0.11
1890 0.16 0.12 0.09 0.12 1940 0.14 0.12 0.09 0.11
1891 0.16 0.12 0.09 0.12 1941 0.14 0.12 0.09 0.11
1892 0.16 0.12 0.09 0.12 1942 0.14 0.12 0.09 0.11
1893 0.16 0.12 0.09 0.12 1943 0.14 0.12 0.09 0.11
1894 0.15 0.12 0.09 0.12 1944 0.14 Q.12 0.09 0.11
1895 0.15 0.12 0.09 0.12 1945 0.14 0.12 0.09 0.11
1896 0.16 0.12 0.09 0.12 1946 0.14 0.12 0.09 0.11
1897 0.15 0.12 0.09 0.12 1947 0.14 0.12 0.09 0.11
1898 0.15 0.12 0.09 0.12 1948 0.14 0.12 0.09 0.11
1899 0.15 0.12 0.09 0.12 1949 0.14 0.12 0.09 0.11
1900 0.15 0.12 0.09 0.12 1950 0.14 0.12 0.09 0.11
1901 0.15 0.12 0.09 0.12 1951 0.14 0.12 0.09 0.11
1902 0.15 0.12 0.09 0.12 1952 0.14 0.12 0.09 0.11
1903 0.15 0.12 0.09 0.12 1953 0.14 0.12 0.09 0.11
1904 0.15 0.12 0.09 0.12 1954 0.14 0.12 0.09 0.11
1905 0.15 0.12 0.09 0.12 1955 0.14 0.12 0.09 0.11
1906 0.15 0.12 0.09 0.12 1956 0.14 0.12 0.09 0.11
1907 0.15 0.12 0.09 0.12 1957 0.14 0.12 0.09 0.11
1908 0.15 0.12 0.09 0.12 1958 0.14 0.12 0.09 0.11
1909 0.15 0.12 0.09 0.12 1959 0.14 0.12 0.09 0.11
1910 0.15 0.12 0.09 0.12 1960 0.14 0.12 0.09 0.11
1911 0.15 0.12 0.09 0.12 1961 0.14 0.12 0.09 0.11
1912 0.15 0.12 0.09 0.12 1962 0.15 0.12 0.09 0.11
1913 0.15 0.12 0.09 0.12 1963 0.15 0.12 0.09 0.11
1914 0.15 0.12 0.09 0.12 1964 0.15 0.12 0.09 0.11
1915 0.15 0.12 0.09 0.12 1965 0.15 0.12 0.09 0.11
1916 0.15 0.12 0.09 0.12 1966 0.15 0.12 0.09 0.12
1917 0.15 0.12 0.09 0.12 1967 0.15 0.12 0.09 0.12
1918 .15 0.12 0.09 0.12 1968 0.15 0.12 0.09 0.12
1919 0.15 0.12 0.09 0.12 1969 0.15 0.12 0.09 0.12
1920 0.15 0.12 0.09 0.12 1970 0.15 0.12 0.09 0.11
1921 0.15 0.12 0.09 0.12 1971 0.15 0.12 0.09 0.11
1922 0.15 0.12 0.09 0.12 1972 0.15 0.12 0.09 0.11
1923 0.15 0.12 0.09 0.12 1973 0.15 0.12 0.09 0.11
1924 0.15 0.12 0.09 0.12 1974 0.15 0.12 0.09 0.11
1925 0.15 0.12 0.09 0.12 1975 0.15 0.12 0.09 0.11
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The computed change of 5-year running mean of the northern hemisphere mean temper-
ature deviation is given in Fig.8, which is shown with the 68% confidence intervals
of the error (0.03°C). General tendencies of the warming from the 1880s and of the
cooling from-the 1940s are found, similarly to those of Mitchell's and Budyko's
results. However, the range of the temperature change from the 1880s minimum to
the 1940s maximum in the present work is at most 0.3°C and is clearly less than the
ones by Mitchell and Budyko shown in Fig.2. (Fig.8 is on next page.)

Fig. 9 shows the 30 year running means of the northern hemisphere mean temperature
in the upper panel, and the standard deviation computed from the data sample of 30
years, in the lower panel. The general tendencies of the warming from the 1890s and

the cooling from the 1940s are more clear in the both seasons. The range from the
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Fig. 9. Mean and standard deviation of the northern hemisphere mean surface air tem-
perature in winter (solid curves) and in summer (broken curves), computed from data
sample of 30 year.



320

(°c)
0.2 ]
- NORTHERN HEMISPHERE
5-YEAR RUNNING MEAN B
0.1+

-0

-0.2 |-

| ] | 1 ]
- l | I I ]
o3 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970

Fig. 8. The 5-year running mean of the northern hemisphere mean surface air temper-

ature anomaly from 30-year mean (1931-1960), expressed by the 68% confidence
intervals.
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Fig. 10. Iocations of stations taken for the temperature estimation in 200 year
period. The 13 stations with data before 1800 (group A) are indicated by cross-
es. The 8 stations with data before 1851 Group B) are shown by dots, and the

26 stations with data before 1876 (group C) are shown by open circles, all of
which are located between 47.5°N and 67.5°N.
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maximum to the minimum for winter is at least 0.3°C and evidently smaller than that
by Mitchell's and Budyko's ones. It is noticiable for the standard deviation of the
winter temperature to have a tendency of gradual increase.

The optimum interpolation technique involves a possibility of underestimation of
spatial mean. This interpolation technique gives a value of zero deviation to a grid
point which has no observed data within the correlated range. Such situation occurs
in region of sparse network, particularly over the Pacific and Atlantic Oceans and
Arctic region. An underestimation of variability of the spatial average should be
brought about in such cases. Such inevitable underestimation in sparse network region
may perhaps be avoided by use of normalized weighting factors instead of Py deter-
mined by eqn (2). Gandin (1963) shows that the errors in optimum interpolation with
normalized weighting factors are larger than that with unnormalized factors adopted
here.

On the other hand, we can not overlook a possibility that the change of the north-
ern hemisphere mean temperature be probably overestimated in Mitchell's results.
According to a recent analysis by Barnett (1978), the temperature variability over
the land is 2-6 times larger than that over the oceans. 1In Willet-Mitchells' pro-
cedure, no particular attention is paid to the oceanic regions, and overestimation
should be more or less made. The detailed discussions on the reliability in esti-
mation of hemispherical mean temperature will be found in a paper by one of the

authors (Hoshiai(1980)).

6. TEMPERATURE CHANGES IN THE PERIOD FROM THE LAST QUARTER OF THE 18TH CENTURY TO
THAT OF THE 19TH CENTURY

The period from the last quarter of the 18th century to that of the 19th century
is much more interesting than the period of recent 100 years treated in the previous
sections, because of the following reasons: In this period, the last phase of the
Little Ice Age showed the significant features. Some remarkable changes of tempera-
ture should appear due to several eruptions of volcanoes with severity equal to or
greater than that of Krakatoa eruption in 1883 (Lamb(1970)). And the year of 1816
was abnormally cool, memorized as the year without summer (Hughes(1979)). These
situations make us to examine the possibility of the optimum interpolation to very
sparse network.

The number of stations with available data of instrumentally observed temperature
pefore 1800 is only 13 in the NCAR archives of data, and the Jlocations are confined
in western Europe and north-eastern United States, as shown in Fig.l10. First, the
bebaviours of the correlation functions are examined. The 8 stations with data before
1851 (B group), all of which are located between 47.5°N and 67.5°N, are supplemented,
in addition to the 13 stations with data before 1800 (A group).

The correlation coefficients of the annual mean temperature between pairs of
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Fig. 11. Correlation of the annual mean temperature between pair of stations shown
in Fig.l0. These are computed from the 30 year (1943-1972) data and ‘averaged over
the separation range of each 1100 km (550 km in small range only). The standard
deviations are shown by vertical bars.

computed from the data sample of 30 year (1943-1972) are given in Fig.l1l. Dependency
of the correlation on the separation between stations is seen clearly, and the cor-
relation has, for short separation, a value greater than 0.5. Such comparatively
large values of correlation are taken in the analysis for recent 100 years described
in the previous sections. Although the correlations do almost vanish at distance
from 3000 to 4500 km, the correlations are appreciably positive at more distant sepa-
ration. These positive correlations at distance of about 5500-8000 km make perhaps
possible to apply fruitfully the optiumum interpolation to very sparse network. If
the fields of correlation would have no temporal change from decade to decade, use
of the weighting factors Pi which are determined from the recent data sample, and
of the temperature anomaly data at stations of group A in the 18th Century gives

the value at stations of group B and C in the 18th Century.

Fig. 12 shows how much the correlation coefficients change from one 30-year period
to other, for two ranges of separation. There is no remarkable change for small
distance, and this justifies the treatment in the previous sections, where the cor-
relation functions determined from the 30-year data sample of 1931-1960 are utilized
for the 100 year of 1876-1975.

A remarkable dip of the correlation in the period of 1853-1882 is found for large

distance. This implies shortening of characteristic scale of annual mean temperature
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distribution, which may probably be associated with change of the atmospheric circu-
lations. This shows that the use of correlation functions determined from the data
in different period of years is appropreate for long distance, in some cases. Also,
the estimation of the field of the temperature changes in the period from the last
quarter of the 18th Century to that of the 19th Century should be attempted by other

method rather than the optimum interpolation method.
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Fig. 12. Temporal change of the correlation of the annual mean temperature,. computed
from the 30 year data of the indicated period. Broken curves are obtained from
the data at stations of group A, and the solid curves from those of groups A
and B.

7. CONCLUDING REMARKS

Change of the northern hemisphere mean temperature is estimated by applying the
optimum interpolation technique, assessing the errors of estimation. The technique
of optimum interpolation has certainly a possibility of underestimating the spatial
average. However, the magnitude of the underestimation may be possibly equal to or
less than the erroe estimated here. Some discussions are given concerning the quan-
titative disagreement among the results by other authors and ours.

It is possible to apply the optimum interpolation technique to other climatic
elements, with no essential modification. In contrast to the temperature which is
vulnerable to diurnal variation and local effects, the barometric pressure is, in

general, insensitive to such effects and has good representativeness over broad area.
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The application of the technique to the hemispherical pressure field will probably

produce fruitful results in the past 200 years.
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THE FOUR-YEAR CYCLE IN ATMOSPHERIC AND SOLAR PHENOMENA
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ABSTRACT

Takahashi,K., The four-year cycle in atmospheric and solar phenomena. Proc. l-st
Intren. Conf. on Stat. Climat., held in Tokyo, Nov.29-Dec.l,1979

The 4-year cycle of atmospheric oscillation is analyzed by means of harmonic anal-
ysis. The result indicates little variation in 4-year-cycle phase angles taken at
different periods of time. This means that the 4-year cycle is a stable period like
diurnal and annual changes. It also implies that the 4-year cycle is caused by astro-
nomical influences. In fact, variability of geomagnetic disturbance — one index
of solar activities — shows a 4-year cycle. When geomagnetic disturbance variability
increases, the temperature rises in high latitudes, as does atmospheric pressure.
This phenomenon can be explained by supposing that the solar corpuscular flow in-
crease enhances mixing of air masses between north and south.

INTRODUCTION

Every year, Japan suffers gamage from typhoons and heavy rains. The author has
noticed that storm damages for leap years are generally smaller than those for other
years. The yearly loss of lives due to storms in Japan in the period 1915-1972 is
listed in Table 1; the figures in the first column indicate loss of lives in leap
years, while those in subsequent three columns are the yearly loss of lives in each
of subsequent three years. The numbers of victims are obviously smaller in leap
years except 1948. Understandably, such periodic recurrence may be accidental, but
such a probability is very small. It is far more likely that victims are actually
fewer in leap years.

Such an investigation suggests that a 4-year cycle might exist in the atmospheric
phenomena, because leap years occur every four years. Many researches have been
done on the periodicity of meteorological phenomena, but little on the 4-year cycle.

This paper analyzes the 4-year cycle in the annual mean meteorological elements
at stations over the northern hemisphere,and investigates the mode of 4~year cycle
in the same area.

Although the amplitudes are very small, the 4-year cycle is notably stable, and
is also found in yearly solar activity changes. The 4-year cycle in the atmosphere,

therefore, seems stimulated by solar radiation influence.
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TABLE 1.

Yearly loss of lives due to storms.

Lag of year 0 1 2 3
Leap year
1912 - - - 93
1916 153 1372 174 159
1920 224 1379 448 193
1924 319 379 801 643
1928 345 335 176 298
1932 411 306 3245 884
1936 341 306 1741 140
1940 "75 593 1229 246
1944 364 3528 6936 1950
1948 1162 997 781 1387
1952 387 4984 8850 381
1956 299 1142 1626 5548
1960 280 736 237 575
1964 305 318 578 603
1968 366 183 175 343
1972 637 - - -
Mean 378 1183 1928 896

DETECTION METHODS

First, to briefly review detection methods, the 4-year cycle analysis in meteo-
rological elements was done mainly by means of the so-called Schuster's method.
Let 6(t) be annual mean values of a meteorological element and 4-year harmon-

ics in this time series be expressed by
8(t) = A cos(2nt/4 + ¢) (1)

where A 1is the amplitude and ¢ is the phase angle. The A and ¢ are calcu-
lated by the relations:
2 2

A = {ﬁ'

N 2 2 N . 2
En=16(nAt)cos(2ﬂnAt/4)} + {§~Zn=16(nAt)51n(2nnAt/4)} R

(2)
tan¢g = Enzle(nAt)sin(2ﬂnAt/4) / Enzle(nAt)cos(ZﬂnAt/4) ,

where At 1is a fixed time interval, say, a year.

If 6(t) is a random time series, the expectation of A is:

€ = 206 / /N (3)

where gy is the standard deviation of 6(t).
Accordingly, if the calculated A is larger enough than ¢ , the 4-year cycle
is statistically significant, but A is comparable to or less than € , the 4-year

cycle is insignificant. The probability that A/e is above 1.5 and 2 is 10.5 %
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and 1.8 %, respectively, provided the original time series be a random number. These
values will give us the critical values in significance test.

These criteria, however, appear too severe to the present case, because a time
series of annual means of meteorological element is never of random numbers but of
long periodic changes, i.e., predominated by climatic changes. Fig. 1l(a) shows the
mean time spectrum of the temperature obtained by an 80-year harmonic analysis at
18 stations over the northern hemisphere. It is found that the amplitude of low har-
monics, that is, an amplitude of several ten year harmonics, predominates. Accord-
ingly, these long period components must be reduced from Og to detect the 4-year
cycle. Then, the existence of the 4-year cycle will be quite probable if A/e 1.5.
Examples of significant 4~year cycles are shown in Table 2: the value of A/e is
larger than 2 for the temperature at two stations, Surgut and Upernivik; the existence
of the 4-year cycle is obvious at these two stations. It may also be concluded
that a 4-year cycle exists in the atmosphere, though it is hidden by other disturb-

ances at most of the stations.
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Fig. 1. '5pectrum of 80-year harmonic analysis.



328

TABLE 2.

Significant 4-year cycle in the meteorological elements

Element Amplitude A | Expectation €[A/¢c Period of analysis
Temp. at Surqut 0.52°F 0.25°F 2.1 1881-1960
Temp. at Upernivik 1.12°F 0.25°F 4.5 1885-1950
Temp. at Sydney 0.26°F 0.15°F 1.7 1859-1950
Prec. at Calcutta 110 mm 69 mm 1.6 1881-1960
Perc. at Alexandoria 51 mm 14 mm 3.6 1890-1940
Pres. at Honolulu 0.16 mmHg 0.10 mmHg 1.6 1881-1950
Pres. at Copehagen 0.34 mmHg 0.20 mmHg 1.7 1881-1960

DETECTION OF THE FOUR-YEAR CYCLE BY MEANS OF THE PHASE ANGLE

Schuster's method is sometimes inconvenient for detecting the 4-year cycle when
the amplitude is very small compared to other disturbances. Phase angles of the
4-year harmonics are examined to correct the shortcomings of the Schuster method:
If a stable 4-year cycle really exists, the phase angle ¢ in equation (1), calcu-
lated for different time-intervals with the same time-origin, will remain the same,
whereas if the 4-year cycle does not exist, the phase angle would not.

Examples of the results of the 4-year harmonic analysis for successive 32-year
time-intervals are shown in Table 3, in which it is seen that the phase angle are
almost the same, with a few exceptions, for different time-intervals. In this way,
a stable 4-year cycle in meteorological elements has been detected with the method
mentioned above, too, It may then be concluded the 4-year cycle is stable over

quite a long period, 100 years or more.

TABLE 3.

Four-year harmonic analysis at different time-intervals.

Element | Copenhagen{New Heaven| Sydney Rome Calcutta | Sunspot
Period Temp. Temp. Temp. Prec. Prec. Number
of analysis A ¢ A [} A ¢ A 0] A ¢ A ¢
1759~1790 0.40 210° - - - - - - - - 6.3 340°
1791-1822 0.44 260 0.26 260° - — 1 661 200° - = 3.1 290
1823-1854 0.34 340 0.18 200 — - 56 260 128 30° | 5.4 220
1855-1886 0.35 230 0.10 220 0.12 210° 47 30 70 100 2.5 190
1887-19218 0.25 280 0.31 320 0.13 290 54 40 210 140 4.8 150
1919-1950 0.20 220 0.25 220 0.09 270 46 320 100 170 1.2 190

DETECTION OF THE FOUR-YEAR CYCLE IN SOLAR ACTIVITY

As was seen before, the 4-year cycle in meteorological elements is stable, which
give us a suggestion that the cycle would be stimulated by astronomical influences,

- solar activity, for instance.



329

To check the 4-year cycles in solar activity, the spectrum of 80-year harmonic
analysis of Ci-index — a geomagnetic disturbance index or a solar activity index —
are shown in Fig. 1(b). It is well known that ll-year cycles predominate in solar
activity changes, which is clearly seen in the spectrum in Fig. 1(b). We can also
see in the figure that a 4-year cycle in the Ci_index exists, which is proved to be
statistically significant by Schuster's method. The list of phase angles of 4-year
cycles for the sun spot number shown in the last column of Table 3 also indicates
the existence of a stable 4-year cycle in solar activity.

The author has shown elsewhere that a 9.592-month cycle of tidal forces on the
sun appears through conjunction and opposition of the earth and Venus. This period
’is detectable in the change of the solar constant. Amplitude A of the 9.592-month
cycle in the solar constant change analysed for the period, September 1923~ December
1947 is 0.001 cal/cm2.min, while the expectation is 0.00056 cal/cmz.min. Hence,

A/e = 1.8 and the existence of the cycle is significant.

Fig. 2 shows a 9.592-month periodogram for the Kp—index between 1937 and 1973.
The curves are roughly parallel and the amplitude is greater than the standard error.
Solar activity seems to decrease due to strong tidal forces on the sun.

These results indicate the existence of the 9.592-month cycle in solar activity
changes. If this cycle is approved, a 3.983-year cycle can be easily derived by
coupling it with a l-year cycle. This length is almost equal to 4 years. The 4-year

cycle, then, may originate from the influence of the conjunction of the earth and

Venus.

15 L 1961-65
14 ¢
13 |
21 F 1949-60
20 [
19 r

1937-48
19 |
18 F

T ST R T S TN RS
0 5 10 MONTH

Fig. 2. 9.592-month periodogram for the Kp—index.
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FOUR-YEAR PERIODOGRAM ANALYSIS OF ZONAL MEAN PRESSURE AND TEMPERATURE

The 4-year cycle in the atmosphere is by no means a local phenomenon. It is a
global one. We shall examine the mode of the 4-year cycle on the earth by periodogram
analysis of zonal mean values.

Table 4 shows the results of a 4-year periodogram analysis for zonal mean Pressure,
temperature and indices of solar activity.The figures in the table indicate the devi-

ation from the normal.
TABLE 4.

4-year periodogram analysis of zonal mean pressure and temperature (Period of analysis
is about 80 years).

Corresponding
year 1950 1951 1952 1953
Element

Pressure o o1
North of 60 N -2 12 -5 -4 0-01 mmig
50-60 -13 10 3 3
40-50 6 -1 -3 -1

30-40 2 -2 -1 4

20-30 3 -2 -1 4

0-20 -4 1 5 o}
Temperature

o o

North of 60 © -15 27 -13 - 0-01%¢
50-60 20 -23 1 1

40-50 27 -10 -11 . -6

30-40 .5 3 2 ~-10

20-30 0 3 -5 2

0-20 -2 -3 -2 8

Solar activity
Ci—index 0.012 0.021 -0.002 -0.030
sunspot -4.0 -0.5 0.40 3.0 cal/cmz.min
Solar constant 0.008 -0.0005 -0.0001 0.0001

Pressure changes in the table at various latitudes show that pressure change fea-
tures are divided into three regions — polar, middle and low latitudes, whose bound-
aries are 50°N and 20°N. Pressure changes in the middle latitudes are in an opposite
phase to those of polar and low latitudes. The amplitude of the change is large in
high latitudes and minimum at 30°N. These features correspond to the 3 cells of gene-
ral circulation.

Pressure change at high latitudes is found to be roughly in the same phase as that
of the Ci—index. In other words, the Ci—index increase corresponds to a zonal mean
pressure increase in polar regions.

The mode of the 4-year periodogram analysis for zonal mean temperature shows a
similar latitudinal distribution to that of the pressure, though the boundarjes of

three regions are 60°N and 20°N. The 4-year cycle is most distinct at the 54°N. belt
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and is in the opposite phase with those in the polar and low latitude regions.
The temperature in the polar region is high when the Ci—index is high.

These resulés can be explained by the hypothesis that air mass exchange between
the polar and middle latitudes increases when a strong invasion of the corpuscular
flow from the sun occurs. The present analysis, therefore, suggests that the 4-year

cycle in the atmosphere originates in the 4-yeai cycle of solar activity.

FEATURES OF FOUR-YEAR CYCLE OSCILLATION OVER THE NORTHERN HEMISPHERE

As a result of applying the 4-year harmonic analysis to the meteorological ele-
ments at stations over the northern hemisphere and investigating the distribution
of amplitudes and phase angles, Table 5 shows the frequency distribution of phase
angles of air pressure, temperature and precipitation at northern hemisphere sta-

tions.

TABLE 5.

Frequency distribuiion of phase angles of 4-year cycle (1908-39).

Lower limit of

HOoOWw

phase angle (°)| O 30 60 90 120 150 180 210 240 270 300 330
Pressure 3 4 5 2 1 1 5 16 4 2 1
Temperature 0 3 1 4 3 7 8 5 5 8 1
Precipitation 5 6 2 3 4 3 4 4 1 2 4

The frequency distribution for pressure has two maxima, one distinc peak at
about 220° and another at about 50°. Temperature frequency distribution, on the
other hand, has one vague maximum at about 220°, while that for precipitation has
no distinct maximum.

Next, phase angles and amplitudes for the temperature are plotted on the northern
hemisphere map and contours drawn as shown in Fig. 3. Phase angles of about 180°
are distributed on the high latitude area with three legs and phase angles of about
240° surround this area. Notable is that such a three-wave structure in the wester-
lies predominated in the unusual weather year of 1963.

Fig.4 shows the phase angle distribution for pressure. Clearly, the northern
hemisphere is divided roughly into two kinds of domains: one around a phase angle
about 50° and the other around 220°, corrésponding to the two maxima in the phase
angle frequency distribution. This pattern shows that a 4-year standing oscillation
is stimulated in the pressure field. The oscillation pattern, however, is not simple
compared with the distribution pattern of annual precipitation over the northern
hemisphere. It is notable that the 220° area corresponds to a climatically rainy

area, while the 50° area does to a climatically dry one.
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CONCLUSION

The above analyses illustrate the existence of 4-year cycle stationary oscillation
with a little phase angle change in the atmospheric oscillation over the northern
hemisphere. The cause for the oscillation is structually unclear yet, but it seems
to originate in the 4-year solar activity cycle and 4-year corpuscular flow change
cycle. Furthermore, a stable 5-year cycle exists in northern hemisphere oscillation
and this seems to arise from periodic change of the solar constant, which will be

discussed in future.
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CLASSIFICATION OF MONSOON CLIMATES AND STABILITY OF THEIR MOISTURE REGIME
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ABSTRACT

Subrahmanyam,V.P. and Ram Mohan,H.S. Classification of monsoon climates and sta-
bility of their moisture regime. Proc. 1l-st Intern. Conf. on Stat.Climat., held
in Tokyo, Nov.29-Dec.l, 1979

India is a typical example of a monsoonal country in the sense that the prevail-
ing wind circulation over the country reverses almost exactly by 180° in the conven-
tional summer and winter seasons. But what matters most for its categorization is
not so much the wind directional change, as the precipitation regime on which the
national economy of the country vitally depends.

Koppen appears to be the first (and perhaps the only) climatologist that attempted
a quantitative delineation of the monsoon climates as an intermediate category in
the tropical climates between the tropical rainforest (Af) on the one hand, and the
savanna (Aw) with pronounced seasonal dryness on the other. In the present paper,

a new approach towards delineation of monsoonal climates based on water balance con-
cept has been proposed (mainly from the point of view of agriculture) employing an
Index of Moisture Availability, defined as the ratio of actual evapotranspiration
for individual months to the climatic annual actual evapotranspiration divided by
twelve. :

But one of the most intriguing features of all climates in general, and of the
monsoon climates in particular, is their highly unstable moisture regime, which
arises mainly on account of the (yet) uncertainties in the monsoonal circulation
whose exact onset, withdrawal and progress over the country are usually unpredictable
and seem to have no periodicity whatsoever. This particular characteristics of the
monsoon climates is illustrated in the paper through water balance diagrams shifts
of a few representative stations, observed through year-to-year fluctuations in
moisture indices following imbalances in their water budgets.

It is suggested that this type of analysis on a shorter-term (weekly, for instance)
basis for the monsoon season in individual climatic zones would be very useful to
the planner in agricultural and hydrological project designs and maintenance.

The term 'Monsoon' which was originally used to describe the seasonal alternation
of winds over the arabian Sea is now generally applied to quasi-stationary disturb-
ances in the average zonal circulation, particularly in the tropics, arising from
temperature and humidity differences between the airmasses originating over the cont-
nental and oceanic regions of the northern and southern hemispheres. Though monsoons
are thus essentially seasonal winds blowing in opposite directions in ‘summer and

winter, it is mainly the abundant rainfall associated with them that is of great
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economic importance on account of its impact on the food production from agricyl-
ture in India and other countries of Southeast Asia. In fact, to many, the Indian
Southwest or summer monsoon simply implies rainfall alone. It is no wonder then
that extensive research work has been carried out on the several aspects of the mon-
soons in general and of the Southwest monsoon of the Indian region; in particular,
the space~time variations and distribution of rainfall, the disturbances and storms
associated with them, the breaks in and failures of the monsoonal circulation and
the forecasting of monsoon rains. All such studies have revealed that monsoon cli-
mates are a unique category by themselves, the distribution and variability of their
different constituent features comprising a complex matrix and controlling the char-
acteristics of the circulation as a whole. Even though the large variations in rain-
fall in space and timeas determined by the fifferent combinations of atmospheric
processes produce a variety of climatic types, from perhumid te arid, the effect and
rhythm of the monsoonal rainfall regime are clearly reflected in most of them.

There have been numerous scheme of climatic classification based on different
parameters to suit different purposes but outstanding among them are those by bota-
nists, plant geographers and ecologists who attempted correlations of the climatic
provinces with the nature and distribution of vegetation types. Wladimir Kdppen
(1900} was about the first among them to succeedin evolving a quantitative scheme
of classification of world climates based mainly on critical temperatures for the
growth and maintenance of different kinds of vegetation. He himself revised it later
(Koppen,1918) with greater attention to temperature, rainfall and their seasonal
characteristics. Further modifications of the scheme have continued (Kdppen, 1931,
1936, Trewartha, 1968) with revision of the boundary limits as new data became avail-
able. The Koppen system in its present form has five major categories of climate
the first of which is designated as 'A' (Tropical) having an average temperature of
64.4°F (18°C) or higher for the coolest month of the year. Within this category are
subdivisionsdefined by specific values of precipitation. Of relevant interest here
is the 'Am' (Tropical Rainforest) having no dry season (mean precipitation of the
driest month being 2.4", i.e., 6 cms. or more) and the 'Aw'(Tropical Savanna)with
pronounced winter dryness (at least one month in the winter season receiving less
than 2.4", i.e., 6 cms. of precipitation). According to Képpen, in the tropical mon-
soon climate, the precipitation of the driest month is less than 2.4" or 6 cms. but
equal to or greater than (3.94 - r/25) inches where 'r' is the average annual pre-
cipitation in inches. Thus, KSppen appears to be the only climatologist so far to
have classified the monsoon climates into a separate category. Mizukoshi (1971) has
described the regional divisions of Monsoon Asia using this classification.

However, as-is well known, the value and validity of a climatic classification
scheme are determined largely by the purpose for which it is intended. When vegeta-~

tion is the primary concern, the moisture effectivity of a climate is governed by
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the relative efficiencies of precipitation and temperature which must, therefore,

be studied together but not individually, as K&ppen did. Thus, both the thermal and
hygric factors have to be simultaneously considered to determine whether water supply
by precipitation is greater or less than the water needed for the fullest develop-
ment of vegetation. It is with this end in view that Thornthwaite (1943) made a ra-
tional contribution to climaﬁological literature by introducing the concept of Poten-
tial Evapotranspiration (P.E.), otherwise as the water need. When the magnitudes

of precipitation and potential evapotranspiration are equal there is neither water
surplus nor water deficit while.when precipitation exceeds the water need month

after month the soil moisture is raised eventually to its field capacity value and
later water surplus results. On the other hand, when precipitation falls below the

water need soil moisture is gradually depleted for evapotranspirational purposes,

the Actual Evapotranspiration (A.E.) decreases below the potential limit and water
deficiency occurs. For computing the water balance parameters on a monthly basis
Thornthwaite (1948) evolved an elegant book-keeping procedure which was modified
later by Thornthwaite and Mather (1955) after accumulation of more data.

The moisture regime of climate according to the Thornthwaite scheme of classifi-
cation (Thornthwaite 1948, Thornthwaite and Hare 1955, Carter and Mather 1966) is
based on the water balance procedure outlined above. Classification of the climates
of the Indian region according to this scheme (both the thermal and moisture regimes)
was made for the first time by Subrahmanyam (1956). Yet, the peculiarities of the

monsoonal regime of climate are not brought out in this scheme.

In the present paper, therefore, an attempt has been made to extend the water
balance concepts to delineate the monsoon climates as a separate category. Water
balances of more than 250 stations in India, Sri Lanka, Burma, Pakistan and Bangla
Desh have been worked out on a climatic basis. Actual Evapotranspiration (A.E.)
values obtained from the book-keeping procedure have been made use of to define an
Index of Moisture (IMA) as the ratio of the A.E. for any individual month of the
year to the average monthly value, i.e., the total annual value of A.E. divided by
12. The maximum and minimum values of the climatic indices of moisture availability
so obtained on a monthly basis are noted and the difference between them, expressed
as a percentage of the climatic annual value of A.E. divided by 12 has been designated
as the IMA-Range. The calculations of the indices of moisture availability for two
typical stations - Calicut (KSppen's Am in South India and Bikaner (Bw) in the north
are shown in Table 1 and values for a few selected stations are given in Table 2.

Analysis of results for all the stations in the Indian region has led to the
conclusion that stations within the domain of intense monsoonal circulation and
associated rainfall (like Calicut) have IMA~Range values below 15% while for other
stations (non-monsoonal) the values are well above 15% and sometimes even exceed

100% (as for Bikaner). Stations with lower ranges of the index seem to have a fairly
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TABLE 1.
Monthly values of actual evapotranspiration and indices of moisture availability,

Station| J F M A M J J A S s} N D |Annual|Annyal/12

Actual Evapotranspiration, cms.
7.8 5.4 5.2 10.4 16.8 14.5 12.7 12.9 13.3 14.3 13.6 11.3 138.2 |11.52
CALICUT

(Am) Indices of Moisture Availability

0.68 0.47 0.45 0.90 1.46 1.26 1.10 1.12 1.15 1.24 1.18 0.98

Actual Evapotranspiration, cms.
6.7 0.7 0.6 0.5 1.5 3.1 8.5 9.1 3.3 0.5 0.1 0.5 29.1 2.43

Indices of Moisture Availability
0.29 0.29 0.25 0.21 0.62 1.28 3.50 3.74 1.36 0.21 0.04 0.21

1.46 - 0.45

BIKANER
(BW)

I,,~Range for Calicut = 11,53 x 100 = 8.77 %
. _ 3.74 - 0.04 B
IMA—Range for Bikaner = —— 343 % 100 = 152.26 %

uniform distribution of the monthly values of A.E. through the yvear. This is not
so much because precipitation is uniform, since in monsoon climates it is highly
seasonal, but because of the gradual soil moisture accretion that takes place during
the wet season, i.e., when precipitation exceeds P.E.. The soil moisture thus accu-~
mulated becomes available for evapotranspirational use during the lean months and,
therefore, the A.E. values of these months are Faised well above the precipitation
figures. On the other hand, at stations where the ranges are higher (even greater
than 500% in desert regions), the soil seldom attains field capacity even during
the wettest month; even if the field capacity is reached, the soil moisture is as
rapidly depleted as it is raised so that the A.E. values decline to very low figures
in the subsequent prolonged dry season. Interestingly, Kdppen's scheme for classi-
fying monsoon climates appears to pay due attention to these facts though the role
of soil has not been explicitly mentioned therein.

The precipitation during the wet season could be due to the monsoonal (summer
or winter) circulation, or on account of depressions or cyclones or might as well be
due to orographic effects. A monsoon type of climates from the point of view of agri-
cultural vegetation may, therefore, be defined as one in which precipitation has
such a hig- seasonal concentration that is adequate to sustain fairly uniform levels

of A.E. throughout the year. Accordingly, all stations having I ~Ranges lower than

15% may be categorized as belonging to the monsoon climates andMihe monsoon months
are those in which the indices of moisture availability are above 1 ; at Calicut
thus the monsoon months are from May to November.

The monsoon climates of the Indian region under this scheme are shown in Fig.l.
The south-west coast of India, a part of the Coromandel coastal tract and its hinter-
land, north Orissa, Bengal, Bangla Desh, parts of Assam and the western coastal strip
of Burma all come under this category. Also, Sri Lanka and the Andaman and Nicobar

islands in the Bay of Bengal are monsoonal in their climate. Significantly , all
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TABLE 2.

Ranges on indices of moisture availability for a few selected stations in the Indian

region
MONSOON CLIMATES NON-MONSOON CLIMATES
Station Ia-Range (%) Station Iyn-Range (%)
Cochin 6.49 Tiruchirapalle 25.66
Madras 11.24 Visakhapatnam 20.45
Trincomalee 7.44 Bombay 20.76
Chittagong 9.72 Veeraval 92.86
Victoria Point 5.93 Hissar 84.27
Port Blair 4.88 Nokkundi 792.46
Rangoon 10.70 Karachi 231.13
Sibsagar 14.42 Jodhpur 132.56
T T T T | i
70° 80° 9Q° 100
o] 500 1Q00 kms
. 777) Monsoonal Climates 0
30 Non-monsoonal Climates 30_|

Tropic of Cancer

Arabian

| 10°N

(Mercator Projection)
70°E 80° 90°
| | | | | ]

Fig. 1. Monsoon climates of Southeast Asia

stations belonging to Am and Af climates and some stations in the Aw, As, Cw, Cs
and Cf categories of the K8ppen system come under the presently proposed monsoonal

type of climate. No station in the 'B’'(dry) group of K&ppen climates finds a place
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here. Another interesting observation is that the monsoon stations, as delineateg
now, belong to one or the other among the climatic categories from perhumid to dry
subhumid according to the Thornthwaite scheme of classification; very few come uynder
the semi-arid group while none is arid.

Though on a climatic basis monsoon climates have fairly uniform values of A.E.,
one of the most intriguing aspects of the monsoonal moisture regime is its high
stability. This arises mainly on account of the random fluctuations in the monsoon
circulation whose onset, establishment, progress and withdrawal over the country
are usually unpredictable. The wide fluctuations in the rainfall amounts following
such changes in the monsoonal circulation invariably produce variations in water
balance, ocasionally of such magnitudes that the very climatic types of the station
are shifted from their normal category into the drier or wetter direction. In the
present context under such circumstances a monsoon station may become non-monsoonal
in character in a dry year and during a wet year a normal non-monsoonal station may
exhibit monsoonal characteristics. Such shifts in climate, though temporary, are
of great interest to the applied climatologist, for their magnitude and frequency
not only reflect the extent of conse-vatism of climate of a station but also deter-
mine the climatological potentialities of a region for agricultural and hydrological
development.

For making an analytical study of the above aspect, two stations coming under the
category of monsoon climates - Mangalore on the south-west coast of peninsular India
and Ba asore on the north-east coast - have been chosen. Mangalore is affected by
the Arabian Sea branch of the Indian Southwest or summer monsoon while Balasore comes
under the influence of the Bay of Bengal branch. Thornthwaite Moisture Index (In)
values of these stations for individual years have been plotted (Figs. 2 and 3)
and years of extreme climatic shifts have been worked out and compared graphycally
with their respective normal pictures (Figs. 4 and 5). The climatic shifts at the
stations during the study period (1901-1964) are summarized in Table 3 (Subrahmanyam
and Sarma 1973).

The climate of Mangalore (Perhumid, I = 101.9% , I, -Range = 11.51%) may be seen

to be rather conservative being most of the time closeMio its normal climatic regime.
On 34 occasions out of 64 years it struck to its perhumid category though experi-
encing a number of migrations onto the more humid side (Fig.2 (a)) and on 29 occa-
sions it exhibited shifts onto the @rier side. Perhumid climatic zones are generally
characterized by low variabilities and a high stability of their moisture regime

so that even a small variation in water deficit or water surplus from the normal
would lead to pronounced imbalances in their water budgets. Fig.3(a) shows the water
balance charts of Mangalore for the normal year as well as for the extreme years on

the drier and wetter sides.

During the normal year Mangalore receives 342.8 cms. of rainfall and has a water
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Fig. 2. Climatic shifts : (a) Mangalore , (b) Balasore

TABLE 3.

Climatic shifts in monsoon climates

Number of climatic shifts
Perhumid Humid Subhumid Semi-arid Arid
Moist Dry

Station A B4 B3 B2 Bl C2 Cl D E

MANGALORE 34 14 [11 | 2 2 - - - -
(a)

BALASORE - 1 - 4 9 15 29 1 -
(CZ)

surplus of 216 cms. and a deficit of 43.3 cms. (Table 4). But during the wet year
(1961) when its climate became more humid due to an increase of precipitation to
583.8 cms. its water surplus rose to 464.2 cms. which was twice the normal. In

the dry year (1934) the station experienced less than 65% of its normal rainfall

and so its water surplus decreased by almost half while the water deficit was higher

than the normal by about 12% .
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CLIMATIC WET YEAR DRY YEAR DISASTROUS
(1961) (1934) DROUGHT YEAR
170 (1953)
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Fig. 3(a). Water balances of Mangalore.
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Fig. 3(b). Water balances of Balasore.
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TABLE 4.

Comparative water balance data in monsoon climates (after Subrahmanyam and Sarma 1973)

Year Water | Precipi- | Water Water Moisture
need tation | surplus | deficit regime
cms. cms. cms. .

(a) MANGALORE .
Normal year 169.8 342.8 216.3 43.3 A (Perhumid)

Wet year (1961) 166.7 583.8 464.2 44.7 A (Perhumid)
Dry year (1934) 168.6 219.5 111.2 48.5 Bj (Humid)
Disastrous drought 171.9 289.4 186.6 67.6 B3 (Humid)

year (1953)

(b) BALASORE

Normal year 156.6 162.4 28.1 22.3 Cp (Moist subhumid)
Wet year (1956) 154.1 295.3 155.8 8.3 By (Humid)
Dry year (1954) 158.0 115.7 0.0 53.2 D (Semi-arid)

DISASTROUS DROUGHT
mm YEAR (1969)
600 (

400+
39.6

o 116.7 cms cms
1000r F 200
WET YEAR
CLIMATIC
(1943)
8001 0’
e DRY YEAR (1950)
6 .
300 00 95.0 cms 300
200 400 200
3%3
1.1
100 N 200 100 cms
0 . 0 0 =
J F MA MJ J AS ON DJ JF MAM JJ A SO N DJ J FM AM J JA S ON DJ
Potential E t ira- pI
—= orentia vapotranspira Water Deficit
tion {
Precipitation Soil Accretion

————— Actual Evapotranspiration .
P plra Soil Moisture Use

—

Water Surplus

Fig.5. Water balances of Cuddalore
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Fig. 5. (cont'd)

On the other hand, the climate of Balasore (Moist Subhumid, Im = 3.8%, IMA-Range
= 11.52%) is characterized by wide variations in moisture regime from year to year
(Fig.2(b)). It remained in its normal climatic category only on 15 occasions but
shifted towards drier regime on 30 occasions and 14 times alone onto the humid side.
such frequent and violent fluctuations are characteristic of the subhumid climates,
the so-called 'border-line category' of the climatic spectrum. During the wet year
(1956) rainfall here was 295.3 cms., an increase by about 80% over the normal of

162.4 cms., following a very active summer monsoon (Fig.3(b)); consequently the water
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surplus too rose enormously to about 6 times the normal value of 28.1 cms. In the
dry year which was also a disastrous drought year (1954) water deficit was about

2.5 times the normal of 22.3 cms. because rainfall was deficient by about 28%(Table

4).

TABLE 5.

Comparative water balance data for Cuddalore.

Year Water Precipi- Water Water I,a"Range

need tation surplus deficit

cms. cms. cms. cms. %
Normal year 172.5 133.4 30.5 69.6 14.92
Wet year (1943) 170.4 235.2 95.0 30.6 7.21
Dry year (1950) 167.8 86.5 1.1 97.2 35.20
Disastrous 172.5 102.9 39.6 116.7 50.97
drought (1969) ]

In this connection it is interesting to consider the imbalance in the water bud-
gets for the years of extreme climatic shifts observed through year-to-year fluctua-
tions in the IMA—Range values. Cuddalore (Dry subhumid, Im = 22.7%) anothertypical
monsoon station on the Coromandel coastal tract of South India affected affected
by the Northeast monsoon has been chosen for this study. Yearly water balance data
of Cuddalore (Ram Mohan 1978) for the period 1901-1975 have been used to calculate
the ranges of the indices of moisture availability plotted graphycally in Fig.4.
The normal IMA-Range value here is 14.92% , the monsoon months being August to De-
cember. In 1943 the IMA-Range had its lowest value (7.21%) showing that the station
had experienced a vigorous Northeast monsoon during the year when the rainfall ex-—
ceeded the normal by about 75% . As a result, the water surplus increased by more
than three times and the deficit decreased sharply by about 50% (Fig.5) compared
to the normal values. On the otherhand, the Iya~Range was highest (50.97%) in 1969,
the disastrous drought year, the deviation being more than twice the standard devi-
ation from the normal. During this extremely dry year water deficiency shot up by
about 70% which pushed the climate of the station into the arid catrgory and making
its IMA—Range value non-monsoonal. Interestingly, however, during this year the wa-
ter surplus was also higher because of late receipte of rains in December (Table 5).
This underlines the fact that the stability of the moisture regime of climate is
governed not only by the amount of precipitation but by its distribution in time
as well, an aspect of great ecological importance in drought climatology. This fea-
ture is further supported by the situation in 1950 (dry year) when, though the pre-
cipitation was more deficient, the IMA—Range value rose only to 35.20% ; this is
because rainfall was less erratic and better-distributed during the year and so the

A.E. values were more uniform. Another significant fact that came to light from the
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present study is that the wet, dry and disastrous drought years delineated earlier
using the Thornthwaite I, values seem to coincide exactly with the years of extreme
shifts for the I, a-Range values too; this again emphasizes the utility and versati-
lity of the index of moisture availability as an ecoclimatic tool for analytical
studies in monsoon climatology.

During the study period, Cuddalore deviated onto the drier (non-monsoonal) side
by more than twice the standard deviation on 16 occasions, between one standard
deviation and two standard deviations on 32 occasions and between half-a-standard
deviation and one standard deviation on 12 occasions; for 16 years, however, it re-
mained in its normal monsoon climatic category. As already remarked earlier in con-
nection with Balasore, such large and frequent fluctuations are typical of the sub-
humid (buffer) climates which have high instability and poor conservatism. Cuddalore,
specifically, tended to go into drier situations more often than into the humid di-
rection and this conclusion is quite in tune with the general finding of instability
of the dry subhumid climates of Tamilnadu (in South India) using the Im values for

studying climatic shifts {(Ram Mohan 1978).

As the Index of Moisture Availability thus appears to be such a useful parameter
for delineating periods and zones of monsoon climates, it is suggested that this type
of analysis on a weekly or bi-weekly basis in different monsoon regions of the world
would be very helpful to the planners in the design and maintenance of water project

systems in agriculture or hydrology.
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SUITABLE PROBABILITY MODEL FOR SEVERE CYCLONIC STORMS STRIKING THE COAST AROUND
THE BAY OF BENGAL '

D.A.MOOLEY

Indian Inst. Trop. Met., Pune - 411005 (India)

ABSTRACT

Mooley,D.A., Suitable probability model for severe cyclonic storms striking the
coast around the Bay of Bengal. Proc. l-st Intern. Conf. on Stat. Climat., held
in Tokyo, Nov.29-Dec.l, 1979

Severe cyclonic storm is a natural calamity. When it is close to the coast or
when it strikes the coast there is disruption in communications, damage to property
and crops, and loss of life. All the 141 severe cyclonic storms which struck the
Arakan Coast of Burma and the coasts of Bangla Desh, east India and Sri Lanka during
the period 1877-1977 have been considered in this study. These are low pressufe
systems in which the associated wind is 48 knots or more. Only severe cyclonic storms
have been considered since they cause much more damage than that caused by cyclonic
storms and also since it was felt advisable to confine the analysis to systems of
practically the same intensity. Swed and Eisenhart's runs test for runs above and
below the median to detect trend or oscillation and Mann-Kendall Rank Statistic
test for randomness were applied to the time interval between successive severe
cyclonic storms which struck the coast. The results of these tests suggest that
this interval can be generally taken to be random. Thus, the event of the coast
being struck with a severe cyclonic storm is seen to be random in time continuum.

Applying the test for adequacy of the Poisson distribution, it is found that
Poisson distribution is adequate. Hence the same was fitted to the data on the number
of severe cyclonic storms striking the coast in a year for the whole period, and
to the data for the component periods, 1891-1964 and 1877-1964. The goodness-of-fit
as tested by Chi-square test is found to be very good in all the three cases. The
number of severe cyclonic storms crossing the coast around the Bay in a year is
a Poisson-distributed variable.

The Poisson distribution was also fit to the number of severe storms striking
the coast during October-November and to the number of severe storms striking Bangla
Desh - north Arakan Coast during the year. In both of these cases, the fit as tested
by Chi-aquare test is found to be very good. Thus even when we consider a part of
the whole coast around the Bay or a part of the year, the Poisson distribution gives
a very good fit.

1. INTRODUCTION

Low pressure areas form over the Bay of Bengal. Occationally the lows move into
the Bay from the east as remnants of typhoons or depressions from the China Sea.
Some of the lows over the Bay intensify into depressions and some of the depressions
further intensify into cyclonic storms. A few of the cyclonic storms develop further

into severe cyclonic storms. The wind speed associated with severe cyclonic storms
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is 48 knots or more. These develop over the Bay mostly in the months from April

to December and strike any section of the coast around the Bay. The enormous destruc-
tion of life and property, leading to disruption of the economy of the affected
districts is caused by the extremely strong winds. torrential rains and tidal wave
associated with a severe cyclonic storm. Severe cyclonic storms only have been con-
sidered since these cause much more havoc than that caused by cyclonic storms. Another
reason for considering severe cyclonic storms only is to confine the analysis, to

the extent possible, to systems of practically the same intensity. In this study,

the suitability of the Poisson probability model for the severe cyclonic storms

striking the coast around the Bay has been examined.

2. DATA SOURCES AND DISCUSSION OF DATA

All the severe cyclonic storms (to be referred hereafter as severe storms) which
hit the coast around the Bay of Bengal (as shown in thick in Fig. 1) during the
period 1877-1977, have been considered. Hereafter, this coast will be referred to
as the coast. The relevant data were obtained from the tracks of storms and depres-
sions over the Bay of Bengal and the Arabian Sea puplished by the India Meteorological
Department (1964) for the period 1961~70, as well as from India Weather Review,
Annual Summary, for these years. Information for the period 1971-76 was extracted
from the articles giving accounts of storms and depressions by Das et al (1972,
1973), Alexander et al (1974, 1976, 1977) and Pant et al (1978) in the Indian Journal
of Meteorology/Hydrology and Geophysics. Information for 1977 was obtained from
the account of storms and depressions prepared by the Deputy Director General of
Observatories (Forecasting), Pune-5.

The number of severe storms which struck the coast in each of the years during
the period 1877-1977 is shown in Figure 2. The total number during the period was
141. It has been mentioned in the publication by India Meteorological Department
(loc. cit) that for the period 1891-1960, the information on storms and depressions
was obtained from India Weather Review, Annual Summary and information for the prior
period was obtained from the papers by Eliot (1885, 1888) and from "Reports on Meteor-
ology of India" for the years 1886 to 1890, and that the series of storms prepared
from the accounts given in India Weather Review, Annual Summary, can be considered
as one obtained from a homogeneous series of data.

A careful examination of Figure 2 shows that through the number of severe storms
in a year during the period 1877-1890 is not generally different from that during
the period 1891-1964, there is a relatively higher frequency of no severe storm
striking the coast during the former period, but during the period 1965-77, the
number in each year is generally much higher than that for the period 1891-1964.

While no specific trend is revealed, it is seen that the mean and variance for the
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Fig. 2. Number of severe cyclonic storms striking coastal belt around Bay of Bengal.

period 1965-1977 are much higher. Table I gives the mean and variance for the periods
1891-1964, 1877-1964, 1965-1977 and 1877-1977. It is clearly seen that the mean

and the variance for the period, 1965-77 are generally more than two times of those
for the long periods. In fact, even if we take any 13-year period prior to 1965,

and obtain mean and variance for the same it is seen that for the period 1886-1898,

the mean is highest, being 1.78, and for the period 1910-1922, the variance is highest.
being 1.81. It can thus be inferred that the period 1965-77 is characteriséd by

a much higher mean and variance of the number of severe storms crossing the coast
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as compared to those for any l3-year period prior to 1965. The period 1965-1977

is thus very unusual in the record of severe cyclonic storms striking the coast.

TABLE I

Mean and variance of the number of severe cyclonic storms striking the coast around
Bay in a year.

Period Mean Variance
1891-1964 1.22 1.087
1877-1964 1.16 1.091
1965-1977 3.00 2.583
1877-1977 1.40 1.530
TABLE II

Number of cyclonic storms which formed over the Bay, the number which intensified
into severe storms over the Bay and the number which struck the coast as severe
cyclonic storms during l3-year periods.

Number of  Number of Number of Efficiency Ratio of

storms storms severe of intensi- severe storms
Period which which inten~ storms which/fication of which struck

formed sified into struck storms into coast to storms

over severe coast severe storms/which formed

Bay storms over over Bay over Bay

Bay

1877-1899 49 13 12 0.26 0.24
1890-1902 56 19 18 0.34 0.32
1903-1915 64 19 17 0.30 0.27
1916-1928 6l 19 16 0.31 0.26
1929-1941 70 24 19 0.34 0.27
1942-1954 46 13 8 0.28 0.17
1952-1964 45 21 13 0.47 0.29
1965-1977 70 44 39 0.63 0.56
1882-1894 71 16 16 0.23 0.23
1884-1896 72 22 22 0.31 0.31
1886-1898 74 24 23 0.32 0.31
1924-1936 74 ) 16 13 - 0.22 0.18
1932-1944 71 27 22 0.38 0.31

The number of severe storms crossing the coast in different 13-year periods has
been examined with reference to the number of storms which formed over the Bay and
the number of cyclonic storms which intensified into severe cyclonic storms over
the Bay. Table I gives these figures for the successive 1l3-year periods and for
the periods 1952-1964 and 1965-1977. The table also gives information for other
13-year periods for which the number of storms which formed over the Bay was higher
than that which formed during the period 1965-1977. It also gives the efficiency

of intensification of storms into severe storms over Bay and the ratio of severe
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storms which struck coast to the storms which formed over the Bay. A careful exam-
ination of Table I brings out that prior to 1965 there were a number of 13-year
periods when the number of storms which formed over the Bay was nearly equal to

or higher than that which formed over the Bay during the period 1965-1977, and as
such there is nothing unusual about the number of storms which formed over the Bay
during the 13-year period 1965-1977. However, the efficiency of intensification

of storms into severe storms over the Bay, which generally varied from 0:25 to 0.35
for the different 13-year periods prior to 1965 increased sharply to 0.63 during
the period 1965-1977. This would suggest that the meteorological conditions over
and near the Bay during the period 1965-1977 were more often favourable for intensifi-
cation of storms into severe storms. The values in the last column clearly show
that the number of severe storms which struck the coast during the period 1965-1977
was unusually large. The period 1965-1977 is thus very unusual froﬁ the viewpoint

of intensification of storms into severe storms of the Bay of Bengal.

3. RANDOMNESS OF SEVERE STORM STRIKING THE COAST

To examine whether the striking of the coast by a severe storm is a random orx
a non-random event, Mann-Kendall rank statistic test for randomness and Swed and
Eisenhart's runs test for runs above and below the median to detect trend or oscilla-
tion, as recommended by WMO (1966), were applied to the time interval between succes-
sive epochs of severe storms striking the coast. The tests were applied to (i) the
whole series of 140 intervals, (ii) two equal components of the whole series, (iii)
four equal components of the whole series, and (iv) two samples each of size 24
and commencing from two randomly chosen epochs of severe storms striking the coast.
The results of these tests are given in Table II. It can be seen from the results
of Mann-Kendall test that the latter half of the interval series only shows non-
randomness significant at 5 percent level, the value of the test statistic being
slightly smaller than the value significant at 1 percent level. The Swed and
Fisenhart's test for the same sample shows a value not significant but close to
95 percent confidence value, suggesting oscillation. However, no non-randomness
is indicated by the two tests for the sample consisting of the last 35 intervals.
This is perhaps due to the fact that this sample is for the period 3 January 1966
to 19 November 1977 which is contained in the period of unusually higher mean and
variance, 1965-1977. The non-randomness significant at 5 percent level has been
introduced by the period 1965 to 1977 which has mean and variance much higher than
those for the period prior to 1965.

The series of time intervals between successive severe storms striking the coast
during the period 1877 to 1964 does not reveal any significant non-randomness. The

mean and the variance have increased rather sharply after 1964.
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TABLE I

Results of Mann-Kendall rank statistic test and Swed and Eisenhart's runs test applied
to time interval between successive severe cyclonic storms crossing the coast.

Sample . Mann-Kendall test Swed & Eisenhart's test
N Period
Size T 10.95 R RO.OS / RO.QS
140 1877-1977 -0.125%* + 0.112 77 60/81
70 20 May 1879 0.006 + 0.160 36 28/43
-27 May 1936
70 27 May 1936 -0.214* + 0.160 42 28/43
-19 Nov. 1977
35 20 May 1879 -0.044 + 0.232 19 12/23
- 6 Dec. 1909
35 6 Dec. 1909 0.136 + 0.232 20 12/23
-27 May 1936
35 27 May 1936 -0.025 + 0.232 18 12/23
- 3 Jan. 1966
35 3 Jan. 1966 0.069 + 0.232 19 12/23
-19 Nov. 1977
24 23 Sept. 1911 0.065 + 0.286 12 8/17
(Random) -29 Nov. 1930
24 4 Oct. 1936 0.220 + 0.286 14 8/17

(Random) -31 Oct. 1960

T is Mann-Kendall test statistic, R is number of runs above and below the median.
Suffix to these statistics denotes the level of confidence. Asterisk denotes signifi-
cance at 5 percent level.

4. PROBABILITY MODEL

The probability of a severe storm striking the coast on any day is very low.
In this situation, when we consider one~year period, we may expect that Poisson

distribution may fit data on severe storms. Thom (1966) has given a criterion for

. . . . . . . X . 2
adequacy of the Poisson distribution. According to this criterion, if P(xi_l > xn—l)
> 0.05, where n is the number of years of data, Xi_l =n %—%—-— Y, and Y

is the number of severe storms in a year, then Poisson distribution is adequate.
The Poisson distribution is characterised by the property that its mean and variance

are equal. The values of X2 for the data for the periods 1891-1964, 1877-1964,

n-1
and 1877-1977 are 63.8, 80.7 and 109.3 respectively and the corresponding values
of P(Xi-l > Xi—l) are 0.75, 0.67 and 0.25 respectively. The criterion is thus

satisfied and Poisson distribution is adequate for all the three periods. Table
I also shows that mean and variance are fairly close to each other. The Poisson
probability model was, therefore, fitted to the data for the three periods 1891-
1964, 1877-1964 and 1877-1977, and the goodness-of-fit was tested by Chi~square
test. Table IV shows the goodness-of-fit. The fit is very good for all the three
periods; however, it appears to be slightly better for the periods 1891-1964 and
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1877-1977. The number of severe cyclonic storms striking the coast in a year is

thus a Poisson-distributed variable. On the basis of the Poisson model, the prob-

abilities of one, two, three, four severe storms striking the coast around the Bay

in a year are, 0.345, 0.242, 0.113, and 0.039 respectively.

TABLE IV

Goodness—of-fit of Poisson probability model to the number of severe cyclonic storms
striking the coast around the Bay of Bengal in a year for different periods.

No. of severe Observed Frequency Contribution
Period storms strik- frequency on Poisson to Chi-square
ing coast in hypothesis
a year
1891-1964 (¢} 21 21.78 0.028
1 26 26.67 0.017
2 19 16.30 0.447
3 6 6.73 0.079
4 2 2.0
>5 0 0.52 0.107
."_"____N____"_ﬂ_____5___‘_____hm,___g________________ .
P(x“ > 0.678) = 0.88; X° = 0.678 (d.f.3)
1877-1964 0 28 27.58 0.006
1 29 32.00 0.281
2 22 18.57 0.634
3 7 7.18 0.004
4 2 2.08
>5 0 0.59 0.168
e e bt T Tmmmmommmsmmeemooees
P(x~ > 1.093) = 0.77 X“ = 1.093 (d.£.3)
1877-1977 0 28 25.01 0.358
1 31 34.90 0.436
2 24 24.36 0.005
3 12 11.35 0.037
4 5 3.96
> 5 1 1.42 0.071

P(x2 > 0.907) = 0.83; X° = 0.907 (d.£.3)

The fit of the Poisson distribution to the number of severe storms striking the

coast in a season, and to the number of severe storms striking a section of the

coast in a year has also been examined. The season considered is October-November

and the section considered is Bangla Desh - North Arakan Coast (from 22°N 89°E to

20°N 93°E). The results are given in Table V. The fit is seen to be very good. Poisson

distribution can thus be applied to severe storms striking the whole coast or a

section of the coast in a year or a season.
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TABLE V

Goodness-of-fit of Poisson distribution to the number of severe cyclonic storms
striking (A) the coast during October-November, (B) Bangla Desh - North Arakan Section
of the coast in a year.

No. of severe Observed Frequency
Period Coast cyclonic frequency on Poisson
storms hypothesis
striking
October - Whole [o] 57 54.24
November Coast 1 30 33.73
. 2 10 10.50
3 3
>4 1 2.53
_________________________________________ i
P(x > 1.423) = 0.56; X = 1.423 (d.£f.2)
Year Bangla o 69 67.97
Desh - 1 25 26.97
North 2 6 5.35
Arakan >3 1 0.71
(22°N 89°E
-20°N 93°E)

(d.£.1)

5. CONCLUDING REMARKS

The number of severe storms striking the coast around the Bay or a section of
the same, in a year or a season, is a Poisson-distributed variable. The probabilities
obtained on the basis of the Poisson probability model could be used for planning
funds to mitigate the hardships resulting from these natural calamities.
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RAINFALL INTENSITY-DURATION-RETURN PERIOD EQUATIONS AND NOMOGRAPHS OF INDIA
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ABSTRACT

Babu,R.,Tejwani,K.G.,Agarwal,M.C. and Bhushan,L.S., Rainfall intensity-duration-
return period equations and nomographs of India. Proc. l-st Intern. Conf. on
Stat. Climat., held in Tokyo, Nov.29-Dec.l, 1979

Rainfall intensity-duration-return period equations and nomographs are required
for design of soil conservation and runoff disposal structures and for planning
flood control projects. Rainfall intensity-duration-return period equations and
nomographs have been developed for 42 stations situated in the northern, central,
eastern, western and southern zones of India. With the help of either the equations
and nomographs,the intensity for any desired duration and return period (or frequency)
may be determined. The deviation in the rainfall intensity obtained by the two method
(equations and nomographs) has been observed to be less than 8% . Looking into
simplicity in use, quickness and precision in results obtained, the nomographs appear
to be the most handy tool for field workers.

The zonal equations and nomographs for northern, central, eastern, western and
southern zones of India were also developed. The zonal equations and nomographs
developed for various zones compared fairly well with the equations and nomographs
for individual stations falling in that zone. Only in sporadic cases, the variations
in estimated rainfall intensities by use of the station equation and the zonal equa-
tion was noticed up to ¥ 50% in northern,eastern and southern zones. While in 37
stations out .of 42 the deviation was below 30% suggesting the usefulness of zonal
equations and nomographs.

INTRODUCTION

Rainfall is one of the most important factors responsible for soil erosion. The
characteristics of rain storms amount, intensity and duration play an important
role in determinig the rate of soil erosion. Greater is the intensity of rainfall,
greater kinetic energy it possesses. The kinetic energy of rainfall dislodges soil
particles and splashes them in suspensipn in runoff. Among other factors the amount
of runoff is determined by rainfall intensity, duration and amount. A rainfall of
longer duration reduces the infiltration capacity of soil. As a result a long dura-
tion rain storm produces considerable runoff regardless of its intensity. The capa-
city of a runoff conveyance system is usually based on a certain depth of rainfall
to be expected during a seiected period of time. Farm terraces, culverts, bridges
'and fiood control structures are thus designed on the basis of safely convéying

runoff expected from rain storms of specified frequency, intensity and duration.
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The significance of rainfall intensity, duration and frequence analysis is also
important from economic considerations. An over designed structure involves ex es-
sive cost and under designed structure will be unsafe and also involves high recur-
ring expenditure on repair, maintenance and replacement. An intermediate design would
provide a structure with reasonable initial and maintenance cost values.

Rainfall intensity-duration-return period equations and nomographs on regional
basis are required in the country for design of soil conservation and runoff disposal
structures and for planning flood control projects. Such relationships and nomographs
have been developed at a few stations scattered over one or other part of the country
(Gupta et al.(1975) , Raghunath et al. (1969), Khullar et al. (1975) and Senapati
et al. (1976)) but no serious efforts have been made to develop such a tool for a
region or the country as a whole.

For understanding the rainfall characteristics of a station long period records
of automatic raingauge are needed. At present such records are available for only
a limited number of stations.If general relationships and nomographs could be deve-
loped for various zones in India (northern, central, eastern, western and southern),
they may prove to be reliable in determining intensity, duration and fregquency of
rainfall of a particular station in these zones for design purposes.

Based on observed data for 42 stations, the intensity-duration-return period
equations and nomographs for individual station as well as for different zones of
India (northern, central, eastern, western and southern) have been developed and

discussed.

DATA COLLECTION

To derive prediction equations for intensity-duration-frequency and also for deve-
lopment of nomographs, the continuous recorded rainfall data were collected from the
Indian Meteorological Department, Poona for 39 stations situated in northern, cent-
ral, eastern, western and southern zones of India. Due to the non-availability
of data for long periods for all the stations under study, 15 years records for 35
stations and 9-13 years for 4 stations, have been used for various durations. The
rainfall intensity values for Dehra Dun (Gupta et al. (1969)) and Agra (Tejwani et
al. (1975)) were taken from the published record. The Indore data was obtained through
Indo-UK Dry Firming Project (ICAR) , Indore. The locations of these stations along
withzonal boundarie’ are shown in Fig. 1. The data for all the stations was tested
for reliability using the procedure of Ogrosky and Mockus (1957) and. it was observed
that the length of record for all the stations are adequate and hence could be used

for frequency analysis.

ANALYTICAL PROCEDURE
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MAP OF INDIA
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Fig. 1. Map of India showing the locations of the recording raingauge stations and
zonal boundaries.

Various formulae have been advanced connecting the three parameters — rainfall
intensity, duration and return period (Frevert et al.(1955), Linsley et al.{1949),
Skurlow (1960), Nemec (1973), Gupta et al. (1969), Raghunath et al. (1969), Khullar
et al.(1975) and Senapati et al.(1976)). The formula is of the general form:

I = KT?/(t+b)d (1)

where I = Intensity of rainfall (cm/hr), T = Return period (years), t = Duration ’
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(hours); K, a, b and d are constants.

Eqgn. 1 was used for developing intensity-duration-frequency relationships.

Method of Frequency Analysis and Development of Frequency Lines

Various methods have been proposed for frequency analysis and there are several
theoretical interpretations or reasonings for the preference of one method or the
other (Chow({1964)). Mathematical or graphical methods are generally used for fre-
quency analysis. When the records are of short duration, the sampling error would
be large. A rigid mathematical treatment is not justified when the data are available
for less than 30 years (Dalrymple(1960)). As our data are of short period of about
15 years, graphical methods have been employed. Gumbel extreme value technique was
applied for computation of return period values and the frequency lines were plotted

after computing the plotted points by 'Computed method' suggested by Ogrosky and
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Fig. 2. Frequency distribution of rainfall intensities for various durations —
Hyderabad.
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Mockus (1957). Frequency lines for 15 minutes, 30 minutes, 1 hour, 3 hours, 6 hours,
12 hours and 24 hours intensity data were developed and plotted on log-normal proba-

bility paper (see Fig. 2').

Deriving Equation for Intensity-Duration-Return Period

The intensity-duration-return period equation, eqgn.l can be expressed by taking

logarithms on both sides as:

log I = log K+ a log T - & log(t+b) (2)
or

log I = log K1 - d log(t+b) (3)
where

log Xy = log K + a log T . (4)

In order to evaluate the coefficients a, b, 4 and K from general expression for

frequency curves, the following steps are involved:

Step I . On log-log paper the values of rainfall intensity for each individual dura-
tion were plotted on the y-axis and the return period (or recurrence interval) in

years on x-axis (fig. 3). Points were connected by dotted lines for each duration.
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Fig. 3.
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Rainfall intensities for selected durations and return periods — Hyderabad.
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The dotted lines were extended to cut the y-axis against one year recurrence inter-

val.

Step II. The intensity values, I, at different values of t equal to 2, 5, 1o,
25, 50 and 100 years recurrence intervals for each duration were read from Fig. 3.
The mathematical relationship between T and various values of I, is given

by

log It = mlog T+ C (5)

where It = maximum intensity for duration t, T = recurrence interval, m = frequency
factor for each line (i.e., slope of the frequency line) and C = intercept on y-axis
at T = 1. These interval equations define the intensity-frequency relationship

for any selected duration.

Step III. Then slope (m) of eqn.5 for the durations were determined and then their
geometric mean (m) was computed. The slope of line (m) represents the exponent a
in egn.l. The geometric mean slope m thus determined represents actually T2 in

eqn.l.

Step IV. A line representing geometric mean slope, E., was drawn (Fig.3) at the base
through the origin; solid lines parallel to this mean slope were drawn to have the
lines as close as possible to points between 10 to 100 years return periods extend-
ing them to cut the y-axis. Rainfall intensities against one year return period for

all the selected durations were then read on the y-axis.

Step V. Values of intensity of one year recurrence interval were plotted on the
y-axis with selected durations (t) on the x-axis on log-log paper (Fig.4). Since
the points so plotted did not fall on a straight line, a suitable constant (b) to

time t was added. Thus the equation become:

T = k/ () . (6)

This was done by trial and error method so that the deviations were minimum (Fig.4).

Step VI. The egn.3 written in its logarithmic form is:

log I = 1log K - d log(t+b) (7)
or

log I - log X + d log(t+b) = 0 . (8)

The constants K and d in egn.8 were then solved by the method of least squares;

They may be obtained by solving the egns. 9 and 10:

£log I -I[log(t+b)12 - Z[log I - log(t+b)]- Ilog(t+b)
log K = (9)
" n Illog(t+b)12 - [flog(t+b)]2

and
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Fig. 4. Fitting of constants b and d in the equation I = 52.5/(t+b)d — Hyderabad.

tlog I - Ilog(t+b) - nillog I * log(t+b)]
d = . (10)
n Zllog(t+b)12 - [Ilog(t+b)]?

Thus all the parameters a (Step III), b (Step V) and K and & (StepVI) become

known for egn.l.

Step VII. At this stage, frequency factor T2 obtained in Step III above was included

to give finally the intensity-duration-frequency or return period formula

I = —T . . ’ (11)

Development of Nomograph

A nomograph is an alignment chart consists of a set of parallel scales which are
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suitably graduated. In the present study, there were only three variables and thus
the alignment chart had three parallel scales so graduated that a line which joins
values on two scales will intersect the third scale at a value which satisfies the
given equation.

In order to design alignment charts for equation of the form

£ + £, = £, (12)

the following are required:

(a) the graduation of scales,which are marked with the values of the variable and

on which the distances to the graduations are laid off the proportion to the corres-
ponding values of the function of the variables, and

(b) the determination of spacing of the parallel scale. The scale equation for deter-
mining functional modulus m which is commonly defined as a proportionality multi-
plier used to bring a range of values of particular function with a selected length

for a scale which is given as:
m = L/f(uz) - f(ul) (13)

where m = calculated functional modulus, L = length of the scale chosen, f(uz) =
upper limit of the function and f(ul) = lower limit of the function.
The unknown functional modulus m, was calculated by

m, = mom / m, - m, (14)

where m, and m, are the calculated functional moduli.
Scale spacing ratio = m. / m, (15)

was determined with the help of the equation
S A D (16)

The limiting values of intensity were determined on the basis of conditions laid

downon t and T .

RESULTS AND DISCUSSION

Mathematical Equations

Following the procedure as discussed above, the intensity-duration-frequency rela-
tionships for 9 stations of northern zone, 9 stations of central zone, 10 stations
of eastern zone, 6 stations of western zone and 8 stations of southern zone of India
were developed and are reported in Table 1. The precision of these equations could
be recognized after verifying the reliability of any one of the station equation.

For example, for Hyderabad, the maximum percent deviation between the rainfall in~
tensity values obtained from developed equation I = 5.25 To'1354/(t+0.50)1'0295 and

the observed values obtained from frequency lines from primary data for various
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durations and 10,15 and 50 years frequences ranged from -6.9% to 5.3% , which is
quite low (Table 2). Notwithstanding the inherent weakness of an average equation,

the developed equations seems to be quite reliable and may be used with confidence.:

TABLE 1.

Intensity-duration-return period relationships — India.

Northern Zone

Station Equation Station Equation
4.911 To‘1667 4,098 TO'1677
Agra 1= 0.6293 Jodhpur I= 1.0369
(t+0.25) °° (t+0.5) 7"
8.570 TO'1692 6.074 T0'1813
Allahabad I-= 1.0190 Lucknow I 1.0331
(t+0.5)7° (t+0.5)" "
0.1304 0.1574
Amritsar 1= 14.41 Tl 2963 New Delhi I 2.208 Tl 1573
(t+1.4) " (t+0.5)" "
6.00 T0.2200 . 1.503 T0.2730
Dehra Dun I= 0.8000 Srinagar I 1.0636
(t+0.5) ~° (t+0.25) "
. 6.219 T0.1026 5.9143 TO'1623
Jaipur 1= 11173 Northern zone = 10127
(t+0.5)" " (t+0.5) "
Central Zone
8.5704 T0'2214 11.4500 T0'156O
Bagra-tawa I= 0.9331 Nagpur I T.0324
(t+1.25) " (t+1.25) " "
6.9296 T0'1892 4.7011 T0'2608
Bhopal I= 08767 Punasa I 0.8653
(t+0.50) ~° (t+0.5)
6.9280 0 1394 . 4.6830 TO-13%8
Indore I-= 1.0651 Raipur I 55284
(t+0.50) " (t+0.15) ~°
11.3790 101746 . 6.0880 0 1747
Jabalpur 1= 1.1206 Thikri 1 0.8587
(t+1.25)"° (t+1.00) °
4.7065 701746 : 7.4645 1°0-1712
Jagadalpur I= 0.9907 Central zone = 05595
(t+0.25) " (t+0.75) °
Western Zone
6.018 701459 4.254 p°-2070
Aurangabad I= 1.0923 Nandurbar I 07704
(t+0.50) " ° (t+0.25) °°
, 3.823 70-12%7 6.863 701670
Bhuj 1= 1.0923 vengurla I 0.8683
(t+0.50) (t+0.75)
0.1267 0.2084
Mahabaleshwar I = 3.483 g 1553 Veraval I 7.787 T 5 5508
(t+0.0) " (t+0.50) "
_ 3.974 TO'1647

Western zone

(t+0.15) 0+ 7327
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(table 1 cont'd.)

Eastern Zone
8.097 To.1177 6.930 TO'1337
Agartala 0 8191 Jamshedpur 08737
(t+0.50) ~° (t+0.50) °
0.1150 0.1392
bum Dum 5.940 T — Jharsuguda 8.596 T e
(t+0.15) ° (t+0.75) °
0.1557 0.1256
Gauhati 7.206 T 5540 North Lakhimpur 14.070 Tl 9750
(t+0.75) ~° (t+1.25)"°
7.176 TO'1483 16.524 T0'1402
Gaya REYED) Sagar Island 0.9635
(t+0.50) ~° (t+1.50) °
4.939 TO.1340 . 6.728 To'1502
Imphal 0.9719 Shillong 0.9575
(t+0.50) °° (t+0.75)
Eastern zone - 8.233 TO‘1353
(t+0.50)0'8801
Southern Zone
6.275 T0'1262 6.744 TO'1395
Bangalore 171580 Mangalore 0.9347
(t+0.50) " (t+0.50) °
5.250 o0 1324 . . . 7.136 T0'1638
Hydrabad 1.0395 Tiruchirapalli 0.9624
(t+0.50) ~° (t+0.50) °
. 5.914 TO'1711 . 6.762 T0'1536
Kodaikanal 1.0086 Trivandrum 0.8159
(t+0.50) "~ (t+0.50) °
6.126 TO'1664 . 6.646 TO'1692
Madras 0.8027 Vishakhapatnum 0.9963
(t+0.50) "~ (t+0.50) ~°
6.311 T0.1523
Southern zone = 0.9465
(t+0.50) °

( I = intensity (cm/hr); T = return period (year); t = duration (hour) ).

F rther on the basis of equations for individual stations, zonal equa&ions were
also developed. From the equations of individual stations, the intensity for any
desired duration and frequency (or return period, or recurrence interval) can be
determined for that location and the zonal equation may be used for any location

falling in that zone.
Nomographs

On the basis of intensity-duration-frequency relationships developed for 42 sta-
tions (Table 1) situated in northern, central, eastern, western and southern zones
of India nomographs were prepared for all these stations. A nomograph of one such
station (Hyderabad) has been shown in Fig.5. From the nomographs, the rainfall

intensity for any desired dQuration between 10 to 100 years frequency (or return
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TABLE 2.

Comparison among calculated and observed intensities of rainfall (cm/hr) and the
present deviation — Hyderabad.

Duration 1cal lObS oi
mins;hrs frequency, years frequency, years frequency years
10 25 50 10 25 50 10 25 50
15 mins. 9.6 10.9 12.0 9.6 11.0 11.5 0.0 -0.9 4.3
30 mins. 7.2 8.1 8.9 7.6 8.6 9.3 -5.3 -5.8 -4.3
1 hr. 4.7 5.4 5.9 5.0 5.8 6.3 -6.0 ~6.9 -6.3
3 hrs. 2.0 2.2 2.5 1.9 2.2 2.5 5.3 0.0 0.0
6 hrs. 1.0 1.2 1.3 1.0 1.2 1.3 0.0 0.0 0.0

ical = calculated intensity of rainfall (cm/hr) from developed equation
iObs = observed intensity of rainfall (cm/hr) from the frequency lines from primary
data

6, = percent deviation of observed values from the frequency lines from those
calculated by the developed equation

. : it
|oo1: = 5-25 To 1354 16-5'g 18'2
[ (1+0:50)0295 ]
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o 25 .. w_~ \6‘ = [ -
LI (7] 4e-
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Fig. 5. Nomograph for solving intensity-duration-return period for recurrence inter-
val) equation, I = 5.25 70.1354/(£+0.50) 1- 0295 _ pyderabad.

period) could be directly read for that location. Zonal nomographs for all the five
zones (Fig.6) were also developed which may be used for determining intensity for

any duration and recurrence interval for any location in the zone.
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Fig. 6. Nomographs of intensity-duration-return period (or recurrence interval)
equations for Northern, Central, Western, Eastern and Southern zones of India.

Comparison of Mathematical and Nomographic Solutions

Percent deviation of rainfall intensity values observed from nomographs and those
calculated from corresponding mathematical equations for various durations and 10,
25, and 50 years frequencies showed that maximum deviation between the nomographic
solutions and mathematical equations ranges from -5.3% to 3.5% in case of Allahabad
(northern zone); -5.3% to 4.3% in case of Jabalpur (central zone); -7.9% to 5.9%
in case of Dum Dum (eastern zone); -5.0% to 7.7% in case of Mahabaleshwar (western
zone) and -6.9% to 8.0% in case of Kodaikanal (southern zone). The deviations for
other 37 stations were still less.

While comparing the rainfall intensity values at various frequencies and durations
obtained from the developed equations and from the observed values obtained from

-the probability charts, it is observed that the maximum deviations range from -18.2%
to 14.3% for Amritsar (northern zone); -15.5% to 19.6% for Raipur (central zone);
-17.6% to 13.6% for Imphal (eastern zone); -14.6% to 16.7% for Nandurbar (western
zone) and -15.0% to 19.0% for Kodaikanal (southern zone). Thus the variations lie
within the accepted limit ( < 20% ). On further scrutiny it is observed that the
nomographic solutions are more precise for predicting intensity of rainfall of vari-

ous durations and frequencies. Looking into simplicity in use, quickness and precision
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in results obtained , nomographs appear to be the most handy tool for field workers.
When the rainfall intensity of 15, 30 and 60 minutes durations for 10, 25 and

50 years frequency obtained for different locations within a zone was compared with
the values Obtained‘by the zonal equations, it appears that, in general, the devi-
ation occurs between * 20% to 30% . However, the deviation was noticed upto 50% at
some stations in the northern, eastern and southern zones. Such high variation occurs
only at those places where rainfall occurs either with a too low or too high inten-
sity. This indicates the limitations of zonal equations. It is, therefore, suggested
that the zonal equations are best suited for locations where intermediate intensity
rainfall is received which is always true for any equation or nomographs developed

for a region or the country as a whole.
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PROBABILITY MODEL FOR THE CALAMITOUS BEHAVIOUR OF THE SUMMER MONSOON OVER INDIA

D.A.MOOLEY and B.PARTHASARATHY
Indian Institute of Tropical Meteorogy, Pune-411 005, (India)

ABSTRACT

Mooley,D.A. and Parthasarathy,B., Probablity model for the calamitous behaviour
of the summer monsoon over India. Proc. l-st Intern. Conf. on Stat. Climat.,
held in Tokyo, Nov.29-Dec.l, 1979

The behaviour of the summer monsoon over India is often friendly and helpful
to the economy of the country. However, occasionally it is calamitous and it breaks
the back of the Indian economy, and leads to large-scale sufferings of the peopls.
The calamitous behaviour of the summer monsoon (May-October) has been examined in
this study. The percentage of the country's area with monsoon rainfall deficiency
of 20 perecent or more is defined as the Monsoon Deficiency Index (MDI), and that
with monsoon rainfall excess of 20 percent or more, as Monsoon Excess Index (MEI).
The sum of these two indices is defined as the Monsoon Vagaries Index (MVI). MDI,
MEI and MVI for the country have been worked out for each of the years during the
period 1871-1978. MVI series was subjected to statistical analysis. The results
of this analysis show that MVI is a Gamma-distributed Veriable. The 85th and 90th
percantiles of this Gamma distribution are 52 percent and 58 percent respectively.
The criterion of MVI > 55 percent has been adopted for defining the calamitous ca-
lamitous behaviour of the monsoon. The criterion of 55 percent is equivalent to
the 87th percentile of the Gemma model fitted to the HVI saries. Thus the probability
of MVI exceeding 55 percent is about 0.13. The years of calamitous behaviour of
the monsoon have been indentified. The application of Mann-Kendall rank statistic
test and Swed and Eisenhart's test for runs above and below the median to the time
interval between successive calamitous behaviour does not bring out any significant
non-randomness and the occurrence of these calamities can be taken to be random
in time continuum. In view of the low probability of the calamitous behaviour per
year, Poisson model could be expected to fit the occasions of calamitous behavicur
in a five-year period. Tham's criterion for adequacy of Poisson distribution is
found to be satisfied. Poisson model was fitted to the data on calamitous behaviour
and the gocdness-of-fit was tested by Chi-squared test. The fit has been found to
be very good. The Poisson distribution is a limiting case of the Binomial distri-
bution and in the situation of transition, both the distributions may show good fit.
In view of this, the Binomial distribution was also fitted. The Binamial fit is
seen to be much better. :

INTRODUCTION

The Indian econdmy is largely dependent on the summer mansoon. Indian budget
has often been referred to as a gamble in monaoon. The behaviour of the monsoon
is often helpful to the economy of the country. However, occasionally, its high
erratic hehaviour results in a calamity and the economy gets disrupted (Mooley

(1975, 1976), Ramdas (1976)). The normal human activities get affected very adversely,
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leading to large-scale sufferings of the people. In this study, the calamitous be-
haviour of the monsoon as defined by a specific criterion, has been examined during
the period 1871-1978 to find out whether the occasions of such behaviour exhibit

randomness and whether they follow any probability law.
DATA AND METHODOLOGY

The onset of the summer monsoon is earlier than normal and its withdrawal is
later than normal in some years. In addition, in some parts of the country, the
rain which occurs in May and October is useful for praliminary agricultural oper-
ations. In view of this situation, rainfall during the period May to October has
been considered as summer monsoon rainfall. Hereafter, summer monsoon will be ref-
erred to as monsoon. A large portion of the meteorological subdivision, Jammu and
Kashmir is hilly and the number of raingauge stations is very inadequate. Thebmete—
orological subdivision of Mimachal Pradesh is a hilly area. The subdivision of west
Uttar Pradesh has got hilly portion in northwest. In hilly areas, the representa-
tiveness of a raingauge station is small. The subdivisions of Arabian Sea Islands
and Bay Islands consist of a few island stations and as such are extremely small.
In View of these reasons, the four sub-divisions, Jammu and Kashmir, Himachal Pradesh,
Arabian Sea ‘Talands and Bay Islands, and the hilly portion of West Uttar Pradesh
have not been considered. Hereafter, the area of the country will refer to the area
of India as indicated in Figure 1.

Monthly rainfall data of all the available raingauges for the period 1871-1978
have been utilised. Prior to 1901, the nuber of raingauges was about utilised. Prior
to 1901, the number of raingauges was about 350 and during the period 1901-70, it
was 2000to 3000. After 1970, the rainfall data of about 350 observatory stations
have been used. Areal avarage monsoon rainfall has been obtained for each of the
subdivisions for each of the years. The deocarture of monsoon rainfall from normal,
i.e. long-period mean, has been worked for each of the subdivisions and for each
of the years and this has been expressed as percentage of the normal.

Monsoon Deficiency Index (MDI), defined as percentage area of the country with
percentage rainfall departure of f ~20, and Monsoon Excess Index (MEI), defined
as percatage area of the country with percentage rainfall departure of 2 =20,
have been computed for each year. The Monsoon Vagaries Index (MVI), defined as the
sum of MDI and MEI, has also been obtained for each of the years. MVI is shown in

Figure 2.

CRITERION FOR CALAMITOUS BEHAVIOUR OF THE MONSOON

The distribution of MVI is skewed. Gamma distribution was fitted to MVI and
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Fig. 1. Sub-divisions considered are given below and shown in the map by their

numbers.
2 North Assam
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4 Sub-Himalayan
West Bengal

5 Gangetic
West Bengal

Orissa
Bihar Plateau

Bihar Plains

O O N O

East Uttar
Pradesh

10 West Uttar Pradesh
(plains)

11 Haryana

12
15

16

17

18

19

20

21
22

Punjab

West
Rajasthan

East
Rajasthan

West Madhya
Pradesh

East Madhya
Pradesh

Gujarat
Region

Saurashtra
& Kutch

Konkan

Madhya
Maharashtra

23
24
25

26
27
28
29

30

31
32

Marathwada
vidarbha

Coastal Andhra
Pradesh

Telangana
Rayalaseema
Tamil Nadu

Coastal
Karnataka

Narth
Karnataka

South Karnataka

Kerala

the goodness-of-fit was tested by variance ratiotest and Chi-square test. Both of

these tests show that the fit of the Gamma model to MVI is very good. The Maximum

Likelihood estimates of the parameters of the Gamma distribution are, shape para-
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meter g = 3.50 and scale parameter, b = 9.71. The probability density function
is given by p (x) = x2'5 e—x/9'7l/ [ (9.71)3'5 r'(3.5) ] for x > 0. The 85th and

90th percentiles of this distribution are 53.0 and 58.3 percent respectively. The
criterion of 55 percent has been adopted for identifying the calamitous behaviour
of the mansoon. The criterion of 55 percent corresponds to 87th percentile of the
Gamma distribution fitted to MVI. Thus the probability of MVI exceeding 55 percent
is 0.13. The years with MVI exceeding 55 percent have been identified as years with

calamitous behaviour of the monsoon.
TESTS FOR RANDOOMNESS OF THE CALAMITOUS BEAVIOUR

The years with calamitous monsoon behaviour and the corresponding MVI are given
in Table 1. To test whether the occasions of the calamitous behaviour show any
significant non-randomness, Mann-Kendall rank statistic test for randomness and
Swed and Eisenhart's test for runs above and below the median, as recommended by
WMO (1966 a,b) were applied to the time interval between successive occasions of
the calamitous behaviour of the monsoon.

The value of the Mann-Kendall rank statistic is 0.013, whereas the value signif-
icant at 5 percent level is outside the interval + 0.392. Thus the test does not
bring out any significant non-randomness.

The number of runs above and below the median is 8. According to tables by Owen
(1962), a value of or less would suggest a trend significant at 5 percent level,
while a value of 1l or more would suggest oscillstion signficant at 5 percent level.
The number of runs lies between these two limits. Thus neither significant trend
nor significant oscillation is suggested by Swed and Eisenhart's runs test.

Both the tests show that there is no significant nonrandomness in the time interval
series, and the interval can be taken to be random. The occurrence of the calamitous

behaviour of the monsoon appears to be a random event in time continuum.
PROBABILITY MODEL FOR CALAMITOUS BEHAVIOUR OF THE MONSOON

To plan funds for mitigating the hardships due to the calamitous behaviour of
the monsoon, we would like to know the probability of 1,2,3 such occasions in a
five-year period. For this purpose, we have to obtain a probability model which
would show a good fit to the number of occasions of calamitous mansoon behaviour
in a five-year period. Since the mean probability of such occasions per year is
low, it is expected that Poisson distribution may show a good fit. The probability

mass function of the Poisson distribution is given by

m m
P(x) = e T for x =0, 1, 2, 3, etc.
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Table 1

Years in which the behaviour of the monsoon was calamitous and the corresponding MVI.

Year MVI Year MVI Year MVI

1871 58.1 1911 55.6 1941 63.5
1877 62.7 1916 58.6 1956 59.1
1878 56.6 1917 65.7 1961 62.9
1894 56.8 1918 75.7 1965 64.4
1899 77.2 1933 62.3 1972 66.1

Table 2

Goodness-of-fit of the Poisson distribution to the number of occasions of calamitous
behaviour of monsoon in a five-year period.

No. of years Observed Frequency Contribution
of calamitous frequency on to Chi-square
behaviour in Poisson
a five-year . hypothesis
period.
0] 10 10.49 .024
1 8 7.28 0.071
2 2 2.53 )
) 0.016
>3 1 0.70 )
2
X = 0.111 (d.f.1)
Table 3

Goodness-of-fit of the Binomial distribution to the number of occasions of calamitous
behaviour of the mansoon in a five-year period.

No. of occasions Observed Frequency on Contribution
of calamitous frequency Binomial to Chi-square
behaviour of the hypothesis

monsoon in a five-
year period.

0 10 9.93 0.0005
1 8 7.96 0.0002
2 2 2.62 )
) 0.0040
>3 1 0.49 )

x~ = 0.005 (d.f.1)
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= 0, otherwiss
x is the number of events, and m is the mean

number of events.

Thom (WMO 1966b) has given a criterion for adequacy of the Poisson distribution.

2 2
This criterion is, P( Xn—l > X'p-1 ) > 0.05,
where X2 .1 - nZY2 - 1y
n LY !

n, the number of five-year periods and Y is the number of occasions of calamitous

monsoon behaviour in a five-year pariod.

Xi-l = 20.0 (d.£.20) and P ( X;o > 20.0 ) = 0.46. Thus Poisson distribution

is adequate in this cass. This distribution was fitted to the data, and the goodness-

of -fit was tested by Chi-square test. The results are given in Table 2. It can
be seen that the fit is very good.

The Poisson distribution is a limiting case of the Binomial distribution when
the chance of success or failure is low and the number of trials is large, the mean
number of successes or failures in n trials remaining finite. In the situation of
transition from the Binomial to the Poisson, both the distributions might show good
fit. In view of this, the Binomial distribution was also fitted to the data. The
probability mass function of the Binomial distribution is given by

n

P,x) = ( o )y ¥ (1~ P)n—x for x = 0,1,2,3, etc.

0, otherwise

Where p is the mean probability of success, and n is the number of trials. The
fit of the Binomial distribution has been teated by the Chi-square test. The results
are given in Table 3., Tne fit is seen to be excellent. The Binomial fit appears to
be much better than the Poisson fit. On the basis of the Binomial model, the proba-
bilities of 1, 2, 3 occasions of the calamitous behaviour of the monsoon in a five-
year period are 0.379, 0.125 and 0.021 respectively.

The parameters of the Poisson and the Binomial distribution have to be obtained
from data. In view of this the stability of the probabilities obtained on the basis
of these models would depend on the stability of the parameter determined from the
data sample. The mean probability of an occasion of the calamitous behaviour. of
the monsoon for the whole period is about 0.14, whereas, the values for the first
and second half of the total period are 0.17 and 0.11 respectively. This variation

in mean over a period of the order of 50 years is perhaps not large.
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Fig. 2. Monsoon Vagaries Index (MVI) for India ( 1871-1978 ).
CONCLUDING REMARKS

The calamitous behaviour of the monsocon appears to be random, and the number
of the calamitous behaviour in a five-year period is distributed according to the

Binomial law. The Poisson distribution also shows a very good fit.
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PROBLEMS IN STATISTICAL CLIMATOLOGY
— Concluding Remarks of the Conference —

1. INTRODUCTION

Climatology derives most of its basic concepts from an appreciation of various
series of meteorological observation taken over extended periods of time, as written
by Crowe(1971). At first step, the average, arithmetic mean, can be calculated
to reduce a mass of data obtained during the periods. It has been considered that

this mean values show the general conditions of the atmosphere. Hence, climate

[ . .
has been defined as an average state of the atmosphere. This may be the most typical

definition in the last centuty, which was a golden era of climatography based
on the descriotion of the observed meteorological materials (Leighiy,1949). Thus
Pl

the statistical method in research influenced on the concept or definition of Climate.

In the present paper, problems in statistical climatology are reviewed, summa-

rizing the results obtained previously and presented at the Symposium.

2. STATISTICS AND CLIMATOLOGY

a) Statistical climatology or climatological statistics

Climatology was born as a son of statistics of meteorological data. Climatology
is therefore concerned with collecting and processing meteorological data, summa-
rizing meteorlogical information, estimating parameters, and discovering clima-
tological empirical laws. One of its application from is a statistical long-range
forecast, based upon a systematic statistical examination of the past behavior of
climatic elements.

Strictly speaking climatological statistics differs of course from statistical
climatology: goal of the fromer is statistics and the latter climatology. However,
the words have been used not always in proper meaning, because it is not so easy
to separate them clearly. For instance, Crowe(1971) dealt with the statistics of
description under the title of "climatological statistics", as applied to monthly
data for temperature and precipitation. Actually, the results of statistics show

climatological implications.

b) History of statistical climatology

Eventhough the statistical procedure has long been developed along with the

history of climatology since the last century, Conrad(1944) summarized the sta-
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3, PROBLEMS IN STATISTICAL CLIMATOLOGY

Problems in statistical climatology can be summarized as the following eight
topics. These were drawn from the results of discussion between the Organizing Com-
mittee and Dr.R.Sneyers, chairman of the Symposium.

Namely; (i) Time series and assessment of randomness: Applied problems of this item
may be homogeneity of series and climatic change.

(ii) Theoretical distributions: Single values, extreme values, continuous or
discrete variates, and Markov chains are included in this items. Applied problems
are for instance statistical prediction and simple random climatic models.

(iii) Joint (multivariate) distributions: Continuous or discrete variates, es-
timation when one margin is known, multivariate analysis, and factor analysis are
the problems. Their applications are statistical prediction, simple random climatic
models, and statistical description.

(iv) Statistical quality control: Applications of this item are outliers in
series of observations, and quality of predictions (numerical, dynamic,etc.).

(v) Stochastic models of meteorological fields: Applications are estimation for
lacking points or optimal density of networks

(vi) Discriminant analysis: Examples of application are climatic classifications

and weather type classifications.

(vii) Stochastic models and autoregressive models: This is applicable to climatic
models or stochastic dynamic prediction.

(viii) Circular distributions: Harmonic analysis, spectral analysis, cross spectral
analysis and test of significance are included. Application is climatic models.

At the Symposium more than fourteen papers were concerned with the topics of
item (ii) mentioned above. The topics of item (i) were mentioned by more than four
papers, while item (iii) by six papers. Contrary to expecation, items (iv) (vi){vii)

and (viii) were taken up only by two or three papers respectively.

4. FUTURE PROBLEMS

a) Thema to be studied

As have been shown by number of the papers presented at the Symposium and also
considering the social needs, the thema to be studied in future can be summarized
as follows:

(i) Cliamtic variation or change and prediction of future climate,

(ii) Estimation future population, food or energy in relation to the climatic con-
ditions,

(iii) statistical test of randomness and theoretical distributions of climatic data

for each elements in each climatic regions.
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tistical methods in climatology first in the middle of this century. Revised his
book (Conrad and Pollak, 1950) contributed for advancement of climatological re-
search. A comprehensive textbook by brooks and Garruthers(1953), which is one of
the best reference book at the same time, appeared beginning of the second half
of this century. In this handbook, formulation of significance tests, analysis
of variance, periodgram analysis, correlogram and other methods were introduced
based on the greatest developments in statistics in the first half of the twentieth
century. Since statistical analysis applies to samples from populations of data,
the sequences of climatological data must be defined so as to be samples from popu-
lations (Oliver, 1973). From this viéwpoint, the book was the first mile stone
of the statistical climatology, which should be studied by sample theories or
stochastics.

In China, a textbook on climatic statistics was written by Yao (1965) on the
basis of classical statistics.

Godske (1966a) presented a comprehensive paper on statistical meteorology at
the WMO Inter-Regional Seminar on Statistical Analysis and Prognosis in Meteorology,
Paris, in October, 1962. In this papaer he reviewed the problems of information
in meteorology including the scale of information ,the flow of information in class-
ical climatology, in numerical field prognosis, in routine weather forecasting,
in studies of the representativeness of meteorological stations and in synoptic
climatology. After describing the statistical methods in climdtology in detail,

he proposed a definition of climate and climatology: Climatology is the science

T S i AN
of the multivariate distributions of meteorological elements with time and space
ot =S o

(Godske, 1966b). This definition based on_the _statistical resgarch, methods_must

?E_Szi:iiiffiffffwifggfgiEE~£353£E§ in the hlstory of climatology after the war.
Standard textbooks on climatology treat the p;éétlcal,>éi;éi;-statlsézcs ln'

most cases. They were concerned mainly with homogeneous data, average, deviation,

frequency curve, probable error, mode, correlation coefficient, harmonic analysis

etc. (Fukui, 1938). Eandsberg (1947; 1958) mentionrd also the statistical method

for climatological meterials. A textbook on climatology in Soviet Union, devoted

one seventh of total pages to practical method of climatological statistics (Kostin
and Pokrovskaya, 1953). More complete description was appeared in a textbook by
Alissow et al. (1956): homogeneity and inhomogeneity and reduction of the records
were the main ﬁopics in climatological statistics and the thorough description
of the statistics of each climatological elements were given as a chapter of sta-
tistical climatology. It must be pointed out, however, that the textbooks in this
stage have not yet mentioned the problems such as significance test, analysis of
variance, factor analysis and small sample theories.

As far as I know, only the textbook written by Suzuki(1968) treats such newly
developed fields of statistics systematically.

There were many symposiums, seminars and commissions which set the thema on
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statistical climatology. Besides, there published so many research papers from
the standpoint of statistical climatology. Historical development of this field

should be reconsidered by reviewing them in detail in future.

C) Development of statistical climatology in Japan

Development of the statistical climatology in Japan will be first mentioned
briefly. After World war II, the long-range weather forecasting started by the Sta-
tistical method. M. Ogawara published the results first in 1948. Also, climatic
fluctuations were studied extensively by computing crrelation coefficients by
'T. Yamamoto and others in the second half of 1940's.

1949 may be one of the monumental year in the history of statistical climatology
in Japan. Kisho-tokei konwakai, a study group for meteorological statistics, was
established in this year and began to pulish a journal ‘"Meteorology and statistics"
regularly. This journal written in Japanese was distributed only among the research-
ers in Japan, but it was early enough, if we consider that the first volume of
"Tellus" was published in Sweden in the same year and also "Archiv fir Meteorologie,
Geophysik, und Bioklimatologie” in Austria.

Takahashi published a book entitled "Meteorological statistics" in 1944. The
confusion of the research environment at the period of the end of War made it im-
possible to distribute this book to us. Based on the radio-lecture, Takahashi(1952)
compiled a popular booklet on weather and statistics, in which he dealt with the

significance of climatology as a science of mean value. He pointed out the impor-

ééi?é of frequency distribution as well as deviatiSET_;ecular variations, extreme
values and periodgramme analysis as a climatological presentation.

The small sample statistics were introduced in Japan during 1940's. The study
group mentioned above studied it eagerly. M.Masuyama, M.Ogawara, E.Suzuki, M.Hirose,
T.Ozawa, T.Fujita, K.Tomatsu and many other researchers mainly in the Meteorological
Research Institue played an important role in the group. The most brilliant age
for the development was occurred in 1950's.

Watanabe(1958) published a book entitled "Modern method of meteorological re-
search”, in which he introduced many practical methods of climatological statistics
for each climatic elements. Kunisawa and Suzuki(1961) published a textbook on the
statistical practice with a wealth of examples of meteorological or climatological
materials.

Suzuki (1968) wrote a book entitled "statistical meteorology", which aimed to
make clear the meteorological and climatological phenomena by the statistical method
of analsis, considering the systematization of the statistical methods. It must
be pointed out that this is the first comprehensive book dealt with the boundary
region between statistics and climatology in Japan and, at the same time, written

on the ground of modern statistics.
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(iv) Stochastic models of meteorological fields in the respective global, regional
regional local and micro-scales, and

(v) Climatic models.

b) International project studies or joint studies

Concerning the data used in statistical climatology, international cooperation
must be first needed. As the ICSU (International Council of Scientific Unions) Panel
on World Data Centres has reaffirmed, for instance, the World Data Centres exist
for the benefic of the world-wide community of scientists. The resolution to ‘the
publication of climatic data said that "it is most important that climatological
research workers should be able to obtain by some convenient means the meteorological
data needed for their work (ICSU, 1979).

CODATA (Commission on Data for Science and Technology), one of the ICSU body,
is working also on the data related to statistical climatology. Tomlinson (1979)
reported interdisciplinary coiperation and technical exchange in handling of space-
and time-varying data. In the field of climatology, WMO (World Meteorological Or-
ganization) plays an important role, but it was pointed out by CODATA that natural
variability, likelihood of events such as droughts or floods, and changes in climatic
means and variability with are the problems concerning the climate for the data to
answer. Further, the problems presented are: Cressman analyses, polynomical fitting,
eigenfunction expansions, optimal analyses, variational methods, special methods
to preserve gradients, and fiflering and smoothing.

Recently, World Climate Programe (WCP) has started with the four components:
Climatic Data Programme (CDP), Climatic Applications Programme (CAP), Climatic Impact
Study Programme (CIP), and Climatic Change and variability Research Programme (CRP).
In these programmes, it is needless to say that the statistical approach is the
most important. For instance, research elements in the last programme mentioned
above are (i) climate model development, (ii) climate predictability, (iii) climate
sensitivity, (iv) climatologically significant processes, (v) climate diagnostics,
and (vi) climate data requirements.

In such cooperation with the international projects or joint studies, the sta-
tistical climatology will make progress intensively. As has been mentioned, the
statistical climatology is an interdisciplinary science between statistics and
climatology. It is hoped therefore that the statistical societies and the meteor-
ological societies will cooperate in arranging meetings like the present Symposium

in near future again.
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